
AT&T Bell Laboratories Technical Journal
Vol. 63, No.8, October 1984
Printed in U.S.A.

The UNIX System:

File Security and the UNIX System Crypt
Command

By J. A. REEDS* and P. J. WEINBERGER*

(Manuscript received March 20, 1984)

Sufficiently large files encrypted with the UNIX'M system crypt command
can be deciphered in a few hours by algebraic techniques and human interac
tion. We outline such a decryption method and show it to be applicable to a
proposed strengthened algorithm as well. We also discuss the role of encryption
in file security.

I. FILE SECURITY

Sometimes one wants to protect a file from being read by unauthor
ized users or programs, while still keeping the file available to its
proper users. Only in isolation is the problem easy: put the file on a
machine only you have access to, and keep all copies of the file locked
up. The crypt command is useful in the more complicated environ
ment of a multiuser system. The crypt command is a file-encryption
program, which is also part of one of the text editors. The algorithm
is described in the next section. The advantage of having the algorithm
embedded in an editor is that the clear text never need be present in
the file system.

No technique can be secure against wiretapping or its equivalent in

* AT&T Bell Laboratories.
Copyright © 1984 AT&T. Photo reproduction for noncommercial use is permitted with
out payment of royalty provided that each reproduction is done without alteration and
that the Journal reference and copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed royalty
free by computer-based and other information-service systems without further permis
sion. Permission to reproduce or republish any other portion of this paper must be
obtained from the Editor.

1673



the computer. Therefore no technique can be secure against the system
administrator or other sufficiently privileged users. For these folk it is
a simple matter to replace the encryption programs with programs
that look the same to their users, but that reveal the key to the
sufficiently privileged. Sophisticates may be able to detect this kind
of substitution if it is not done carefully, but the naive user has no
chance.

To protect files from being read by a casual browser there are two
independent techniques, permissions and encryption. The authoriza
tion mechanisms supported by the system may make the file inacces
sible to any but its owner. Encryption may make the contents incom
prehensible. The former does not protect copies of the file on dump
tapes. The latter is difficult to implement. The difficulty is not in
finding a secure encryption algorithm, but in finding one that is not
prohibitively expensive to use, not subject to fast search of key space,
fits in with an editor, and is also sufficiently secure.

File encryption then is roughly equivalent in protection to putting
the contents of the file in a safe, or a locked desk, or an unlocked desk.
The technical contribution of this paper is that crypt is rather more
like the last than the first.

II. UNIX SYSTEM CRYPT

The UNIX operating system crypt command operates on consec
utive blocks of 256 characters, which we term cryptoblocks to avoid
confusion with the file system blocks. If the ith plaintext and cipher
text characters in the jth cryptoblock are denoted Pij and Cij, respec
tively, they are related by the following formula:

Cij = R-1[S[R(i + Pij) + j] - j] - i. (1)

In (1) addition and subtraction are done modulo 256. R is a permuta
tion of the set 10, ... , 255}, S is a self-inverse permutation of the
same set, having no fixed points. Therefore S is the product of 128
disjoint 2-cycles, and for all i and j it is true that Pij =;f Cij. Rand S
constitute the key of the cipher, and thus are not known at the
beginning ofthe cryptanalyst's labors. (See Section V for a discussion
of how they are determined from the key that the user types, and how
part of the key that the user types can be determined from Rand S.)

An operator notation is more useful, in which eq. (1) can be rewritten
as:

(2)

where C mapping x to x + 1 is the cyclic shift transformation (Caesar
shift is the usual jargon).

1674 TECHNICAL JOURNAL, OCTOBER 1984



One weak point in the cipher is that the index i hardly enters into
formula (2). If we let

(3)

then

Cij = C-iAjC~ij,

where Aj is self-inverse, and without fixed points.
This decomposes the cryptanalysis into two parts, the first being

the recovery of A j in each of several successive cryptoblocks, and the
second being processing information about the A/s to get Rand S.

III. RECOVERING Ai

3.1 Known plaintext solution
Suppose the cryptanalyst has parallel plaintext and ciphertext. This

should be enough to recover most of the Aj • The cryptanalyst should
concentrate on one cryptoblock and drop the subscript j. For each
value of i for which the cryptanalyst has c, and Pi

c« = AC~i

from the definition of A. Thus A(i + p;) = i + ci, and because A is self
inverse, A (i + c.) = i + Pi. If all 256 plaintext characters are known
for the cryptoblock, there will be a lot of these equations, and most of
A will be known.

More precisely, A is the product of 128 disjoint 2-cycles. Each i for
which the plaintext is known determines one of the 2-cycles. If one
assumes that the 2-cycles have equal probability of being chosen,
the chance of a given 2-cycle not being chosen is (127/128)256 =
(1-2/256)256, the expected number of 2-cycles not chosen is 128
(1-2/256)256, and the expected number of known values is approxi
mately 256 (1 - e- 2 ) , which is 221.35. Thus, each block of known
plaintext should give all but about 35 of the values of Aj •

3.2 Unknown plaintext solution

This, of course, is harder. We assume that the plaintext is all ASCII,
and that the cryptanalyst has a stock of probable words or phrases
that the plaintext plausibly contains.

We proceed by trying to place a probable word in all possible
positions in the current cryptoblock. Most of these trial placements
will result in contradictions. Either they imply that some plaintext
characters cannot be ASCII, or they are self-contradictory, or they
contradict the implications of a previous placement of a probable word.
We consider these cases one by one.

FILE SECURITY 1675



Suppose that one plaintext character, say Pi, is known. Then one
of the 2-cycles of A is known, the one that interchanges Pi + i and
ci + i. There are 255 other values of i for which c, + i might fall in
this 2-cycle, and the chance that none does is (127/128)255, which is
about 0.135. (Since the success of the attack doesn't depend on these
calculations, the hidden randomness assumptions can remain hidden.)
So with probability about 86.5 percent, we find some other value of j
for which Cj + j is in the known 2-cycle, and so the corresponding
value of Pj is known too. If the initial guess at Pi were wrong, then this
guess at pj has a 50-percent chance of not being ASCII (assuming that
all 128 ASCII characters are legal). Thus each individual guess at a
plaintext character has better than a 40-percent chance of being shown
wrong because it would imply some plaintext character is not ASCII.
A longer probable word, incorrect in all its letters, is even less likely
to be acceptable.

There is another kind of constraint probable text imposes on the
ciphertext. If there are two places, say i andj, in the same cryptoblock
of plaintext satisfying Pi + i = p, + j, then the definition of A shows
that Cj - ci = i - j. For instance, the word "include", common near the
beginning of C programs, contains two of these constraints, "n.l" and
"i ... d". One expects only about one place in each cryptoblock where
even one of these constraints is satisfied (other than at the place
where "include" belongs), so the chance of the two being satisfied
erroneously is quite small (but not negligible).

Finally, a trial placement may be incompatible with earlier, ac
cepted, placements of probable words.

This is all easy to package into programs. One could start with a
special-purpose editor that gets probable text from the user and
presents all contradiction-free placements and resulting decipherment.
The user then accepts those placements that produce the best looking
decipherment, and suggests new probable words. Such an editor can
be used to decrypt a completely unknown C program in a few hours,
or less. Getting one block generally takes a while, but then the
cryptanalyst has a good idea of the style and subject of the program,
and other blocks take less time.

Sometimes it is useful to look first for all contradiction-free place
ments of a single, long probable word in all blocks of a file rather than
look for several probable words in a single block.

3.3 A statistical attack
The following idea was developed by Robert Morris. Before attack

ing an unknown plaintext, one can automatically generate a lot of
plausible plaintext by a statistical analysis of each of the cryptoblocks.

In essence one applies the unknown plaintext attack outlined above

1676 TECHNICAL JOURNAL, OCTOBER 1984



to the 20 one-letter probable words formed by the 20 most common
ASCII letters. Each of the possible 5120 trial placements of these
"words" in a given cryptoblock is scored according to the resulting
plaintext it generates, using a formula involving logarithms of the
probabilities of the ASCII letters. Any decipherment resulting in non
ASCII letters is immediately ruled out. Otherwise, disputes between
contradictory trial placements are resolved in favor of the trial place
ment with the greater score.

This process ends with a partially deciphered cryptoblock with lots
of "noisy" plaintext visible to an indulgent eye. It is easy to use guesses
based on this noisy plaintext as a starting point for a session with an
interactive crypt-breaking editor, as we described above.

IV. KNITTING

Once several blocks have been mostly decrypted, the corresponding
information about the A j can be used to recover Rand S. Let Z =
R-1CR. Then (3) can be rewritten as

Aj = Z-jAoZj

and hence

ZAj+1 = AjZ.

We call this the knitting equation: Z knits the Aj sequence together.
We solve this last equation for Z, from which a value for R can be
found. Once R is known, the equation

S = RAjR-1

gives a value for S. Even if all this works out, Rand S are not
completely determined, for if the pair (R, S) works, so will «» R, C"
SC-k), for any k.

The idea behind solving for Z is simple. Suppose we hypothesize Zx
= y. Then for each value of j for which Aj(y) = v and Aj+l(x) = u are
known, it must be true that Zu = v. Hence if several successive A's
are fairly well known, each hypothesis about Z will generate several
more, and so forth, and all these have to be consistent with all that is
known about the A's. In practice there is a chain reaction of hypotheses
about Z that quickly leads to a contradiction if the initial guess was
wrong.

Once Z has been mostly recovered, one can use the knitting equation
to fill in missing values in the A's.

V. RECOVERING SOME KEY BYTES

Once Rand S are known, it is possible to determine the first two

FILE SECURITY 1677



letters of the key the user typed. At the same time we discover which
of the 256 equivalent (R, S) pairs was generated by crypt.

5.1 How Rand S are built
The user's key is transformed into 13 bytes bo, b-, ... , b12 by the

same subroutine used to encrypt UNIX passwords. bo and b1 can be
any characters the user can type, so 0 ::5 bo, b1 < 128, while the rest of
the b, are restricted to the 64 characters "/", ".", "0", ... , "9", "a",
... , "z", "A", ... , "Z".

From these bytes the program builds various pseudorandom num
bers from which it constructs Rand S. The details are a bit tedious.
First mix all the b, together:

Xo = 123

Xi+1 = Xibi + i 0::5 i < 12.

Here arithmetic is done modulo 232, and -231::5 Xi< 231• Now compute
a sequence of 8'S:

8-1 = Xo

s, = 58i-1 + b, 0::5 i < 256.

Here s, is computed modulo 232, _231 ::5 s, < 23\ and the subscript on
b is evaluated modulo 13. Next, compute some r's:

r, == 8i(mod 6552100 ) ,

where the peculiar notation means that r, has the same sign as 8iand
-65520::5 ri::5 65520. Now compute

u; == ri(mod 256), 0 ::5 u, < 256,

Vi == ri/256(mod 256), o ::5 Vi < 256.

Alternately, write ri in 2's complement binary. Then u, is the number
given by the low-order 8 bits, and Vi is the next 8 bits.

Initialize an array representing R(i) so that R(i) = i for all i. Then
compute R(i) from the Xiby calculating

Xi == ui(mod i + 1), 0 ::5 Xi < i + 1

swap R(255 - i) and R(Xi),

successively, for i = 0, i = 1, ... , i = 255. If the r. were uniformly
distributed over a suitable set of integers, then all 256! possible R
would be equally likely.

Initialize an array representing S(i) to S(i) = 0 for all i. Then for i
= 0, i = 1, ... , i = 255, successively,

1678 TECHNICAL JOURNAL, OCTOBER 1984



If 8(255 - i) ¥- 0, do nothing.
Otherwise, let

Yi == Vi (mod i),

and then
while 8(Yi) = 0

Yi == Yi + 1 (mod i)

then 8(255 - i) = yt, and 8(Yi) = 255 - i.

Then 8 is the product of 128 2-cycles.

5.2 Findingk

Decrypting a file produces 256 cryptographically equivalent possi
bilities for (R, 8). It is possible to determine which possibility crypt
used and to recover the b,all at once.

First suppose we knew the values of all the rio Then

s, = 65521Ci + ri,

Si+1 = 5si + b, + M i232,
-65521 s ~ s 65521
-2 s M i S 2.

The bounds on c and M followfrom the bounds on sand b. Substituting
and rearranging gives

b, = ri+1 - 5ri - 225Mi + 65521(Ci+1 - 5Ci - 65551Mi).

Consider this equation modulo 65521. b must be ASCII, at least; there
are only five possible values for M i ; and the r's are known. Incorrect
values are unlikely to give acceptable b's. Also, each value of bs is
constrained by values of i 13 apart. So knowing the r, will determine
the i;

For the first part, we try each of the 256 possibilities in turn,
assuming the current ones are the correct Rand 8, and attempting to
reconstruct all the b's. In practice, for the 255 incorrect values of k
the process below fails to construct a consistent set of b's, and so
excludes all but the correct k.

From the trial R it is easy to read off the Xi that generated it. First,
X255 = R(255). Then modify R by making R(X255) = R(255), and proceed
by induction. Here's an example, with a permutation on eight things:

k
R(k)

o 1 2 3 4 5 6 7 I
26570 1 3 4

R(7) was constructed, by the algorithm above, by switching the pre
vious value of R(7) with some R(i) with i less than 7. Hence X7 is 4,
and, at the next step, we consider a permutation on seven things:

FILE SECURITY 1679



k
R(k)

o 1 2 345 6 I
2654013

From this Xs is 3, and so forth. The process is just running the
construction of R backwards. Note that although R could plausibly be
argued to be a random permutation, it is one that in no way conceals
the data from which it was constructed. Randomness, in the sense of
uniform distribution, is by no means synonymous with the intuitive
meaning of not containing information. It is the latter property that
is important to cryptography.

A similar process allows us to get some of the Yi. We get Y255 the
same way we got X255, but we can only deduce other Yi when we are
sure that neither the while step nor the do-nothing step in the
algorithm above were not executed.

Now how close do Xi and Yi come to determining ri? First, suppose
we knew Ui and Vi. Then we would have 16 bits in the binary represen
tation of rio Unfortunately, the possible values of r. require nearly 17
bits, so each pair (Ui, vJ probably is consistent with two values of ri;

therefore in the expression for b, above there are likely to be four
choices for (ri, ri+l)' Clearly, there is still not much chance of getting
even a single bad guess of a bi.

So how do we get Ui and Vi? Since

Xi == ui(mod 256)

for each i e: 128, there are at most two choices of Ui (namely, Xi and Xi

+ i + 1) for each value of Xi. Likewise, if we know Yi, there are at most
two choices for Vi. Thus there are four more choices to be made for
each guess at an rio .

In practice this is nearly enough to determine all of the b, uniquely
for exactly one value of k. That is, there is only one of the 256
equivalent (R, S) pairs for which there are any b's left, and then there
are never more than a few hundred possible sets. Only one of them,
and therefore the correct one, regenerates Rand S. There was no
trouble doing this in 190 trials. Each trial takes a minute or two of
computer time. Thus, decrypting files enough to determine (R, S) also
enables the cryptanalyst to find bo, . . . , b12•

This would not be more than a curiosity, except for the fact that
the first two bytes of the user's key pass through unchanged and
become bo and b-, This knowledge is clearly of great use in guessing
how the user makes up his keys.

VI. A PROPOSED ENHANCEMENT

A recent proposal for strengthening the crypt command is as

1680 TECHNICAL JOURNAL, OCTOBER 1984



follows. Instead of relating the ith plaintext and ciphertext letters in
the jth cryptoblock by

Cij = C-iR-1C-jSCjRC~ij,

it is proposed to use
Cij = C-fiR-1C-jsCjRCfiPij.

Rand S are as before. The new item is the function t, which may be
interpreted as an irregular rotor motion. The key now is the triple (R,
S, f). Ift were known, then the new cipher would be breakable by the
same methods as the old.

6.1 Known plaintext attack of proposed enhancement

We first recover the [i, and proceed as before. We note that in a
given cryptoblock, if Pi + ti = P» + tk, for some i and k, then c, + t. =
Ck + tk. Also, because the encryption is an involution, if Pi = Ii = Ck +
tk, then c, + ti = Pk + tk.

We can exploit these identities as follows. If

(4)
then

c, + ti = Ck + A
and hence

Pi - Pk = tk - ti,

Ci - Ck = tk - ti,
and

Pi - Pk = Ci - Ck· (5)

Thus (4) for some i and k implies (5) for the same i and k. We take
the occurrence of (5) as a sign that the four equations of (4) might
have happened, and further take the common value Pi - Pk = c, - Ck
as a vote for the value of tk - ti. Similarly, the occurrence of

Pi - Ck = Ci - Pk

is a vote that tk - ti has this common value.
Experiments show that of all occurrences of (5), about half are

caused by (4) and half are accidental. The accidental occurrences
scatter their votes higgledy-piggledy, but the causal occurrences vote
en bloc for the correct value of tk - f;.

Thus for each cryptoblock we enumerate all votes of the above type,
representing them by triples (i, k, d), meaning that there is a vote that
ti - tk = d. Let S be the set of all the votes. We attempt to resolve
these votes by discarding about one-half of them and building the
others into a self-consistent set of values for the f;. Note that although

FILE SECURITY 1681



each instance of a vote comes from one cryptoblock, the Ii are the
same from block to block, so that the votes from all the known blocks
can be combined.

Each cryptoblock contributes about 500 such votes, so 2500 char
acters of known plaintext will generate about 5000 triples.

6.2 Voting

We are given a set S of 5000 or more triples (i, k d), each representing
an equation

Ii - Ik = d.
We want to find a maximal consistent subset of these equations. That
is, we want values 10, 11, ... ,1255 that solve as many of these equations
as possible. Here is one method that works in practice.

We solve instead a seemingly more complicated problem: find prob
ability laws Po, Ph ... ,P255, each on the integers mod 256, such that

L= II [!~ + !P(X - x, = d)]
(i,j,d),S 2 256 2

is maximized, where the X's are independent random variables, each
Xi with law Pi. If we let gij= P(X = j) = Pi(un, then

L= II [~ 2~6 + ~ ~ P(Xj = t and Xi = t + d)]

= II G2~6 + ~ ~ gi.t+~j,t).
L is a function of the 65,536 nonnegative variables gij, subject to the
256 constraints LJ~6 gij = 1. Such a function may be readily maximized
by the algorithm of Baum and Eagon/ also called the EM algorithm.

In practice the maximizing gijvalues are all close to 0 or 1, and we
take for t. that value of j for which gij is biggest.

This takes about 20 minutes of a VAX* computer's time.

VII. SUMMARY

It turns out from this work that the UNIX system file-encryption
command is not as strong as its designers had hoped. While a simple
modification like the one discussed above makes encrypting short files
safer, finding a much more satisfactory replacement appears hard.

REFERENCE

1. L. E. Baum and J. A. Eagon, "An Inequality With Applications to Statistical

* Trademark of Digital Equipment Corporation.

1682 TECHNICAL JOURNAL, OCTOBER 1984



Estimation for Probabilistic Functions of Markov Processes and to a Model for
Ecology," Bull. AMS, 73 (May1967), pp. 360-3.

AUTHORS
James A. Reeds, B.A. (Mathematics), 1970, University of Michigan; M.A.
(Mathematics), 1972, Brandeis University; Ph.D. (Statistics), 1976, Harvard
University; Assistant Professor of Statistics, University of California, Berke
ley, 1977-1982, AT&T Bell Laboratories, 1983-. Mr. Reeds is in the Com
munications Analysis Research department of the Mathematical Sciences
Research Center. Since coming to AT&T Bell Laboratories he has worked on
cryptography and other computer games.

Peter J. Weinberger, B.S. (Mathematics), 1964, Swarthmore College; Ph.D.
(Mathematics), 1969, University of California at Berkeley; Bellcomm, Inc.,
1969-1970; Instructor and Assistant Professor of Mathematics, University of
Michigan, 1970-1976, AT&T Bell Laboratories, 1976-. Mr. Weinberger is
Head of the Computer Systems Research department. Since coming to AT&T
Bell Laboratories he has worked on databases, operating systems, networking,
and compilers.

FILE SECURITY 1683


