AT&T Bell Laboratories Technical Journal
Vol. 63, No. 8, October 1984
Printed in U.S.A.

The UNIX System:

The Blit: A Multiplexed Graphics Terminal

By R. PIKE*
(Manuscript received August 1, 1983)

The Blit is a programmable bitmap graphics terminal designed specifically
to run with the UNIX™ operating system. The software in the terminal
provides an asynchronous multiwindow environment, and thereby exploits the
multiprogramming capabilities of the UNIX system, which have been largely
under-utilized because of the restrictions of conventional terminals. This paper
discusses the design motivation of the Blit, gives an overview of the user
interface, mentions some of the novel uses of multiprogramming made possible
by the Blit, and describes the implementation of the multiplexing facilities on
the host and in the terminal. Because most of the functionality is provided by
the terminal, the discussion focuses on the structure of the terminal’s software.

I. INTRODUCTION

The Blit' is a graphics terminal characterized more by the software
it runs than by the hardware itself. The hardware is simple and
inexpensive (see Fig. 1): 256K bytes of memory dual-ported between
an 800-by-1024-by-1-bit display and a Motorola MC68000 micro-
processor, with 24K of ROM, an RS-232 interface, a mouse, and a
keyboard. Unlike many graphics terminals, it has no special-purpose
graphics hardware; instead, the microprocessor executes all graphical

* AT&T Bell Laboratories.
* The name comes from the second syllable of the bitblt graphics operator.™” It

is not an acronym.

Copyright © 1984 AT&T. Photo reproduction for noncommercial use is permitted with-
out payment of royalty provided that each reproduction is done without alteration and
that the Journal reference and copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed royalty
free by computer-based and other information-service systems without further permis-
sion. Permission to reproduce or republish any other portion of this paper must be
obtained from the Editor.

1607

24K
ROM MOUSE
[10
UNIX SYSTEM
DISPLAY PROCESSOR RS-232 P——T———
256K
RAM KEYBOARD

Fig. 1—Hardware overview.

operations in software. The reasons for, and consequences of, this
design are discussed elsewhere.?

The microprocessor can be loaded from the host with custom appli-
cations software, but the terminal is rarely used this way. Instead, a
small multiprocess operating system is loaded into the terminal, and
the processes under that operating system are then loaded. The
operating system is structured around asynchronous overlapping win-
dows, called layers.? Layers extend the idea of a bitmap and the bitbit
operator’? to overlapping areas of the display, so a program may draw
in its portion of the screen independently of other programs sharing
the display. The Blit screen is therefore much like a set of truly
independent, asynchronously updated terminals. This structure nicely
complements the multiprogramming capabilities of the UNIX system
and has led to some new insights about multiprogramming environ-
ments.

Programs in the terminal have access to an extensive bitmap graph-
ics library, which is implemented using the layerop primitive,® and
is distinct in its use of abstract data types for geometrical objects and
its lack of device independence—the library is closely coupled to the
terminal and its programming environment.? The programs that have
been written for the Blit include a popular text editor with a paucity
of commands, a debugger that can be used effectively without reading
any documentation, a surfeit of 24-by-80-character terminal emula-
tors, and not nearly enough games. But this paper is not about the
programs in the terminal so much as their environment and interre-
lationships. Reference 3 discusses how to update overlapping windows
asynchronously; this paper discusses what to do with them.

The discussion is in three main sections: an overview of the history
and motivation behind the terminal, a brief description of the user
interface, and some details of the implementation. The reader is
assumed to have some familiarity with the UNIX operating system,
although the details relevant to the Blit will be discussed.

1. HISTORY AND MOTIVATION
The original idea behind the development of the Blit hardware was

1608 TECHNICAL JOURNAL, OCTOBER 1984

to provide a graphics machine with about the power of the Xerox
Alto,* but using 1981 technology (large address space microprocessors,
64K RAMs, and programmed array logic) to keep size, complexity,
and, particularly, cost much lower. Too many graphics work stations
are so expensive that several people must share one, sometimes using
sign-up lists.

Because we refuse to have rotating machinery in our offices, we
wanted to build the Blit around a network interface rather than a disc.
But after several lengthy discussions we decided that network hard-
ware and software were not yet inexpensive, available, or reliable
enough to be the center of a work station (the situation now is hardly
better). Rather than compromise our principles, and to keep costs low,
we therefore chose to make the Blit a regular terminal with an RS-
232 Electronic Industries Association (EIA) port to a time-shared
host. Only one integrated circuit is needed to connect the micropro-
cessor to the EIA line, so the electronics fits on a single board, which
minimizes cost, size, and packaging complexity—the board mounts
inside the monitor cabinet. This decision to use RS-232 limited the
high end of the capabilities of the Blit, but it expanded the low end
enormously. Blits can be used anywhere 24-by-80 ASCII terminals are
used, including each office in our research center.

But perhaps most important (at least to us), Blits are inexpensive,
portable, and so easy to communicate with that we can take them
home. Researchers in our group have 1200-baud dial-up terminals at
home. For the home computing environment to be effective, it must
be as similar to the office environment as possible; although 1200 baud
is slow (our terminals at work run at 19,200 baud), a Blit at 1200 baud
is much better than a regular terminal at 1200 baud. Also, the local
processing power of the terminal can make up for some of the reduced
bandwidth. So although a high-speed network would be desirable,
much of the Blit’s success can be attributed to the use of RS-232.

We initially intended to use the Blit to explore interactive graphical
environments along the lines of Smalltalk, but soon decided that we
had neither the energy nor the inclination to build a complete pro-
gramming environment. The UNIX system has a comfortable set of
tools for program development and general programming that would
require great effort to reproduce, but that we wanted to use when
developing and using the Blit. Also, the UNIX system is the framework
of all computing done in our group and is not likely to be supplanted
easily by something new, no matter how attractive. We therefore
began thinking about using the Blit to improve the programming
environment, rather than replace or even merely add to it.

One of the distinguishing characteristics of the UNIX system is
multiprogramming, the ability to run several programs at once. The
best known use of multiprogramming is the pipe, an I/O connection

GRAPHICS TERMINAL 1609

between two processes that sends the output from one process to the
input of another. The UNIX command interpreter, called the shell,

has a simple syntax for pipes:
who | 1pr

which sends the output of who to the l1pr command, which spools
output for the line printer.

Programs in a pipeline are related by their interconnection, but the
UNIX system also allows unrelated processes to execute simultane-
ously. The shell postfix operator & runs a command in the background,
that is, without waiting for it to finish. For example,

cc prog.c §

runs the C compiler on the file prog.c and immediately returns to
the user; normally, the shell would wait for cc to complete before
reading the next command from the terminal. Background processes
have their input disconnected from the terminal, but messages printed
on the terminal will appear there, asynchronously with other input
and output on the same terminal. This can be annoying if a process
using the terminal interactively is maintaining a full-screen image,
because output from background processes will modify the screen
image without the foreground process’s knowledge. For example, error
messages from a background cc will interfere with a screen editor.

The problem exists because several processes are using a single
terminal for their I/O. If the terminal were multiplexed between the
. processes, their input and output could be kept separate. The “job
control” software® developed by Jim Kulp at International Institute
for Applied Systems Analysis in Vienna and Bill Joy at the University
of California at Berkeley allows the user to pass the terminal between
processes on the same terminal, essentially by flipping processes from
the background to the foreground at the user’s signal. But the state of
the terminal is not maintained correctly when the user flips between
processes—the screen contents and terminal modes are not restored
to those of the new foreground process. The problem is resolved by
interfacing the editors to the job control mechanism so they can
preserve the screen’s appearance; but that is far from transparent to
the programs.

To provide a better terminal for use by the UNIX system, we began
thinking about programming the Blit so each process or related set of
processes has a reserved portion of the screen, called a window. That
way, compiler error messages appear in the window where the compiler
is running, and editing can continue undisturbed in another window.
If the terminal maintains the state for the various processes and
provides an appropriate user interface for creating and switching
between windows, the UNIX system need not have job control or

1610 TECHNICAL JOURNAL, OCTOBER 1984

maintain the state of the screen for the various processes. Instead, the
UNIX system can treat the windows like individual terminals.

Most window systems permit the user to focus attention on one
window at a time, with the other windows maintained statically.
Windows on the multiprogrammed UNIX system, however, must be
updated asynchronously. That is, characters written to a window by a
process must appear immediately, regardless of whether the user’s
keyboard is currently connected to that window. Otherwise, compiler
errors would not appear until the user asked for them, which would
cancel some of the advantages of multiprogramming. Also, as will
develop later, the possibility of conveniently controlling asynchronous
processes leads to some innovative computing techniques.

While the Blit hardware was being designed, we experimented with
asynchronous windows on a Blit predecessor built by Dave Ditzel.
Following the pattern set by “intelligent terminals,” we programmed
the terminal to interpret escape sequences to create, delete, and switch
the host character stream between windows. A program on the UNIX
system sat between the user programs and the terminal, and inserted
escape sequences in the character stream to send data to the correct
window. Although this early implementation was clumsy and fragile,
it demonstrated the feasibility and power of an asynchronous window
terminal and pointed out the issues that must be resolved for a
workable multiwindow terminal:

1. Windows must be updated asynchronously. The trial system was
primitive but worked well enough to be convincing.

2. The screen is not big enough (regardless of how big it might be).
Therefore, windows must overlap. The desires for overlap and asyn-
chronism led to the development of layers, an implementation of
overlapping, asynchronously updated windows.

3. The software to generate the incremental control information
(escape sequence “switch to window x”) from high-level requests
(“draw these characters in this window”) was messy—too much state
information was maintained by the terminal and guessed at by the
UNIX program. The implementation also encouraged attempts to
optimize the number of characters sent, which added to the complexity,
a situation familiar to authors of screen editors. Putting all data into
labeled packets eliminates this confusion and obviates optimization.

4. A simple RS-232 connection is not robust or controllable enough
to connect two communicating programs, in this case the UNIX
system and the code in the terminal. An error-corrected protocol with
flow control is required.

5. To draw graphics in the windows, sending escape sequences is
traditional but makes poor use of the processing power of the terminal,
and requires the terminal to be preprogrammed with all desired

GRAPHICS TERMINAL 1611

capabilities. Contrary to popular usage, an intelligent terminal is not
an idiot savant; it is one that can be educated. If the terminal could
be dynamically programmed, the desired functionality could be added
on demand. Our solution was to write a small time-shared operating
system for the terminal, called mpxterm (multiplexed terminal), into
which we dynamically load programs from the host, customizing the
terminal process running in a layer for the execution of a particular
graphics task.

The Blit therefore developed into a programmable graphics multi-
plexer, distributing the terminal resources—screen, mouse, keyboard,
RS-232 interface—between terminal processes connected to independ-
ent UNIX system processes.

Since the design of the terminal’s software was largely dictated by
the desired user and programmer interface, the next two sections
present the overall user interface and an overview of two programs
that run in the multiplexed environment. The subsequent sections
outline the implementation of the multiplexing software.

HI. WHAT THE USER SEES

After logging in to a UNIX system, a Blit user types mpx to the
shell. The multiplexed terminal code is then down loaded into the
terminal, which takes a few seconds at 19,200 baud and about two
minutes at 1200 baud. Mpxterm includes all the graphics primitives,
but since the graphics primitives and interrupt-level I/O drivers exe-
cute out of read-only memory, they are not down loaded.

Mpxterm is controlled by the mouse. Of course, programs running
In the terminal may also be controlled by the mouse, so some rules
must decide which mouse events are interpreted by which process in
the terminal.

The screen consists of several possibly overlapping layers. Portions
of the screen not occupied by layers are “colored” with a distinctive
grey texture. Except for internal control and demultiplexer processes
of mpxterm, terminal processes are one-to-one with layers. Once the
first layer has been created, exactly one layer is the current layer, that
is, the layer that receives keyboard characters and interprets mouse
motion and button hits. The mouse and keyboard come as a pair; all
user input is directed at a single process. The control process contin-
ually updates the current process’s mouse coordinates and button
state, and a process may ask to be suspended until it is current. When
a button is depressed, the current process receives the event if the
mouse cursor is pointing at a visible portion of the process’s layer;
otherwise, the button hit is interpreted by the mpxterm kernel.

To identify the current process, the layers of all noncurrent proc-
esses are stippled by a gauzy texture, leaving only the current layer

1612 TECHNICAL JOURNAL, OCTOBER 1984

with a clear image* (see Fig. 2). The usual solution to this identification
problem is to label the windows, but we elected not to label them
because the label takes up useful screen space and either the user or
the program must decide what the label is. Neither option is appealing.
Another possibility is to distinguish the borders of the layer, but that
probably isn’t a strong enough visual clue, especially when the user is
concentrating on a portion of a large layer. However, we admit that
this identification issue is one of the uglier aspects of the system and
that our solution is, at best, a small improvement over others. One
decision that differs from the usual, but in which we are on firmer
ground, is our requirement that a mouse button hit changes the current
layer. In most systems, the location of the mouse defines the current
window, but when the current window may be partially or even wholly
obscured, this is unworkable. (It makes sense, and is common, for the
current layer to be obscured: consider typing instructions to a com-
mand in one layer based on data displayed on a graph in another large,
nearly full-screen, layer.)

The mouse has three buttons, and the Blit software maintains a
convention about what the buttons do. The left button is used for
pointing. The right button is for global operations, accessed through
a menu that appears when the button is depressed and makes a
selection when the button is lifted. The middle button is for local
operations such as editing. Put simply, the right button changes the
position of objects on the screen, and the middle button changes their
contents. For example, pointing at a noncurrent layer and clicking the
left button makes that layer current. Pointing outside the current
layer and pushing the right button presents a menu with entries for
creating, deleting, and rearranging layers. Clicking a button while
pointing at the current layer invokes whatever function the process in
that layer has bound to the button. The next section discusses two
programs and how they use the mouse.

The state of mouse input is reflected by the cursor tracked by the
mouse as it is moved. Usually, the cursor is an arrow pointing to the
pixel at the mouse’s location. A program may change the cursor to
reflect its state. For example, when the user selects New on the mpxterm
menu, the cursor switches to an outlined rectangle with an arrow,
indicating that the user should define the size of the layer to be created
by sweeping the screen area out with the mouse. Similarly, a user who
has selected the Exit menu entry is warned by a skull-and-crossbones

* This practice interferes with noncurrent processes drawing in their layers, but most
graphics in the Blit world is done in XOR mode, which commutes with the stippling,
and the operating system provides a simple routine to help with graphics that are not
XOR.

GRAPHICS TERMINAL 1613

e IS 8 program
UL proof
hat
Ut

1.’. in
. roff
isplay in a layer on the Blit.

0
I._erprets the typesetter codes generated by

is a variant of Lpu: box “processor
-UL cat line
(the standard Unix pro .
that prints the file's line up
dified. line up .1i
Therefore, whenever the line right
UL jim box "mouse
UL watch
would notice it had
e description line ri
box ﬁ.'
line ri
> "to Unix" 1just
neW {
r line down
close line down .1i
line right
* mpx.tro x “keyboard®
. figl.pic
figd.pic
figt.pic running ,
$ cd /usr/rob/rep/blit i
$ls argvi@®] = Jusr/jerqg/mbin/jim.m
figl.pic’ figd.pic jim.pic ' makefile mpx ?}l::nm’ 3 o8
.pi igt.pi macr & ognames [r o523
:Ia].mplc figt.pic os mpx. troff trid e Zh:cglqmqe_m
rob ttyd Jun 29 14:46 i ¢ i ol = :
msm tty3 Jul 2 82:29 ames(51=*\". figl.pic "al i
“rwieiais AP Al L2 AAEE Ll ?;r(’il ? i...) onames(%i] i
24K |
ROM
mome E
P R§212 [toUnix
136K keyboard
RAM

Figure 1: Hardware Overview

Fig. 2—A representative Blit screen. The small layer at center right is running the
debugger jof £, which is examining the menu data structure in the text editor jim,
running in the upper layer. Jim is the current process — its layer is not freckled —
and is editing the files for this paper: mpx .trof £ is the troff input, and the various
fig files are pic descriptions of the illustrations. The lower jim window is editing
the description for Fig. 1, and when the user selects write from the menu, the file
will be written and the picture in the typesetter emulation layer at the bottom will
asynchronously draw the new picture (see the text). The small layer at the bottom is

1614 TECHNICAL JOURNAL, OCTOBER 1984

cursor that confirmation is required before that potentially dangerous
operation will be executed.

IV. TWO APPLICATION PROGRAMS: JIM AND JOFF

A variety of programs have been written for the mpxterm environ-
ment. As with any graphics terminal, the first few programs were
games, which in this case were characterized by being self-playing, at
least optionally. On the multiplexed Blit screen, a game program can
play itself while the user does putatively useful work in another layer.
After the games came a spate of terminal emulators, coinciding with
the proliferation of Blits inside our research center and triggered by
- the desire to promote the programs written for the 24-by-80 displays.
This period has passed, and not entirely because a successful emulator
has been created. Even strong supporters of the cursor-addressing
style of terminal control have accepted the possibilities of a customized
terminal program and communications protocol. Many of the 24-by-
80 programs have been supplanted by Blit programs that divide the
task between the host and terminal. Two programs that divide the
labor effectively are jim, a text editor, and joff, a debugger for
mpxterm programs. References 6 and 7 describe their user interfaces
and the details of their implementation. Here we present an overview
of their structure and illustrate how they use the programmability of
the terminal.

Jim is a multifile screen editor that uses the mouse for all editing
tasks and the keyboard only for input of text, including file names
and strings such as regular expressions for context search. It is written
in two pieces: a UNIX program that maintains a copy of the entire
file being edited and executes global operations such as context
searches on the copy; and a Blit program that does all editing and
screen updating. The two programs maintain parallel data structures.
The UNIX program maintains a complete copy, while the terminal
tracks only what is visible on the display. Because the Blit program
keeps the visible page locally, screen update can be done entirely inside

running a dynamic UNIX system monitor, reporting the current time, average number
of UNIX processes ready to run, and change in that number in the last minute. The
textured bar in the upper portion of the layer adjusts constantly to report the fraction
of host CPU time consumed (by all users) in, from left to right, regular user computation,
low priority user computation, system overhead, character processing, and idle time.
The constantly shifting bars give interesting feedback on the quantity and quality of
computation on the host computer. The large obscured layer in the middle is running
the UNIX shell; the other layers are running down-loaded Blit programs with host
support. Note the relationships between the programs: the debugger is examining the
editor, but the editor is free to run; the editor and typesetter emulator are asynchronously
coupled through the file system; the system monitor runs constantly, and all programs
are able to draw on the display at any time, regardless of overlap or user attention.

GRAPHICS TERMINAL 1615

the terminal; in fact, the UNIX program knows nothing about the
appearance of the display.

The two programs communicate by a protocol consisting essentially
of “insert string” and “delete string” message packets and requests for
data, with strings containing arbitrary characters including tabs and
newlines. This high-level protocol allows the software to ignore the
usual problems of screen update, such as inserting and deleting tab
characters and minimizing the length of transmitted strings that
update the screen, and makes jim efficient in host cycles compared
even to line editors. The update algorithm used by the terminal is
discussed in Ref. 7. Users want the screen to update quickly, so the
protocol is double-buffered for speed and the two programs usually
execute asynchronously, with the terminal in control because that
permits user input to be handled immediately even with low commu-
nications bandwidth.

Unlike most UNIX text editors, jim has no interactive shell escape
to invoke the command interpreter from within the editor, because
mpx permits the user to create a new layer with a fresh shell at any
time. The typical Blit display therefore has a jim layer and a shell
layer for typing commands such as compilation requests. Conversely,
compiler error messages are trivially maintained by the display while
a program is being edited.

The jof £ debugger is also controlled mostly by the mouse, although
the user interface is substantially different from the user interface of
jim. The half of joff that is a UNIX program maintains the large
symbol table for the Blit program being debugged, and executes other
large-scale tasks such as interpreting C expressions. The code in the
terminal displays menus at the user’s request, collects typed input,
and monitors and probes the target process.

The protocol between these programs falls into two sections: plain
text that is displayed in a scrolling region in the debugger’s layer, and
remote procedure calls that control the debugging, retrieve information
about the target process, and build data structures such as menus and
breakpoint tables in the joff terminal program. The terminal buffers
user input such as keyboard characters and mouse button hits, but the
host is in control. The menus displayed on a button hit are loaded by
the host, and the terminal is not concerned with their contents: all
interpretation of user action is done on the UNIX system. This
structure is significantly simpler than the protocol in jim, but results
in slower response, which is unimportant in a debugger.

The jof £ debugging program has no direct interface to a text editor
(although it displays the text of the source line at a breakpoint), again
because the mpx environment allows the user to have an editor avail-
able at all times.

1616 TECHNICAL JOURNAL, OCTOBER 1984

Both jim and joff down load about 10K bytes of code to the
terminal. The half of jim executed on the UNIX system is another
20K of VAX-11* code; jof £ is about 70K on the VAX* computer.

V. WHAT DOES IT ALL MEAN?

The Blit application programs, with some noteworthy exceptions,
are really not all that interesting. They are fairly ordinary graphics
programs, many of them written as playthings by people new to
graphics. What is interesting is how the programs work together in
the underlying environment. The standard example is compiling a
program while editing, with compiler messages appearing in a separate
layer without interfering with the editor; but there are more interesting
examples.

Our local computing environment contains many minicomputers
connected by a local area network, controlled by a cluster of five 24-
by-80 terminals, so the person maintaining the network can simulta-
neously monitor several machines, including those running the net-
work control program. With a Blit, a programmer writing network
code can, instead, monitor and debug the distributed processes from a
single terminal—and from anywhere there’s a Blit, including at home.
Similarly, a Blit makes a fine console terminal for a multiprocessor
computer.

The graphics capabilities can be used for more than text. Computer-
Aided Design (CAD) applications are obvious, although there actually
have not been many CAD programs written—certainly fewer than
have been asked for. Still, it is valuable to be able to use one’s terminal
to share graphics and text in separate parts of the screen, for example
to edit the textual description of an integrated circuit while inspecting
a plot of the circuit in another layer. This extends to looking at
separate parts of the same circuit in different layers, or comparing
different versions of the same circuit.

These are ordinary uses of multiple window environments, but
multiprogramming provides new applications. For example, interactive
design programs can be assembled out of existing parts, as is done on
the UNIX system. The figures in this paper were made with pic,® and
the pic source edited with jim. There is a program, proof, that
interprets the typesetter codes generated by troff for display in a
layer on the Blit. A large layer was initialized running the pipeline

watch £fig 1. piclpic|troff|proof

where watch is a variant of cat (the standard UNIX program to
display a file’s contents) that prints the file’s contents each time the

* Trademark of Digital Equipment Corporation.

GRAPHICS TERMINAL 1617

file is modified. Therefore, whenever the pic file was written from
jim, watch would notice it had been updated and send the new picture
description down the pipeline, without starting a fresh pic or troff
process, for immediate display on the Blit. Syntax errors from pic
can be redirected to another layer or to a file, which is then watched
in another layer. Although this is hardly a real interactive picture-
drawing program, it took only a few seconds to assemble and can fill
the gap until an interactive program is written.

We discovered an unexpected benefit of asynchronous processes
while using joff. With the standard system debuggers, the program
being debugged is a child process of the debugger, which means, for
example, that a program cannot be attacked with the debugger if it
was started independently. This is not fundamental to UNIX, but
rather is a property of the usual terminal environment. The debugger
must act as an I/O multiplexer between itself, the user, and the target
program. When the terminal does the multiplexing, a debugger can be
started at any time and applied to any program, including one that is
running—even itself.

A Blit asteroids game had a bug that caused a rock to pass over the
spaceship instead of hitting it. The bug was intermittent—perhaps
once out of every 100 collisions—so setting a breakpoint was impract-
ical. Instead, jof f was loaded and applied to an asteroids game, which
was then played for about 10 minutes until the bug occurred. Then
joff was told (by a flick of the wrist and two button clicks) to halt
the game. A breakpoint on the collision-testing routine was then set
in the asteroids program, and the game resumed. The breakpoint fired
and the bug was found easily.

As a second example, consider the following scenario, debugging
jof £. Some changes are made to jof £, making a new version of njof £
with bugs. A program with bugs intentionally added, say Bugs, is
loaded in the Blit as a target for njoff. During testing, njof £ makes
a mistake interpreting a data structure in Bugs. An instance of joff
is, therefore, loaded to investigate njoff to see where it went wrong,
but the correct interpretation of the data structure is unknown, so a
second jof £ is called up as a reference source to look at Bugs. At this
point, there are three debuggers and a target program active on the
terminal, but the situation is comfortably under control, although
inconceivable in a conventional terminal environment.

There are more mundane uses of the asynchronism. Many of us
have mail boxes on remote machines, reachable only through 1200- or
even 300-baud phone lines. A mail message could take one minute to
print out at 300 baud, but a Blit user need not be idle during that
time. The layer with the remote connection will collect the message
while the user does something else in another layer, so the user’s

1618 TECHNICAL JOURNAL, OCTOBER 1984

bandwidth can be much higher. If the phone lines to the remote
machine are all busy, the user could type

until cu remote-machine
sleep 600
done

to try every ten minutes until the connection is made. The layer with
this program will print something like

connect failed: line busy

every ten minutes. Meanwhile, the user can do anything else on the
terminal. Eventually, a line becomes free, the remote machine’s login
banner pops up, and the user can switch to that layer and log in. No
combination of background processes, job control, and static window
contexts can achieve this so simply.

VI. MPX: THE HOST PROCESS MULTIPLEXER

The multiplexing is handled by software distributed between the
host and terminal. A user-level UNIX program, mpx, communicates
with a small real-time multiprocess operating system, mpxterm, run-
ning in the terminal (see Fig. 3). The design of mpx is sensitive to the
details of UNIX system Interprocess Communication (IPC) facilities,
which vary widely between UNIX system versions. Mpxterm, on the
other hand, is independent of the host except for communication by a
simple protocol that it is the job of mpx to interpret; all versions of
mpx speak the same protocol.

DISPLAY
SHELL 1 TERMINAL 1
SHELL 2 TERMINAL 2
RS-232
SHELL 3 mpx mpxterm TERMINAL 3
. .
L] »
. .
keyboard
SHELL n TERMINAL n

mouse

Fig. 3—Overview of mpx.

GRAPHICS TERMINAL 1619

The protocol multiplexes I/O on the single RS-232 cable from the
terminal to the host. The multiplexing connects UNIX system process
groups one-to-one to processes in the terminal. A user on a UNIX
system with a conventional terminal types instructions to a shell. The
shell and the programs it invokes, such as editors and compilers, are
members of a single process group, a structure maintained by the
kernel. The process group associates processes with a terminal session,
mainly to send events such as keyboard interrupts to all processes on
the terminal.

The mpx program couples each process group to an independent
terminal process in the Blit. Four basic capabilities are necessary to
implement mpx:

1. Dynamic creation and control of several process groups by a
single master process (mpx)

2. Multiplexing of I/O between the process groups and the master

3. A means to prevent the master from being suspended when it
reads data from a process that has no characters available while
another has data

4. Ability to distinguish control information (such as setting ter-
minal modes) and data on an interprocess channel.

The original mpx was written using Greg Chesson’s file multiplexing
facilities in the 7th edition UNIX system. In UNIX System V, the
IPC for mpx is provided by a kernel driver written by Piers Dick-
Lauder. The mpx running on the author’s machine exploits the user-
level IPC in the character I/O system of the 8th edition. Since that
version of mpx is the closest to hand, it will be described here. It
comprises about 1600 lines of code, half of which implement the error-
correcting protocol between the host and the terminal. A schematic of
the mpx/mpxterm pair is in Fig. 3.

Character processing in the 8th edition kernel is done by a sequence
of coroutines called line disciplines,” each of which is a full-duplex I/
O pseudoprocess that performs its portion of the processing and hands
the data along to the next line discipline. They are not proper processes
because the kernel maintains no call records across scheduling bound-
aries. They are connected together serially to achieve the desired
function, much like a full-duplex shell pipeline. For example, a ter-
minal connected to a user program on our local area network is
connected, from the bottom up, to a network driver (essentially half
of a line discipline, the other half residing in the network), a line
discipline interpreting the network protocol, a standard terminal line
discipline that provides services such as character echo and correction
of typing mistakes, and another half-discipline to connect to user level.

To connect a terminal, there must be a name in the file system to
attach to the associated data structure in the kernel. The directory /

1620 TECHNICAL JOURNAL, OCTOBER 1984

dev/pt contains even-odd pairs of junctor devices, each of which is
called a pseudoterminal, or pt. If one process opens an odd-numbered
pt file and another opens the corresponding even file, then data
written on one file can be read from that file’s partner, in symmetrical
full-duplex fashion. The odd-numbered member of a pair is the master.
Masters and slaves differ only in the rules for opening; I/O is sym-
metric. Master pt files may be open in at most one process. A process
wishing to establish a connection opens an odd-numbered file; then
one or more slave processes may open the corresponding even-num-
bered file and communicate with the master.

Multiplexed I/O is done by a primitive called select. Because I/O
can block—if a process reads from a device that has no data available,
the process is suspended until data arrive—mpx cannot simply read
from the active processes in turn, or it may wait for data from one
process while another has data. The select call returns a bit vector
indicating which file descriptors have data to be read, or, according to
an argument in the call, which file descriptors may be written to
without similarly being suspended until the data are read at the other
end.

Figure 4 illustrates the interconnection of these components. Fol-
lowing the path from a user process such as a shell, running in a layer,
characters enter the kernel and flow through a terminal discipline that
does terminal processing for the user process, such as echoing char-
acters typed by the user. The bottom of the terminal discipline
connects to the slave side of the pseudoterminal. The characters cross
to the master side, where they are passed through a message line
discipline out of the kernel to mpx. The message discipline converts
all information on the path into data messages, each of which is

|SHELL 1 |LAYER 1|
USER l SHELL 2 mpx demux 'LAYER 2l

(o] (=] [(=]

RS-232
KERNEL / ety |

[=][=

UNIX SYSTEM BLIT

Fig. 4—Interprocess communication in mpx.

GRAPHICS TERMINAL 1621

prefixed by a header identifying the type of the message. Ordinary
characters are tagged DATA, system I/O control requests (ioctl) are
marked as such, and some other control messages are translated, such
as HANGUP, which occurs when the channel shuts down, for example,
when the shell exits. These messages are read by mpx, which identifies
the channel with data using a select call. Mpx interprets the data,
which for ordinary characters merely involves reformatting the mes-
sage (adding a tag specifying which layer will receive the data and a
cyclic redundancy check for error detection and recovery) and sending
it down its standard output to the terminal. Data from the process is
read from a channel established by mpx (see the discussion of layer
creation below), while the connection to the Blit is through the
standard input and output, because mpx is multiplexing its subpro-
cesses onto its terminal, the Blit. On the other hand, the standard
input and output of the shell process in a layer are connected to the
mpx channel for that layer.

On their way from mpx to the Blit, the characters enter the kernel
again, where they pass through a terminal discipline (the one installed
by the login program when the user signed on to the system before
running mpx; for data transparency this discipline is actually largely
disabled) and out to the terminal. In the Blit, the layer identification
tag is stripped off, and the data are placed in the input buffer of the
terminal process in the appropriate layer. Information flowing in the
other direction follows the reverse path.

Although this structure sounds complicated, it is actually fairly
clean: the delicate requirements of the interprocess communication
are met by connecting together small piece parts with simple inter-
faces. As a result, the multiplexing does not interfere with other
programs, in contrast, for example, with the original mpx using mul-
tiplexed files, which prohibited running in layers programs that them-
selves multiplexed. Moreover, because the 8th edition UNIX system
I/0 was written precisely to do this sort of stream processing and
interconnection, it is efficient. Perhaps the most brutal test of effi-
ciency is down loading a program into a terminal process: the terminal
does almost no processing of the program text, so it is constantly
waiting for data from the host. After each 64 bytes of data sent, an
acknowledgment packet from the terminal arrives and is processed by
mpx as part of the communications protocol, so there is frequent
scheduling between the down loader and mpx. Qur UNIX system has
no assembly language assist for terminal I/0, the hardware generates
an interrupt for every character sent or received, and the data from
the down loader cross the kernel-user interface twice. Despite this
overhead, at 19,200 baud the RS-232 line is almost saturated, deliv-
ering over 16,000 user bits per second into the terminal and consuming

1622 TECHNICAL JOURNAL, OCTOBER 1984

70 percent of a VAX-11/750* machine’s capability (this implies a
maximum of about 400 instructions executed per byte on the VAX
system). To our knowledge, no other version of the system on the
same hardware can deliver down-loaded programs faster than about
6000 baud.

When the user on the Blit asks to create a new layer, the following
events occur. The terminal allocates a layer data structure on the
display and creates a terminal process to manage it. It then sends a
message on its RS-232 connection, the standard input of mpx, stating
that a layer has been created and specifying the channel in the
communications protocol onto which its data will be multiplexed.
Then mpx opens an idle master pt file, and the channel number
(different from the communications channel) returned by the open is
the connection of mpx to the subprocess about to be created. Mpx
pushes a message line discipline onto the stream on the master side of
the pseudoterminal and forks to create a child process. The child closes
all of its file descriptors and opens the slave side of the pseudoteletype,
which becomes its standard input and is duplicated to form its standard
output and standard error output. It then pushes a terminal line
discipline onto the stream and initializes the terminal modes. Finally,
it establishes itself as a separate process group and executes a shell.
When the shell begins, it prints a prompt on its standard output,
which flows through the path outlined above and eventually arrives in
the input buffer of the terminal process, which copies it to the display,
and the act of creation is complete. The elapsed time is perhaps a half
second.

VII. MPXTERM: THE TERMINAL OPERATING SYSTEM

Inside the Blit runs a tiny operating system that provides essentially
the same multiprogramming and data transparency as mpx. It is
basically a mirror image of mpx, but with considerably less mechanism,
largely because the multiplexing is built into the operating system
rather than being constructed at user level. The basic structure of the
system is a set of independent processes scheduled round robin that
call a primitive queue-based kernel to service I/O requests.

At the time of writing, mpxterm is 1627 lines of C, excluding code
for the protocol (which uses the same source files as mpx) and the
graphics primitives, but including all the user interaction and I/O
primitives; and 204 lines of assembler. The assembler lines include 11
lines to switch stacks, 108 lines to interface interrupt routines to C
code, and 85 repetitive lines to interface to C code after a process
traps.

* Trademark of Digital Equipment Corporation.

GRAPHICS TERMINAL 1623

Process switching is performed only at the process’s request; there
is no preemptive scheduling. Since the Blit is a terminal, and not a
general-purpose computer, the processes all do some form of input or
output, whether to read characters from the host or keyboard, or even
just display something on the screen. If a process wants a character
from, say, the keyboard, but none has been typed, it can suspend itself
by executing

wait (KBD)

which says “wait until a keyboard character becomes available.” Be-
cause the display is updated at 30 Hz, a display program will usually
suspend execution until the screen reflects the change it has made in
memory. Therefore, although the programmer must be aware that the
CPU is being shared among other processes, the habit of relinquishing
the processor fits smoothly into the discipline required for real-time
graphics programming. This structure keeps mpxterm simple (and
easy to debug). Except for the lowest level of I/0, which must protect
against device interrupts, there are no semaphores or interlocks in the
kernel; the process control part of mpxterm was written and debugged
in an evening.

The devices—mouse, keyboard, and host RS-232 port—are all in-
terrupt driven. The keyboard and RS-232 port place their characters
into queues that are read by server processes running at user level
(i.e., with processor interrupts enabled). The mouse buttons generate
an interrupt when their state changes, and their value is kept in a
global data structure, along with the mouse position. As the mouse
moves, the hardware updates two registers in the I/0 page but gener-
ates no interrupts. Instead, the mouse position on the screen is updated
during vertical blanking by a low-priority interrupt routine that runs
off a 60-Hz clock coupled to the start of vertical retrace. Because of
the 30-Hz display refresh, there is no reason to update it more
frequently.

The clock interrupt and mouse button interrupt schedule a control
process that multiplexes the mouse among the user processes. At any
time, only one user process receives mouse tracking and button hit
information from the control process. Any other process attempting
to use the mouse is suspended until the user indicates by a button hit,
handled by the control process, that the mouse and keyboard should
be bound to that process instead.

A second system process, the demultiplexer, reads the characters
from the host input queue, unpacks the messages, and executes the
error-correcting protocol. Correctly received messages are placed in
the input queue of the associated user processes. The error correction
is transparent to the processes; as far as they can tell, they have a

1624 TECHNICAL JOURNAL, OCTOBER 1984

direct link to a plain RS-232 wire, except that no flow control is
necessary on either end (compare this to the control-S/control-Q or
NUL-padding flow control necessary with many standard terminals).
The demultiplexer occasionally receives control messages, indicating,
for example, that a terminal process is to begin executing the down-
load receiving procedure preparatory to loading a new terminal pro-
gram into a layer.

All resources are shared among the processes in the Blit. Memory
allocation occurs through two primitives: alloc allocates memory at
fixed locations, to store programs, for example; and gcalloc allocates
relocatable memory in a compacted arena, to store bitmaps and strings.
This split structure is imposed by the open addressing of C and the
necessity to compact the arena containing dynamically allocated bit-
maps. User processes and the kernel allocate using the same code, and
each allocated object is tagged with a pointer to the process that owns
it, so storage can be reclaimed when a program exits. Storage allocation
is simplified by the lack of preemptive scheduling; interlocks during
compaction are unnecessary, since allocations are atomic.

Because the hardware does not provide memory management and
our C compiler does not generate position-independent code, down-
loaded programs are relocated in the host to an address returned by
alloc in the Blit. Relocation is not expensive; the text editor, which
is about 10K bytes long, is relocated in three seconds and down loads
in about six seconds at 19,200 baud. This is comparable to the
initialization time of most conventional screen editors.

The Blit hardware provides one feature for protection. Read or write
references to the first eight bytes of the processor’s address space
generate an interrupt that is caught by the kernel, which halts the
offending process. Because a common C programming error is to
dereference through a null-valued pointer, this small feature has saved
mpxterm many times.

For an unprotected system, mpxterm is pleasantly robust. It is
certainly shut down quietly at the end of a working day far more often
than it crashes. Left running, its mean up time is several days, even
during periods of program development.

VIIIl. PROGRAMMING

Processes in the terminal may be loaded, by a procedure analogous
to executing a UNIX program, to customize the terminal for a partic-
ular task. The programmer’s interface to mpxterm is unaffected by
other programs running in the terminal. To a rough approximation,
the programming environment is a virtual machine: programs run as
though they have a keyboard, mouse, display, and host RS-232 con-
nection all to themselves.

GRAPHICS TERMINAL 1625

The screen is multiplexed using the idea of a layer,® which supports
all bitmap operations, especially bitblt, on an extended bitmap data
structure that allows overlap. Each Blit process has a global variable
called display, which is the layer data structure for the portion of
the screen occupied by the process. The display data structure
contains the coordinates of the screen rectangle, used to clip graphics
operations, and a list of off-screen bitmaps containing obscured con-
tents of the layer. To the programmer, display is like an ordinary
bitmap, obscured or not, and by executing graphics primitives on
display the process can draw on its screen regardless of overlap, and
without communicating with a window manager when the layer con-
figuration changes. As far as the process is concerned, it has its portion
of the screen to itself. There is no “window manager” in the conven-
tional sense—bitblt* is the window interface.

Characters arriving from the host are split by the demultiplexer into
separate streams and placed in the input queues of the appropriate
processes. From a process’s point of view, the interface to the host is
an ordinary byte stream. The keyboard is handled differently, because
the stream of typed characters is directed at a process by the user.
Still, the idea is the same: each process sees an ordinary byte stream
from the keyboard and is oblivious to characters directed to other
processes.

Character I/0O in mpxterm is nonblocking. Two routines, kbdchar
and hostchar, read characters from the input queues for the process.
If no characters are available, they return an error indication but do
not block, because typical terminal applications must be ready to
receive input from either the host or the keyboard. When a process
wants to suspend until characters become available, it calls wait with
an argument bit vector stating which resources are of interest. wait
returns a bit vector indicating which queues have data, so the inner
loop of a typical terminal program is something like this:

int resource;
while(TRUE) {
resource = wait (HOST | KBD);
if(resource & HOST)
draw_on_screen(hostchar());
if(resource & KBD)
sendchar (kbdchar());

*The 1bitblt primitive, discussed in the layers paper,® is aliased to bitblt in
the mpxterm programming environment, so the distinction between bitmaps and
layers vanishes—the programmer treats layers exactly like bitmaps.

1626 TECHNICAL JOURNAL, OCTOBER 1984

Sendchar sends characters to the host through the error-corrected
channel. wait suspends the process, by calling another process that is
ready to run, until a character becomes available on either queue and
no other process is using the CPU. If no other process is ready, wait
returns immediately when a character becomes available.

Another system call, sleep, suspends a process for a specified
number of ticks of the 60-Hz clock, by waiting for a timer set by a
nonblocking ALARM resource. Sleep is roughly:

sleep(n)
int n;

{
alarm(n); /* set the timer n ticks in the future */
wait (ALARM);/+* suspend until timer fires =/

}

but includes protection in case the process has alarms pending. Since
the hardware clock is coupled to the vertical retrace, sleep is often
used to suspend a process until the picture it has placed in memory is
visible on the screen.

Each process has a global data structure describing the mouse
state—position and button status—that is updated asynchronously
whenever the user has assigned the mouse to that process. A process
may wait until it owns the mouse by calling

wait (MOUSE)

Therefore, to wait for a button to be depressed, a process would execute

while(mouse.buttons==0)
wait (MOUSE);

The following code draws line segments connecting mouse positions
as the mouse moves:

Point p;
p =mouse.Xxy; /+* first point, where mouse points now %/
for (;;) {

d =mouse.Xxy;

segment (§display, p, 4, OR);

P=4q;

sleep(1); /+* wait for mouse and display update */

}

The notation gdisplay indicates that the address, rather than the
value, of the display bitmap structure is passed to segment. OR
specifies that the bit pattern of the line is to be OR’ed into display

GRAPHICS TERMINAL 1627

memory. Line segments are drawn half-open, so adjacent line segments
share no points.

As well as 1/0, all graphics primitives are implemented as system
calls, to interface to the layer code but make everything look like
ordinary bitmap graphics. Therefore, the system call interface must
be very fast, or system call overhead will dominate graphics perform-
ance. Because there is no memory management, processes all live in
the same address space, and system calls are indirect subroutine calls
through a vector at a known location. The execution penalty is only
one extra instruction for a system call compared to an ordinary
procedure call. The mapping to the vector is done from C by defining
the system calls in a header file, so the mechanism is transparent to
the programmer.

Programs are loaded into the Blit from the host computer’s disc by
a user program that communicates with a special program load process
in the terminal. By default, a layer runs a conventional “dumb”
terminal emulator. When the UNIX program executes a bootstrap
ioctl request to initiate program loading, mpx transmits the request
on a reserved communications channel. The Blit demultiplexer process
shuts down the terminal emulator and begins the program loader
process, which allocates memory, returns to the system the base
address of the program, and then copies (asynchronously with the
other terminal processes) the relocated program from its HOST queue
into memory. Since the channel is error corrected, the loading protocol
just relocates the program and writes, unformatted, the relocated
binary; no checksumming or verification is necessary. When the
loading is complete, the program begins executing. If it executes the
exit system call, the layer remains active but is reinitialized with the
dumb terminal emulator.

IX. RETROSPECTION, INTROSPECTION, AND CONCLUSIONS

The Blit has taught us that multiprogramming has been underused.
A user is capable of running several related or unrelated programs in
parallel if the user interface makes it easy to control their execution.
The Blit has also shown the advantages of isolating the issues of user
interaction from the operating system. All of the Blit software is user-
level code, yet the Blit environment feels naturally coupled to the
UNIX system. The system really knows nothing about the multiplex-
ing going on; the user is just running more processes than usual. A
large part of the Blit’s success can probably be attributed to our
concentration on the graphics and user interface issues, rather than
the development of a new integrated, distributed programming envi-
ronment. There are a number of things worth noting that were done

1628 TECHNICAL JOURNAL, OCTOBER 1984

well on the Blit, and a number that could be improved. To end on an
upbeat note, we will discuss the mistakes first.

Although the graphics is fast enough, the hardware is not big enough.
That is, memory is tight when working on big programs, and there
isn’t enough offscreen bitmap storage. The greatest problem, though,
is certainly the low bandwidth. Putting aside the issues of availability,
simplicity, and portability, RS-232 is not fast enough for file I/O. The
text editor must be written in two parts, using the terminal much like
a cache. Consider context searches at 1200 baud, which would other-
wise require sending the entire file, perhaps hundreds of thousands of
characters long, over the phone line. Unfortunately, writing one pro-
gram in two pieces is much harder than writing two programs. Still,
we don’t want local disc. The Blit model, using an inexpensive dedi-
cated front-end for high-quality interaction on a traditional time-
sharing system, is a powerful one, and we prefer increasing the memory
and bandwidth, leaving the basic structure the same, to adding disc
and therefore expense, noise, and the proliferation of local copies of
software.

Mpxterm does not exploit multiprogramming enough itself. Layers
and terminal processes are one-to-one, counter to the current fads of
message-based systems. There certainly needs to be more terminal
IPC so, for example, text in one layer may be copied to another using
the jim cut and paste operators.

Perhaps most importantly, the current Blit software is tending
towards disintegration: this layer is an editor and this layer is a
debugger and this layer is a circuit design program. This trend is
counter to the uniformity of environments that makes a system easy
to use, and misses some obvious simplifications. One obvious change
would be to push text editing to a lower level, so text anywhere on the
screen, not just in a jim layer, could be edited with the mouse. Mpxterm
is currently being rewritten to support editing of displayed text.

Some things were done well. One of the Blit’s competitive advan-
tages was that the two people (Locanthi and Pike) who designed the
hardware and software were the people who most wanted to use it.
Both understood the hardware and software issues, and the hardware
and software were designed together to work together, rather than by
competing committees. Particularly in the design of the graphics
memory, iterations of the hardware design were punctuated by writing
test software to develop a feeling for the hardware/software trade-offs,
and where best to resolve them. Finally, the bulk of the software was
written by the same two people, and mpx and mpxterm were written
by one (Pike).

Simplicity rules the Blit software. The operating system has no
memory management and the simplest process structure possible. The

GRAPHICS TERMINAL 1629

user interface is devoid of the usual frills and bunting that decorate
most graphics environments. For example, there is only one type of
menu—a list of strings. Many menu styles can be envisioned, and they
would certainly be used if implemented, but only one is necessary. The
Blit graphics library is about 8K bytes of compiled code, of which over
3K is bitblt, texture, and the line-drawing primitives. This is a
small fraction of the size of most interactive graphics systems.

The Blit is inexpensive. For little more than the cost of replacing
the 24-by-80 terminals, everyone in our research center, including the
support staff, has a Blit, and several have two. Also, replacing termi-
nals is a simple way to migrate to a new environment. The system
underneath is still the same UNIX system, in fact—so nothing was
left behind, and only new things had to be implemented.

From the user’s point of view, the Blit has brought about a far-
reaching change in attitude: in conventional environments, even on
sophisticated time-sharing systems, the user must often wait for the
machine to complete some task such as a compilation. On the Blit,
the machine is always ready to do something new—the user is in
control, not the machine.

X. ACKNOWLEDGMENTS

Many people helped and influenced the development of the Blit.
Most important among them is Bart Locanthi, who designed and built
the terminal and much of the underlying graphics software. Piers
Dick-Lauder wrote the error-correcting protocol in mpx and wrote the
eighth edition version of mpx itself. Thanks are also due to Sally
Browning, Tom Cargill, Greg Chesson, Joe Condon, Dave Ditzel, Steve
Johnson, Andrew Hume, John Reiser, and Dennis Ritchie, each of
whom provided indispensable assistance and enthusiastic encourage-
ment.

REFERENCES

. D. H. Ingalls, “The Smalltalk Graphics Kernel,” Byte, 6 (August 1981), pp. 168-94.

. R. Pike, B. N. Locanthi, and J. F. Reiser, “Hardware-Software Tradeoffs for Bitmap
Graphics on the Blit,” Software—Practice & Experience, 15 (March 1985).

. R. Pikeé “(‘;&;aphics in Overlapping Bitmap Layers,” Trans. Graph., 2, No. 2 (1983),
pp. 135-60.

. C. P. Thacker et al., “Alto: A Personal Computer,” CSL-79-11, August 1979, Xerox

orp.

. W. N. Joy, R. S. Fabry, and K. Sklower, UNIX 4.1BSD Programmer’s Manual.

. T. A. Cargill, “The Blit Debugger,” J. éystems and Software, 3, No. 4 (December
1983), pp. 277-84.

. R. Pike, unpublished work.

. B. W. Kernighan, “Pic: A Language for Typesetting Graphics,” Software-—Practice
& Experience, 12 (January 1982), pp. 1-20.

. D. M. Ritchie, “The UNIX System: The Evolution of the UNIX Time-sharing
System,” AT&T Bell Lab. Tech. J., this issue.

w0 DO

W a1 oo

1630 TECHNICAL JOURNAL, OCTOBER 1984

AUTHOR
Rob Pike, AT&T Bell Laboratories, 1980—. As a Member of Technical Staff
Mr. Pike’s best-known work has been as co-developer of the Blit bitmap
graphics terminal. His research interests include statistical mechanics and
cosmology; his practical interests involve interactive graphics hardware and
software.

GRAPHICS TERMINAL 1631

