
AT&T Bell Laboratories Technical Journal
Vol.63, No.8, October 1984
Printed in U.S.A.

The UNIX System:

Data Abstraction in C

By B. STROUSTRUP*

(Manuscript received August 5, 1983)

c++ is a superset of the C programming language; it is fully implemented
and has been used for nontrivial projects. There are now more than one
hundred C++ installations. This paper describes the facilities for data abstrac
tion provided in C++. These include Simula-like classes providing (optional)
data hiding, (optional) guaranteed initialization of data structures, (optional)
implicit type conversion for user-defined types, and (optional) dynamic typing;
mechanisms for overloading function names and operators; and mechanisms
for user-controlled memory management. It is shown how a new data type,
like complex numbers, can be implemented, and how an "object-based" graph
ics package can be structured. A program using these data abstraction facilities
is at least as efficient as an equivalent program not using them, and the
compiler is faster than older C compilers.

I. INTRODUCTION

The aim of this paper is to show how to write C++ programs using
"data abstraction", as described below". This paper presents some
general discussion of each new language feature to help the reader

* AT&T Bell Laboratories.
t Note on the name C++: ++ is the C increment operator; when this operator is

applied to a variable (typically a vector index or a pointer), it increments the variable
so that it denotes the succeeding element. The name C++ was coined by Rich Mascitti.
Consider ++ a surname, to be used only on formal occasions or to avoid ambiguity.
Among friends C++ is referred to as C, and the C language described in the C book' is
"old C". The slightly shorter name C+ is a syntax error; it has also been used as the

Copyright © 1984 AT&T. Photo reproduction for noncommercial use is permitted with
out payment of royalty provided that each reproduction is done without alteration and
that the Journal reference and copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed royalty
free by computer-based and other information-service systems without further permis
sion. Permission to reproduce or republish any other portion of this paper must be
obtained from the Editor.

1701

understand where that feature fits in the overall design of the language,
which programming techniques it is intended to support, and what
kinds of errors and costs it is intended to help the programmer avoid.
However, this paper is not a reference manual, so it does not give
complete details of the language primitives; these can be found in
Ref. 3.

C++ evolved from C1 through some intermediate stages, collectively
known as "C with classes'i.v" The primary influence on the design of
the abstraction facilities was the Simula67 class concept.F' The intent
was to create data abstraction facilities that are both expressive enough
to be of significant help in structuring large systems, and at the same
time useful in areas where C's terseness and ability to express low
level detail are great assets. Consequently, while C classes provide
general and flexible structuring mechanisms, great care has been taken
to ensure that their use does not cause run time or storage overhead
that could have been avoided in old C.

Except for details like the introduction of new key words, C++ is a
superset of C; see Section XXII, "Implementation and Compatibility"
below. The language is fully implemented and in use. Tens of thou
sands of lines of code have been written and tested by dozens of
programmers.

The paper falls into three main sections:
1. A brief presentation of the idea of data abstraction.
2. A full description of the facilities provided for the support of that

idea through the presentation of small examples. This in itself falls
into three sections:

a. Basic techniques for data hiding, access to data, allocation, and
initialization. Classes, class member functions, constructors, and func
tion name overloading are presented (starts with Section III, "Restric
tion of Access to Data").

b. Mechanisms and techniques for creating new types with associ
ated operators. Operator overloading, user-defined type conversion,
references, and free store operators are presented (starts with Section
VIII, "Operator Overloading and Type Conversion").

c. Mechanisms for creating abstraction hierarchies, for dynamic
typing of objects, and for creating polymorphic classes and functions.
Derived classes and virtual functions are presented (starts with Section
XIV, "Derived Classes").
Items band c do not depend directly on each other.

name of an unrelated language. Connoisseurs of C semantics find C++ inferior to ++C,
but the latter is not an acceptable name. The language is not called D, since it is an
extension of C and does not attempt to remedy problems inherent in the basic structure
of C. The name C++ signifies the evolutionary nature of the changes from old C. For
yet another interpretation of the name C++ see the Appendix of Ref. 2.

1702 TECHNICAL JOURNAL, OCTOBER 1984

3. Finally some general observations on programming techniques,
on language implementation, on efficiency, on compatibility with old
C, and on other languages are offered (starts with Section XVIII,
"Input and Output").
A few sections are marked as "digressions"; they contain information
that, while important to a programmer, and hopefully of interest to
the general reader, does not directly relate to data abstraction.

II. DATA ABSTRACTION

"Data abstraction" is a popular, but generally ill-defined, technique
for programming. The fundamental idea is to separate the incidental
details of the implementation of a subprogram from the properties
essential to the correct use of it. Such a separation can be expressed
by channeling all use of the subprogram through a specific "interface".
Typically the interface is the set of functions that may access the data
structures that provide the representation of the "abstraction". One
reason for the lack of a generally accepted definition is that any
language facility supporting it will emphasize some aspects of the
fundamental idea at the expense of others. For example:

1. Data hiding-Facilities for specifying interfaces that prevent
corruption of data and relieve a user from the need to know about
implementation details.

2. Interface tailoring-Facilities for specifying interfaces that sup
port and enforce particular conventions for the use of abstractions.
Examples include operator overloading and dynamic typing.

3. Instantiation-Facilities for creating and initializing of one or
more "instances" (variables, objects, copies, versions) of an abstrac
tion.

4. Locality-Facilities for simplifying the implementation of an
abstraction by taking advantage of the fact that all access is channeled
through its interface. Examples include simplified scope rules and
calling conventions within an implementation.

5. Programming environment-Facilities for supporting the con
struction of programs using abstractions. Examples include loaders
that understand abstractions, libraries of abstractions, and debuggers
that allow the programmer to work in terms of abstractions.

6. Efficiency-A language facility must be "efficient enough" to be
useful. The intended range of applications is a major factor in deter
mining which facilities can be provided in a language. Conversely, the
efficiency of the facilities determines how freely they can be used in a
given program. Efficiency must be considered in three separate con
texts: compile time, link time, and run time.

The emphasis in the design of the C data abstraction facility was
on 2, 3, and 6, that is, on facilities enabling a programmer to provide

DATA ABSTRACTION 1703

elegant and efficient interfaces to abstractions. In C, data abstraction
is supported by enabling the programmer to define new types, called
"classes". The members of a class cannot be accessed, except in an
explicitly declared set of functions. Simple data hiding can be achieved
like this:

class data_type
/* data declarations */
/* list of functions that may use

the data declarations ("friends") */
I;

where only the "friends" can access the representation of variables of
class data_type as defined by the data declarations. Alternatively,
and often more elegantly, one can define a data type where the set of
functions that may access the representation is an integral part of the
type itself:

class object_type I
/* declarations used to implement object_type */

pUblic:
/* declarations specifying

the interface to object_type */
I;

One obvious, but nontrivial, aim of many modern language designs
is to enable programmers to define "abstract data types" with prop
erties similar to the properties of the fundamental data types of the
languages. Below we show how to add a data type complex to the C
language, so that the usual arithmetic operators can be applied to
complex variables. For example:

complex a, x, y, z;
a = x/y + 3*z;

The idea of treating an object as a black box is further supported
by a mechanism for hierarchically constructing classes out of other
classes. For example:

class shape I ... I;
class circle : shape I ... I;

The class circle can be used as a simple shape in addition to being
used as a circle. Class circle is said to be a derived class with class
shape as its base class. It is possible to leave the resolution of the
type of objects sharing common base classes to run time. This allows
objects of different types to be manipulated in a uniform manner.

1704 TECHNICAL JOURNAL, OCTOBER 1984

III. RESTRICTION OF ACCESS TO DATA

Consider a simple old C fragment, t outlining an implementation of
the concept of a date:

struct date I int day, month, year; I;
struct date today;
extern void set_date();
extern void next_date();
extern void next_today();
extern void print_date();

There are no explicit connections between the functions and the data
type, and no indication that these functions should be the only ones
to access the members of the structure date. It ought to be possible
to state such an intent.

A simple way of doing this is to declare a data type that can only be
manipulated by a specific set of functions. For example:

class date I
int day, month, year;
friend void set_date(date*, int, int, intI,

next_date(date*),
next_today() ,
print_date(date*);

I;
The key word c las s indicates that only functions mentioned as
"friends" in the declaration can use the class member names day,
month, and year; otherwise a class behaves like a traditional C
struct. That is, the class declaration itself defines a new type of
which variables can be declared. For example:

date mY_birthday, today;

set_date(&my-hirthday,30,12,1950);
set_date(&today,23,6,1983);
print_date(&today);
next_date (&today) ;

Friend functions are defined in the usual manner. For example:

void next_date(date* d)
I

if (+ +d->cIay > 28) I

t The key word void specifies that a function does not return a value. It was introduced
into C about 1980.

DATA ABSTRACTION 1705

/* do the hard part */

This solution to the problem of data hiding is simple, and often
quite effective. It is not perfectly flexible because it allows access by
the "friends" to all variables of a type. For example, it is not possible
to have a different set of friends for the dates my_birthday and
today. A function can, however, be the friend of more than one class.
The importance of this will be demonstrated in Section XIX. There
is no requirement that a friend should only manipulate variables
passed to it as arguments. For example, the name of a global variable
may be built into a function:

void next_today()

I
if (++today.day > 28) I

/* do the hard part */

The protection of the data from functions that are not friends relies
on restricting the use of class member names. It can therefore be
circumvented by address manipulation and explicit type conversion.

There are several benefits to be obtained from restricting a data
structure's access to an explicitly declared list of functions. Any error
causing an illegal state of a date must be caused by code in the friend
functions, so the first stage of debugging, localization, is completed
before the program is even run. This is a special case of the general
observation that any change to the behavior of the type date can and
must be effected by changes to its friends. Another advantage is that
a potential user of such a type need only examine the definition of the
friends to learn to use it. Experience with C++ has amply demon
strated this.

IV. DIGRESSION: ARGUMENT TYPES

The argument types of the functions above were declared. This
could not have been done in old C, nor would the matching function
definition syntax used for next_date have been accepted. In C++ the
semantics of argument passing are identical to those of initialization.
In particular, the usual arithmetic conversions are performed. A func
tion declaration that does not specify an argument type, for example
next_today (), specifies that the function does not accept any argu
ments. This is different from old C; see Section XXII, "Implementa-

1706 TECHNICAL JOURNAL, OCTOBER 1984

tion and Compatibility" below. The argument types of all declarations
and the definition of a function must match exactly.

It is still possible to have functions that take an unspecified and
possibly variable number of arguments of unspecified types, but such
relaxation of the type checking must be explicitly declared. For ex
ample:

int wild("');
int fprintf(FILE*, char* ...);

The ellipsis specifies that any arguments (or none) will be accepted
without any checking or conversion exactly as in old C. For example:

wilde); wild("asdf",10); wild(1.3,"ghjk",wild);
fprintf(stdout,"x=%d",10);
fprintf(stderr,"file %s line %d\n", f_name, LJ10);

Note that the first two arguments of fprintf must be present and
will be checked. It has been noted, however, that functions with partly
specified argument types are far less useful in C++ than they are in
old C. Such functions are primarily useful for specifying interfaces to
old C libraries. Default function arguments (Section IX), overload
function names (Section VII), and operator overloading (Section VIII)
are used instead. See also Section XVIII.

As ever, undeclared functions may be used and will be assumed to
return integers. They must, however, be used consistently. For exam
ple:

undef1(1, "asdf");
undef2(1, "asdf");

undef1(2, "ghjk"); j* fine *j
undef2("ghjk", 2); j* error *j

The inconsistent use of undef2 is detected by the compiler.

V. OBJECTS

The structure of a program using the class/friend mechanism to
restrict access to the representation of a data type is exactly the same
as the structure of a program not using it. This implies that no
advantage has been taken of the new facility to make the functions
implementing the operations on the type easier to write. For many
types, a more elegant solution can be obtained by incorporating such
functions into the new type itself. For example:

class date I
int day, month, year;

public:
void set(int, int, int);
void next();

DATA ABSTRACTION 1707

void print();
I;

Functions declared this way are called member functions and can be
invoked only for a specific variable of the appropriate type using the
standard C structure member syntax. Since the function names no
longer are global, they can be shorter:

rny_birthday.print();
today.next();

On the other hand, to define a member function, one must specify
both the name of the function and the name of its class:

void date.next()
I

if (+tday > 28) I
/* do the hard part */

Variables of such types are often referred to as objects. The object for
which the function is invoked constitutes a hidden argument to the
function. In a member function, class member names can be used
without explicit reference to a class object. In that case, like the use
of day above, the name refers to that member of the object for which
the function was invoked. A member function sometimes needs to
refer explicitly to this object, for example to return a pointer to it.
This is achieved by having the key word this denote that object in
every class function. Thus, in a member function this->day is equiv
alent to day for every member of the class date.

The public label separates the class body into two parts. The
names in the first, "private", part can only be used by member
functions (and friends). The second, "public", part constitutes the
interface to objects of the class. A class function may access both
public and private members of every object of its class, not just
members of the one for which it was invoked.

The relative merits of friends and member functions will be dis
cussed in Section XIX after a larger body of examples has been
presented. For now, it is sufficient to notice that a friend is not affected
by the "public/private" mechanism and operates on objects in a
standard and explicit manner. A member, on the other hand, must be
invoked for an object and treats that object differently from all others.

VI. STxnc MEMBERS

A class is a type, not a data object, and each object of the class has
its own copy of the data members of the class. However, there are

1708 TECHNICAL JOURNAL, OCTOBER 1984

concepts (abstractions) that are best supported if the different objects
of the class share some data. For example, to manage tasks in an
operating system or a simulation, a list of all tasks is often useful:

class task I

task* next;
static task* task-chain;
void schedule(int);
void wait(event);

I;
Declaring the member task_chain as static ensures that there will
only be one copy of it, not one copy per task object. It is still in the
scope of class task, however, and can only be accessed from "the
outside" if it was declared public. In that case its name must be
qualified by its class name:

task::task_chain

In a member function it can be referred to as plain task_chain. The
use of static class members can reduce the need for global variables
considerably.

The operator :: (colon colon) is used to specify the scope of a name
in expressions. As a unary operator it denotes external (global) names.
For example, if the task function wa i t in a simulator needs to call a
nonmember function wait, it can be done like this:

void task.wait(event e)

: :wait(e);

VII. CONSTRUCTORS AND OVERLOADED FUNCTIONS

The use of functions like set_date() to provide initialization for
class objects is inelegant and error prone. Since it is nowhere stated
that an object must be initialized, a programmer can forget to do so
or, often with equally disastrous results, do so twice. A better approach
is to allow the programmer to declare a function with the explicit
purpose of initializing objects. Because such a function constructs
values of a given type, it is called a constructor. A constructor is
recognized by having the same name as the class itself. For example:

class date

DATA ABSTRACTION 1709

date(int, int, intI;
I;

When a class has a constructor all objects of that class must be
initialized:

j* illegal, initializer missing *j

date
date
date
date

today = date(23,
xma s (2 5, 12, 0 I ;
july4 = today;
my-..birthday;

6, 1983);
j* legal abbreviated form *j

It is often nice to provide several ways of initializing a class object.
This can be done by providing several constructors. For example:

class date I

date(int, int,
date(char*l;
date(int);
date() ;

I;

intI; j* day month year *j
j* date in string representation

j* day, assume current month and year
j* default date: today *j

As long as the constructor functions differ in their argument types,
the compiler can select the correct one for each use:

date today(41;
date july4("July 4, 1983");
date guy("5 Nov");
date now; j* default initialized *j

Constructors are not restricted to initialization, but can be used
wherever it is meaningful to have a class object:

date us_date(int month, int day, int year)
I

return date(day, month, year);

some_function(uS_date(12,24,19831);
some_function(date(24,12,19831);

When several functions are declared with the same name, that name
is said to be overloaded. The use of overloaded function names is not
restricted to constructors. However, for nonmember functions the
function declarations must be preceded by a declaration specifying
that the name is to be overloaded; for example:

overload print;

1710 TECHNICAL JOURNAL, OCTOBER 1984

void print{int);
void print(char*);

or possibly abbreviated like this:

overload void print{int), print{char*);

As far as the compiler is concerned, the only thing common for a
set of functions of the same name is that name. Presumably they are
in some sense similar, but the language does not constrain or aid the
programmer. Thus, overloaded function names are primarily a nota
tional convenience. This convenience is significant for functions with
conventional names like sqrt, pr int, and open. Where a name is
semantically significant, as in the case of constructors, this conven
ience becomes essential. For example, consider writing a single con
structor for class date above.

For arguments to functions with overloaded names the C type
conversion rules do not apply fully. The conversions that may destroy
information are not performed, leaving only char->short->int->
long, float->double, and int->double. It is, however, possible
to provide different functions for integral and floating types. For
example:

overload print{int), print{double);

The list of functions for an overloaded name will be searched in order
of appearance for a match, so that pr int (1) will invoke the integer
print function, and pr int (1 .0) the floating-point print function. Had
the order of declaration been reversed, both calls would have invoked
the floating-point print function with the double representation of 1.

VIII. OPERATOR OVERLOADING AND TYPE CONVERSION

Some languages provide a complex data type, so that programmers
can use the mathematical notion of complex numbers directly. Since
C does not, it is an obvious test of an abstraction facility to see to
what extent the conventional notion of complex numbers can be
supported (Note, however, that complex is an unusual data type in
that it has an extremely simple representation and there are very
strong traditions for its proper use. It is, therefore, primarily a test of
the abstraction facility's power to imitate conventional notation. In
most other cases the designer's attention will be directed towards
finding a good representation of the abstraction and towards finding
a suitable way of presenting the abstraction to its users.) The aim of
the exercise is to be able to write code like this:

complex x;
complex a = complex{1, 1.23);

DATA ABSTRACTION 1711

complex b 1;
complex c = PI;

if (x!=a) x = a+log(b*c)/2;

That is, the standard arithmetic and comparison operators must be
defined for complex numbers and for mixtures of complex and scalar
constants and variables.

Here is a declaration of a very simple class complex:

class complex I
double re, im;

(complex, complex);
(complex, complex);
(complex, complex);

friend complex operator+
friend complex operator*
friend int operator!=

public:
complex()
complex(double r)
complex(double r, double i)

I;

re=im=O; I
re=r; im=O;
re=r; im=i;

An operator is recognized as a function name when it is preceded by
the key word operator. When an operator is used for a class type,
the compiler will generate a call to the appropriate function, if de
clared. For example, for complex variables xx and yy the addition
xx+yy will be interpreted as operator+(xx, yy), given the declaration
of class complex above. The complex add function could be defined
like this:

complex operator+(complex a1, complex a2)

return complex(a1.re+a2.re, a1.im+a2.im);

Naturally, all names of the form operator@ are overloaded. To
ensure that the language is only extendable and not mutable, an
operator function must take at least one class object argument. By
declaring operator functions the programmer can assign meaning to
the standard C operators applied to objects of user-specified data
types. These operators retain their usual places in the C syntax, and
it is not possible to add new operators. It is, therefore, not possible to
change the precedence of an operator or to introduce a new operator
(for example, ** for exponentiation). This restriction keeps the anal
ysis of C expressions simple.

Declarations of functions for unary and binary operators are distin
guished by their number of arguments. For example:

1712 TECHNICAL JOURNAL, OCTOBER 1984

class complex I

friend complex operator-(complex);
friend complex operator-(complex, complex);

I;
There are three ways the designer of class complex could decide to

handle mixed-mode arithmetic, like xx-l-f , where xx is a complex
variable. It can simply be considered illegal, so that the user
has to write the conversion from double to complex explicitly:
xx+complex (1). Alternatively, several complex add functions may be
specified:

complex operator+(complex, complex);
complex operator+(complex, double);
complex operator+(double, complex);

so that the compiler will choose the appropriate function for each call.
Finally, if a class has constructors that take a single argument, then
they will be taken to define conversions from their argument type to
the type for which they construct values. Thus, with the declaration
of class complex above xx+1 would automatically be interpreted as
operator+(xx, complex (1».

This last alternative violates many people's idea of strong typing.
However, using the second solution will nearly triple the number of
functions needed and the first provides little notational convenience
to the user of class complex. Note that complex numbers are typical
with respect to the desirability of mixed-mode arithmetic. A typical
data type does not exist in a vacuum. Furthermore, for many types
there exists a trivial mapping from the C numeric and/or string
constants into a subset of the values of the type (similar to the mapping
of the C numeric constants into the complex values on the real axis).

The f r i end approach was chosen in favor of using member func
tions for the operator functions. The inherent asymmetry in the
notion of objects does not match the traditional mathematical view of
complex numbers.

IX. DIGRESSION: DEFAULT ARGUMENTS AND INLINE FUNCTIONS

Class complex had three constructors, two of which simply provided
the default value zero for notational convenience of the programmer.
This use of overloading is typical for constructors, and also has been
found to be quite common for other functions. However, overloading
is a quite elaborate and indirect way of providing default argument
values and, in particular for more complicated constructors, quite
verbose. Consequently, a facility for expressing default arguments
directly is provided. For example:

DATA ABSTRACTION 1713

class complex

public:
complex(double r = 0, double i = 0) I re=r; im=i; I

I;
When a trailing argument is missing the default constant expression
can be used. For example:

complex a(1,2);
complex b(1);
complex c;

/* b = complex(1 ,0) */
/* c = complex(O,O) */

When a member function, like complex above, is not only declared;
but also defined (that is, its body is presented) in a class declaration,
it may be inline substituted when called, thus eliminating the usual
function call overhead. An inline substituted function is not a macro;
its semantics are identical to other functions. Any function can be
declared inline by preceding its definition by the key word inline.
Inline functions can make class declarations quite untidy; they will
only improve run-time efficiency if used judiciously, and will always
increase the time and space needed to compile a program. They should
therefore be used only when a significant improvement of run-time is
expected. They are included in C++ because of experience with C
macros. Macros are sometimes essential for an application (and it is
not possible to have a class member macro), but more often they
create chaos by appearing to be functions without obeying the syntax,
scope, and argument passing rules of functions.

X. STORAGE MANAGEMENT

There are three storage classes in C++: static, automatic (stack),
and free (dynamic). Free store is managed by the programmer through
the operators new and delete. No standard garbage collector is
provided."

Constructors are handy for hiding details of free store management.
For example:

class string I
char* rep;

t It is, however, not that difficult to write a garbage-collecting implementation of the
new operator, as has been done for the old C free store allocator function rna11 0 c () •
It is not in general possible to distinguish pointers from other data items when looking
at the memory of a running C program, so a garbage collector must be conservative in
its choice of what to delete, and it must examine unappealingly large amounts of data.
They have been found useful for some applications, though.

1714 TECHNICAL JOURNAL, OCTOBER 1984

string(char*);
"s t r rnq r) I delete rep; I

I;
string.string(char* p)

rep = new char[strlen(p)+1];
strcpy(rep,p) ;

Here the use of free store is encapsulated in the constructor s t ring ()
and its inverse, the destructor ~str ing () . Destructors are implicitly
called when an object goes out of scope. They are also called when an
object is explicitly deleted by delete. For static objects destructors
are called after all parts of the program as the program terminates.
The new operator takes a type as its argument and returns a pointer
to an object of that type; delete takes such a pointer as argument. A
str ing may itself be allocated on the free store. For example:

string* p = new string("asdf");
delete p;
p = new string("qwerty");

It is furthermore possible for a class to take over the free store
management for its objects. For example:

class node I
int type;
node* 1;
node* r;
node()

"no d e ()

I;

if (this==O) this = new_node();
free_node(this); this = 0; I

For an object created by new, the this pointer will be zero when a
constructor is entered. If the constructor does not assign to thi s the
standard allocator function is used. The standard deallocator function
will be used at the end of a destructor if and only if t his is nonzero.
An allocator provided by the programmer for a specific class or set of
classes can be much simpler and at least an order of magnitude faster
than the standard allocator.

Using constructors and destructors, the designer may specify data
types, like str ing above, where the size of the representation of an
object can vary, even though the size of every static and automatic
variable must be known at load time and compile time, respectively.

DATA ABSTRACTION 1715

The class object itself is of fixed size, but its class maintains a variable
sized secondary data structure.

XI. HIDING STORAGE MANAGEMENT

Constructors and destructors cannot completely hide storage man
agement details from the user of a class. When an object is copied,
either by explicit assignment or by passing it as a function argument,
the pointers to secondary data structures are copied too. This is
sometimes undesirable. Consider the problem of providing value se
mantics for a simple data type str ing. A user sees a str ing as a
single object, but the implementation consists of two parts, as outlined
above. After the assignment s 1=s 2 both strings refer to the same
representation, and the store used for the old representation of s 1 is
unreferenced. To avoid this, the assignment operator can be over
loaded.

class string I
char* rep;
void operator=(string);

I;
void string.operator=(string source)

if (rep != source.rep) I
delete rep;
rep = new char[strlen(source.rep)+1];
strcpy(rep,source.rep);

Since the function needs to modify the target str ing, it is best
written as a member function taking the source str ing as argument.
The assignment s 1=s2 will now be interpreted as s 1. operator=(s2).

This leaves the problem of what to do with initializers and function
arguments. Consider

string s1 = "asdf";
string s2 = s1;
do_something(s2);

This leaves the strings s 1, s2, and the argument of do_something
with the same rep. The standard bitwise copy clearly does not preserve
the desired value semantics for strings.

The semantics of argument passing and initialization are identical;
both involve copying an object into an uninitialized variable. They

1716 TECHNICAL JOURNAL, OCTOBER 1984

differ from the semantics of assignment (only) in that an object
assigned to is assumed to contain a value, and an object being initial
ized is not. In particular, constructors are used in argument passing
exactly as in initialization. Consequently, the undesirable bitwise copy
can be avoided if we can specify a constructor to perform the proper
copy operation. Unfortunately, using the obvious constructor

class string I

string(string);

leads to infinite recursion. It is therefore illegal. To solve this problem,
a new type "reference" is introduced. It is syntactically identified by
the declarator &, which is used in the same way as the pointer
declarator *. When a variable is declared to be a T&, that is a reference
to T, it can be initialized either by a pointer to type T or an object of
type T. In the latter case the address of operator & is implicitly applied.
For example:

int x;
int& r1 = &x;
int& r2 = x;

assigns the address of x to both r 1 and r2. When used, a reference is
implicitly dereferenced; so, for example:

r1 = r2

means copy the object pointed to by r 2 into the object pointed to by
r 1. Note that initialization of a reference is quite different from
assignment to it.

Using references class string can now be declared like this:

class string I
char* rep;
string(char*);
str ing (str ing&) ;
"s t r t nq r j ;

void operator=(string&);

I;
string(string& source)
I

rep = new char[strlen(source.rep)+1];
strcpy(rep,source.rep);

DATA ABSTRACTION 1717

Initialization of one string with another (and passing a string as an
argument) will now involve a call of the constructor str ing
(s t r i ng&) that will correctly duplicate the representation. The
string assignment operator was redeclared to take advantage of
references. For example:

void string.operator=(string& source)

if (this != &source) I
delete rep;
rep = new char[strlen(source.rep)+1];
strcpy(rep,source.rep);

This type str ing will not be efficient enough for many applications.
It is, however, not difficult to modify it so that the representation is
only copied when necessary and shared otherwise.

XII. FURTHER NOTATIONAL CONVENIENCE

It is curious that references, a facility with great similarity to the
"call by reference" rules for argument passing in many languages, are
introduced primarily to enable a programmer to specify "call by value"
semantics for argument passing. They have several other uses as well,
however, including of course "by reference" argument passing. In
particular, references provide a way of having nontrivial expressions
on the left-hand side of assignments. Consider a str ing type with a
substring operator:

class string

void
void
string&

I;

opera tor=(str ing&) ;
operator=(char*);
operator()(int pos, int length);

where operator () denotes function application. For example,

string s1 = "asdf";
string s2 = "ghjkl";
s 1 (1 ,2) = "xyz";
s2 = s1(0,3);

/* s1 = "axyzf" */
/* s2 = "axy" */

The two assignments will be interpreted as:

(s1.operator()(1,2))->operator=("xyz");
s2.operator=(s1.operator()(0,3));

The operator () function need not know whether it is invoked on the

1718 TECHNICAL JOURNAL, OCTOBER 1984

left-hand or the right-hand side of the assignment. The operator=
function can take care of that.

Vector element selection can be similarly overloaded by defining
operator[].

XIII. DIGRESSION: REFERENCES AND TYPE CONVERSION

Conversions defined for a class are applied even when references
are involved. Consider a class str ing where assignment of simple
character strings is not defined, but the construction of a string from
such a character string is:

class string

string(char*l;
void operator=(string&l;

I;
string s = "asdf";

The assignment

s = "ghjk";

is legal, and will produce the desired effect. It is interpreted as

s.operator=((temp.string("ghjk"l,&templ l

where temp is a temporary variable of type str ing. Applying construc
tors before taking the address as required by the reference semantics
ensures that the expressive power provided by constructors is not lost
for variables of reference type. In other words, the set of values
accepted by a function expecting an argument of type T is the same as
that accepted by a function expecting a T&(reference to T).

XIV. DERIVED CLASSES

Consider writing a system for managing geometric shapes on a
terminal screen. An attractive approach is to treat each shape as an
object that can be requested to perform certain actions like "rotate"
and "change color". Each object will interpret such requests in accord
ance with its type. For example, the algorithm for rotation is likely to
be different (simpler) for a circle than for a triangle. What is needed
is a single interface to a variety of co-existing implementations. The
different kind of shapes cannot be assumed to have similar represen
tations. They may differ widely in complexity, and it would be a pity
to be unable to utilize the inherent simplicity of basic shapes like circle
and triangle because of the need to support complex shapes like
"mouse" and "British Isles".

DATA ABSTRACTION 1719

The general approach is to provide a class shape defining the
common properties of shapes, in particular a "standard interface". For
example:

class shape
point
int
shape*
static

public:
void
point
virtual
virtual

I;

center;
color;
next;
shape* shape_chain;

move(point to) I center=to; drawl);
where() I return center; I
void rotate(int);
void draw();

The functions that cannot be implemented without knowledge of the
specific shape are declared virtual. A virtual function is expected to
be defined later. At this stage only its type is known; this, however, is
sufficient to check calls to it.

A class defining a particular shape may be defined like this:

class circle : public shape I
float radius;

public:
void rotate(int angle) II
void drawl);

I;
This specifies a circle to be a shape, and as such it has all the
members of class shape in addition to its own members. The class
circle is said to be derived from its "base class" shape. Circles can
now be declared and used:

circle cl;
shape* sh;
point p(100,30);

cl.draw() ;
cl.move(p) ;
sh = &cl;
sh->draw() ;

Naturally the function called by cl. drawl) is circle: : drawl) , and
since circle did not define its own move(), the function called by

1720 TECHNICAL JOURNAL, OCTOBER 1984

draw() ;
rotate (int) ;
set (int, int);
advance (int) ;

cl.move(p) is shape: :move(), which class circle inherited from
class shape. However, the function called by sh->draw() is also
circle: :draw(), despite the fact that no reference to class circle
is found in the declaration of class shape. A virtual function is
redefined when a class is derived from its class. Each object of a class
with virtual functions contains a type indicator. This enables the
compiler to find the proper virtual function for a call even when the
type of the object is not known at compile time. Calling a virtual
function is the only way of using the hidden type indicator in a class
(a class without virtual functions does not have such an indicator).

A shape may also provide facilities that cannot be used unless the
programmer knows its particular type. For example:

class clock_face : public circle I
line hour_hand, minute_hand;

public:
void
void
void
void

The time displayed by the clock can be set () to a particular time,
and one can advance () the displayed time a number of minutes. The
draw() in clock-face hides circle: :draw(), so that the latter
can only be called by its full name. For example:

void clock_face.draw()
circle: : draw() ;
hour_hand.draw();
minute-nand.draw();

Note that a virtual function must be a member. It cannot be a
friend, and there is no equivalent in the class/friend style of program
ming to the use of dynamic typing presented here and in the following
section.

XV. DIGRESSION: STRUCTURES AND UNIONS

The C constructs struct and union are legal, but conceptually
absorbed into classes. A struct is a class with all members public;
that is

struct s I ... I;

DATA ABSTRACTION 1721

is equivalent to

class s I pUblic: ... };

A union is a struct that can hold exactly one data member at a time.
These definitions imply that struct or a union can have function

members. In particular, they can have constructors. For example:

union uu I
int i',
char* p;
uu(int ii)

uu(char* pp)
} ;

i=ii;
p=pp;

This takes care of most problems concerning initialization of unions.
For example:

uu u1
uu u2

1 •,
"asdf";

XVI. POLYMORPHIC FUNCTIONS

By using derived classes, one can design interfaces providing uni
form access to objects of unknown and/or different classes. This can
be used to write polymorphic functions, that is, functions where the
algorithm is specified so that it will apply to a set of different argument
types. For example:

void sort(common* v[], int size)

j* sort the vector of commons "v[size]" *j

The sort function need only be able to compare objects of class
common to perform its task. So, if class common has a virtual function
cmpr (), sort () will be able to sort vectors of objects of any class
derived from class common for which cmpr () is defined. For example:

class common I

virtual int cmpr(common*);
} ;

class apple : public common I

int key;
int cmpr(common* arg)

j* assume that arg is also an apple *j

1722 TECHNICAL JOURNAL, OCTOBER 1984

int k = «apple*)arg)->key;
return (key==k) ? 0 : (key<k) ? -1

I;
class orange : public common

int cmpr(common*);
I;

1 •,

The cmpr () function was preferred to the superficially more attrac
tive approach of overloading the "<" operator because my favorite sort
algorithm uses a three-way compare. To write a sort () to operate on
a vector of class common, rather than on a vector of pointers to class
common, a virtual "size" function would be needed.

Should it be desirable to compare an apple with an orange, some
way for the comparison function to find its sort key would be needed.
Class common could, for example, contain a virtual sort-key extraction
function.

XVII. POLYMORPHIC ClASSES

Polymorphic classes can be constructed in the same way as poly
morphic functions. For example:

class set : public common
class set-lllem I

set-lllem* next;
object* mem;
set-lllem(common* m, set-lllem* n)

I mem=m; next=n; I
*tail ;

public:
int insert(common*);
int remove(common*);
int member(common*);

set() ,
I tail = 0; I
"s e t t)

I if (tail) error("non-empty set"); I
I;

That is, a set is implemented as a linked list of set-lllem objects, each
of which points to a class common. Pointers to objects (not objects) are
inserted. For completeness a set is itself a common so that you can
create a set of sets. Since class set is implemented without relying on
data in the member objects, an object can be a member of two or more

DATA ABSTRACTION 1723

return set::insert(a);
return set::remove(a);
return set::member(a);

insert(apple* a)
remove(apple* a)
member(apple* a)

sets. This model is quite general and can be (and indeed has been)
used to create "abstractions" like set, vector, linked_list, and
table. The most distinctive feature of this model for "container
classes" is that in general the container cannot rely on data stored in
the contained objects nor can the contained objects rely on data
identifying their container (or containers). This is often an important
structural advantage; classes can be designed and used without con
cerns about what kind of data structures the programs using them
may need. Its most obvious disadvantage is that there is a minimum
overhead of one pointer per member (two pointers in the linked list
implementation of class set above)." Another advantage is that such
container classes are capable of holding heterogeneous collections of
members. Where this is undesirable, it is trivial to derive a class that
will accept only members of one particular class. For example:

class apple_set : public set I
public:

int
int
int

I;
Note that since the functions of class apple_set do not perform any
actions in addition to those performed by the base class set, they
will be optimized away. They serve only to provide compile time type
checking.

A class common with a "matching" set of polymorphic classes and
functions is being designed. The intention is to provide it as a standard
library.

XVIII. INPUT AND OUTPUT

C does not have special facilities for handling input and output.
Traditionally the programmer relies on library functions like
pr intf () and scanf (). For example, to print a data structure rep
resenting a complex number one might write:

printf("(%g,%g)\n", zz.real, zz.imag);

Unfortunately, since the old C standard input/output functions know
only the standard types, it is necessary to print a structure member
by member. This is often tedious and can only be done where the
members are accessible. The paradigm cannot be cleanly and generally
extended to handle user-defined types and input/output formats.

t Plus another pointer for the implementation of the virtual function mechanism.
See Section XXI, "Efficiency", below.

1724 TECHNICAL JOURNAL, OCTOBER 1984

The approach taken in C++ is to provide (in a "standard" library,
not in the language itself) the operator « ("put to") for a data type
ostream and each basic and user-defined type. Given an output stream
cout, one can write

cout«zz;

The implementor of class complex defines « for a complex number.
For example:

ostream& operator«(ostream& s, complex& c)
1

return s«H(H«c.real «H,H«c.imag«H)\n H;

The « operator was chosen in preference to a function name to
avoid the tedium of having to write a separate call for each argument.
For example:

put (cout, H (H) ; /* intolerably verbose */
put(Cout,c.real);
put(cout,H,H);
put(cout,c.imag);
put(Cout,H\n H);

There is a loss of control over the formatting of output when using
« compared with using pr intf. Where such finer control is neces
sary, one can use "formatting functions". For example:

cout«Hhex = H<<hex(x)<<Hoctal x = H«oct(x);

where hex () and oct () return a string representation of their first
argument.

Input is handled by providing the operator » ("get from") for a
data type istream and each basic and user-defined type. If an input
operation fails, the stream is put into an error state that will cause
subsequent operations on it to fail. For a variable zz of any type one
can write code like this

while (cin»zz) cout«zz;

Surprisingly enough, the input operations are typically -trivial to
write, since there invariably is a constructor to do the nontrivial part
of the job, and the arguments to the constructor(s) give a good first
approximation of the input format. For example:

istream& operator» (istream& s, complex& zz)

if (!s) return s;
double re = 0, im o.,

DATA ABSTRACTION 1725

char c1 = 0, c2 = 0, c3 = 0;
s»>c 1»re»c2»im»c3;
if (c1 !=' (' II c2l=',' II c3!=')') s.state = ---.bad;
if (s) zz = complex(re,im);
return s;

The convention for functions implementing the input and output
operators is to return the argument stream and indicate success or
failure in its state. This example is a bit too simple for real use, but it
will change the value of its argument z z and return the stream in a
nonerror state if and only if a complex number of the form
(double, double) was found. The interpretation of a test on a stream
as a test on its state is handled by overloading the ! = operator for an
istream. For example, the test if (s) above is inter
preted as if (s! =0), which in turn is interpreted as a call to
istream:: operator !=(), which finally examines s . state.

Note that there is no loss of type information when using « and
», so, compared with the pr intf/scanf paradigm, a large class of
errors has been eliminated, Furthermore, « and» can be defined for
a new (user-defined) type without affecting the "standard" classes
istream and ostream in any way, and without any knowledge of the
internals of these classes. An ostream can be bound to a real output
device (buffered or unbuffered) or simply to an in-core buffer, as can
an is t ream. This extends the range of uses considerably and elimi
nates the need for the old C functions sscanf and spr intf .

Character-level operations put () and get () are also available for
I/O streams.

XIX. FRIENDS VS. MEMBERS

When a new operation is to be added to a class, there are typically
two ways it can be implemented, as a friend or as a member. Why are
two alternatives provided, and for what kind of operations should each
alternative be preferred?

A friend function is a perfectly ordinary function, distinguished only
by its permission to use private member names. Programming using
friends is essentially programming as if there were no data hiding.
The friend approach cleanly implements the traditional mathematical
view of values that can be used in computation, assigned to variables,
but never really modified. This paradigm is then compromised by
using pointer arguments.

A member function, on the other hand, is tied to a single class and
invoked for one particular object. The member approach cleanly
implements the idea of operations that change the state of an object,

1726 TECHNICAL JOURNAL, OCTOBER 1984

for example, assignment. Because a single object is distinguished, the
language can take advantage of local knowledge to provide notational
convenience and efficient implementation, and to let the meaning of
the operation depend on the value of that object. Note that it is not
possible to have a virtual friend. Constructors, too, must be members.

As the first approximation, use a member to implement an operation
if it might conceivably modify the state of an object. Note that type
conversion, if declared, is performed on arguments, but not on the
object for which a member is invoked. Consequently, the member
implementation should also be chosen for operations where type
conversion is undesirable.

A friend function can be the friend of two or more classes, while a
member function is a member of a single class. This makes it con
venient to implement operations on two or more classes as friends.
For example:

class matrix I
friend matrix operator*(matrix, vector);

I;
class vector I

friend matrix operator*(matrix, vector);

I;
It would take two members, matrix.operator*() and
vector. operator* (), to achieve what the friend operator* () does.

The name of a friend is global, while the scope of a member name
is restricted to its class. When structuring a large program, one tries
to minimize the amount of global information; therefore, friends
should be avoided in the same way that global data are. Ideally, at this
level, all data are encapsulated in classes and operated on using
member functions. However, at a more detailed level of programming
this becomes tedious and often inefficient; here friends come into their
own.

Finally, if there is no obvious reason for preferring one implemen
tation of an operation over another, make that operation a member.

XX. SEPARATE COMPILATION

For separate compilation the traditional C approach has been re
tained. Type specifications are shared by textually including them in
separately compiled source files. There is no automatic mechanism
that ensures that the header files contain complete type specifications
and that they are used consistently. Such checks must be specifically

DATA ABSTRACTION 1727

requested and performed separately from the compilation process. The
names of external variables and functions from the resulting object
files are matched up by a loader that has no concept of data type. A
loader that could check types would be of great help, and would not
be difficult to provide.

A class declaration specifies a type so it can be included in several
source files without any ill effects. It must be included in every file
using the class. Typically, member functions do not reside in the same
file as the class declaration. The language does not have any expecta
tions of where member functions are stored. In particular, it is not
required that all member functions for a class should be in one file, or
that they should be separated from other declarations.

Since the private and the public parts of a class are not physically
separated, the private part is not really "hidden" from a user of a class,
as it would be in the ideal data abstraction facility. Worse, any change
to the class declaration may necessitate recompilation of all files using
it. Obviously, if the change was to the private part, only the files
containing member functions or friends have to be recompiled. (The
addition of a new member function will in most cases not create a
need for any recompilation. The addition may, however, hide an extern
function used in some other member function, thus changing the
meaning of the program. Unfortunately, this rare event is quite hard
to detect.) A facility that could determine the set of functions (or the
set of source files) that needs to be recompiled after a change to a
class declaration would be extremely useful. It is unfortunately non
trivial to provide one that does not slow down the compiler signifi
cantly.

XXI. EFFICIENCY

Run-time efficiency of the generated code was considered of primary
importance in the design of the abstraction mechanisms. The general
assumption was that if a program can be made to run faster by not
using classes, many programmers will perfer speed. Similarly, if a
program can be made to use less store by not using classes, many
programmers will prefer compact representation. It is demonstrated
below that classes can be used without any loss of run-time efficiency
or data representation compactness compared to "old C" programs.

This insistence on efficiency led to the rejection of facilities requir
ing garbage collection. To compensate, the overloading facility was
designed to allow complete encapsulation of storage management
issues in a class. Furthermore, it has been made easy for a programmer
to provide special-purpose free store managers. As described above,
constructors and destructors can be used to handle allocation and
deallocation of class objects. In addition, the functions operator

1728 TECHNICAL JOURNAL, OCTOBER 1984

new() and operator delete () can be declared to redefine the mean
ing of the new and delete operators.

A class that does not use virtual functions uses exactly as much
space as an C struct with the same data members. There is no hidden
per object store overhead. There is no per class store overhead either.
A member function does not differ from other functions in its store
requirements. If a class uses virtual functions, there is an overhead of
one pointer per object plus one pointer per virtual function.

When a (nonvirtual) member function is called, for example
ob. f (x) , the address of the object is passed as a hidden argument:
f (&ob , x) . Thus call of a member function is as least as efficient as
a call of a nonmember function. The call of a virtual function p->f (x)
is roughly equivalent to an indirect call (* (p->v i rtua 1 [5])) (p , x) •
Typically, this causes three memory references more than a call of an
equivalent nonvirtual function.

If the function call overhead is unacceptable for an operation on a
class object, the operation can be implemented as an in-line function,
thus achieving the same run-time efficiency as if the object had been
directly accessed.

XXII. IMPLEMENTATION AND COMPATIBILITY

The C++ compiler front end, cfront, consists of a YACC parsers
and a C++ program. Classes are used extensively. It is about same
size as the equivalent part of the PCC compiler for old C (13,500 lines
including comments, etc.). It runs a bit faster, but uses more store.
The amount of store used depends on the number of external variables
and the size of the largest function. It will never run on machines with
a 128K-byte address space (like a PDP-11/70t) ; three times that
amount of store appears to be more reasonable. A completely type
checked internal representation is produced. This can then be trans
formed into suitable input for a range of new and old code generators.
In particular, an "old C" version of any C++ program can be produced.
This makes it trivial to transfer cfront to any system with an old C
compiler.

With few exceptions the C++ compiler accepts old C. The run-time
environment, the linkage conventions, and the method for specifying
separate compilation remain unchanged. The major incompatibility is
that a function declaration, for example,

int f () ;

in old C declares a function with an unknown number of arguments

t Trademark of Digital Equipment Corporation.

DATA ABSTRACTION 1729

of unknown types. In C++, that declaration specifies that f takes no
arguments. A C++ version of the declarations for the standard librar
ies exists, and a program producing the "missing declarations" for a
set of source files is being written. Another difference is that in C++
a nonlocal name can only be used in the file in which it occurs, unless
it is explicitly declared to be extern; in old C a nonlocal name is
common to all files in a multifile program, unless it is explicitly
declared to be static. Name clashes with the new key words cIa s s ,
const, delete, friend, inline, new, operator, overload,
public, this, and virtual may cause minor irritations.

It is often claimed that one of C's major virtues is that it is so small
that every programmer understands every construct in the language.
In contrast, languages like PL/1 and Ada are presented as if every
programmer writes in his own subset of the language and can under
stand programs written by others only with great difficulty. It follows
from this view that extension of C is bad. This argument against "big
languages" ignores the simple fact that the dependencies between data
structures and the functions using them exist in a program independ
ently of whether or not they have been recorded in a class declaration.
Programs using classes tend to be marginally shorter than their
unstructured counterparts (1 to 10 percent shorter is typical; 50
percent shorter has been seen; the author has yet to see a program
that grew without functionality being added). Furthermore, C is al
ready large enough for subcultures using subsets of the language to
exist, and the macro facilities are often used to create arbitrarily
incomprehensible variations of the language.

The cfront manual is only 14 percent longer than the "old C"
manual, so the effort of learning the new language facilities should
not be prohibitively large. In particular, it should be a small effort
compared with learning a new language containing data abstraction
features. However, when classes are used to create new data types, a
new dialect of the language is in fact created. This will lead to different
incompatible "dialects". This is not that much different from the
current state of affairs, and hopefully "standard" classes providing
basic facilities like input/output, sets, tables, strings, graphics, etc.,
will win wide acceptance.

XXIII. COMPARISON WITH OTHER LANGUAGES

To compare two languages takes a whole paper, if not a book.
Consequently, this section can provide only a few personal opinions
and pointers to the main areas of difference between the languages.
For completeness C itself is criticized in the same way as the other
languages.

The C class facility is modeled on the original Simula67 classes.S?

1730 TECHNICAL JOURNAL, OCTOBER 1984

Simula relies on garbage collection both for class objects and procedure
activation records, and does not provide facilities for function name
or operator overloading. It is, however, a most beautiful and expressive
language, and C classes owe more to it than to any other language.

Smalltalk9 is another language with the same kind of facilities for
creating class hierarchies. There, however, all functions are virtual
and all type checking is done at run time. This means that where a C
base class provides a fixed type-checked interface to a set of derived
classes, a Smalltalk superclass provides a minimal untyped set of
facilities that can be arbitrarily modified. Smalltalk relies on garbage
collection and on dynamic resolution of member function names. It
does not provide operator overloading in the usual sense, but an
operator may be the name of a member function. Smalltalk provides
an extremely nice integrated environment for program construction.
The resulting programs are very demanding of resources, however.

Modula-210 provides a rudimentary abstraction facility called a
module. A module is not a type but a single object containing data and
access functions. It is somewhat similar to a class with all data
members static. There is no facility equivalent to derived classes. It
does not allow overloading of function names or operators. No garbage
collection is provided.

Mesa's!' modules are distinguished by a clean and flexible separation
of the interface of a module from its implementation. This enables
and requires sophisticated facilities for separate compilation and link
ing. A module can import and export both procedure and type names.
The rules for instantiation of modules (object creation and initializa
tion) are so general as to make them inelegant. Some space and time
overheads are incurred by using modules. There are no facilities for
constructing module hierarchies and no facilities for operator over
loading. Mesa relies on garbage collection both for data objects and
procedure activation records. Consequently, it will run efficiently only
where hardware support for garbage collection is available.

Ada's12 data abstraction facility, the package, is essentially similar
to the class/friend facility in C. There is no equivalent to member
functions or constructors; this leads to verbosity. Nor is there an
equivalent to derived classes, so the shape example above does not
appear to have an elegant solution in Ada. Operators and function
names can be overloaded, assignment cannot. Packages can be generic.
That is, a package can be defined with types as arguments. The
standard example is a stack of elements where the type of an element
is an argument. The facility is far less flexible than C "polymorphic
classes", but more space-efficient for simple abstractions. Ada does
not provide garbage collection.

C provides no integrated environment for editing, debugging, control

DATA ABSTRACTION 1731

of separate compilation, and source code control. The C programming
environment under the UNIX™ system':" provides a tool kit of such
services, but it leaves much to be desired. No garbage collection is
provided. C classes distinguish themselves by combining facilities for
creating class hierarchies with efficient implementation. The facilities
for object creation and initialization are notable. The facilities for
overloading assignment and argument passing are unique to C.

XXIV. CONCLUSION

The addition of classes represents a quantum jump for the C
language, the least extension that provides facilities for data abstrac
tion for systems programming. The experience of three years with
intermediate versions ("C with classes") demonstrated both the use
fulness of classes and the need for the more general facilities presented
here. The efficiency of both the compiled code and the compiler itself
compares favorably with old C.

XXV. ACKNOWLEDGMENTS

The concepts presented here never would have matured without the
constant help and constructive criticism from my colleagues and users,
notably, Tom Cargill, Stu Feldman, Sandy Fraser, Steve Johnson,
Brian Kernighan, Bart Locanthi, Doug Mcilroy, Dennis Ritchie, Ravi
Sethi, and Jon Shopiro.

REFERENCES

1. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Englewood
Cliffs, NJ: Prentice Hall, 1978.

2. G. Orwell, 1984, London: Seeker and Warburg, 1949.
3. B. Stroustrup, C++ Reference Manual, Murray Hill, NJ: AT&T Bell Laboratories

CSTR-I08, January 1, 1984.
4. B. Stroustrup, "Classes: An Abstract Data Type Facility for the C Language," ACM

SIGPLAN Notices, 17, No.1 (January 1982), pp. 42-52.
5. B. Stroustrup, "Adding Classes to C: An Exercise in Language Evolution," Software

Practice and Experience, 13 (1983), pp. 139-61.
6. O-J. Dahl and C. A. R. Hoare, Hierarchical Program Structures, Structured Pro

gramming, New York: Academic Press, 1972, pp. 174-220.
7. O-J. Dahl, B. Myrhaug, and K. Nygaard, SIMULA Common Base Language, Oslo,

Norway: Norwegian Computing Center, S-22, 1970.
8. Unix Programmer's Manual, Murray Hill, NJ: AT&T Bell Laboratories, 1979.
9. A. Goldberg and D. Robson, Smalltalk-80 The Language and Its Implementation,

Reading, MA: Addison Wesley, 1983.
10. N. Wirth, Programming in Modula-2, Berlin: Springer-Verlag, 1982.
11. J. G. Mitchell et al., Mesa Reference Manual, Palo Alto, CA: Xerox PARC

CSL-79-3, 1979.

AUTHOR

Bjarne Stroustrup, Cando Scient. (Mathematics and Computer Science),
1975, University of Aarhus Denmark; Ph.D. (Computer Science), 1979, Cam
bridge University; AT&T Bell Laboratories 1979-. Mr. Stroustrup's research
interests include distributed systems, operating systems, simulation, program
ming methodology, and programming languages. He is currently a member of
the Computer Science Research Center. Member, ACM and IEEE.

1732 TECHNICAL JOURNAL, OCTOBER 1984

