
AT&T Bell Laboratories Technical Journal
Vol. 63, No.8, October 1984
Printed in U.S.A.

The UNIX System:

The Evolution of UNIX System Performance

By J. FEDER*

(Manuscript received October 25, 1983)

Performance has motivated much of the change in the UNIX™ operating
system over the years. This paper gives the results of measurements of system
performance taken over time and links the measured improvements to the
algorithmic changes that gave rise to them. The most notable improvements
have occurred in methods for performing table searches, disk input/output,
and terminal handling; these have been driven heavily by the release from
address space and memory restrictions in recent 32-bit hardware. Overall, the
changes on 32-bit machines have yielded a more than 25-percent improvement
in the system's ability to support time-sharing users.

I. INTRODUCTION

This paper presents a historical perspective on the improvements
in UNIX operating system performance over the years and highlights
the major algorithmic changes that are responsible. The movement of
people, supplemented by communication by means of mail and news
networks, has spread key improvements rapidly. Although all mea­
surements in this paper were obtained from AT&T Bell Laboratories
UNIX system versions, most of the algorithmic changes described
have similar counterparts on other UNIX system derivatives being

* AT&T Bell Laboratories.
Copyright © 1984 AT&T. Photo reproduction for noncommercial use is permitted with­
out payment of royalty provided that each reproduction is done without alteration and
that the Journal reference and copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed royalty
free by computer-based and other information-service systems without further permis­
sion. Permission to reproduce or republish any other portion of this paper must be
obtained from the Editor.

1791

run at universities" and industry throughout the world. No attempt is
made here to credit specific individuals for any of the changes; similar
changes have often evolved independently at different sites.

7.7 Strategy for benchmarking and performance analysis

This paper emphasizes system changes related to performance;
however, to put the results in context we should say a few words on
the benchmarking and analysis practices used. The term performance,
as used here, refers to the ability to accomplish tasks with minimum
consumption of resources, notably processor and disk, and thus to do
more work per unit time. At a given applied load, this usually translates
into faster system response. Different application work loads exercise
different system components and apply different stresses; knowledge
of work load is necessary to talk precisely about overall system
performance. Since it is impossible to benchmark all work loads, out
strategy is to measure individual system components and to use the
results in conjunction with knowledge of specific applications to esti­
mate the impact of improvements. Benchmarks modeling several
applications are used to provide further, more precise, overall perform­
ance numbers. One application in particular, that of providing program
development services (including documentation) in a time-sharing
environment, is viewed as especially important and is emphasized in
this paper.

Overall performance, regardless of application, is a composite of the
performance of:

1. Hardware and microcode
2. Compiler (object-code quality)
3. Kernel
4. C libraries
5. Commands.

Each of these components exercises those preceding in the list and is
measured in conjunction with them. This paper is organized according
to the list above; successive sections describe measurements and
improvements to the components mentioned. Items (1) and (2) are
grouped together under C language performance in Section II. To show
the combined effect of the changes in various areas, Section VI
presents results for a simulated time-sharing work load modeling the
activities of a program development community.

Our measurement technology places a premium on automated mea­
surements and other practical considerations. Kernel measurements
are performed without code modification or external instrumentation.

* The University of California at Berkeley has been notable in gathering together
and instituting new developments.

1792 TECHNICAL JOURNAL, OCTOBER 1984

Although details on the component benchmarks will not be given, the
general goal of each is to measure a specific function or operation
while minimally involving any others. Our benchmarks have shortcom­
ings (to be pointed out in coming sections) but nevertheless furnish
useful information. Formal benchmarks for the C library and com­
mands have not yet been completed; only limited measurement infor­
mation for these components is available.

1.2 Improving UNIXsystem performance

Recent years have seen substantial performance improvements in
UNIX systems, especially on 32-bit machines, as a result of the
application of a wide range of techniques. Extensive profiling has
identified critical code segments, and tuning practices similar to those
described by Bentley! have been used to improve efficiency. Some of
the more dramatic gains, however, have come from more fundamental
adaptations of the system to new hardware and to the change in
relative costs of various computing factors. Large word-size minicom­
puters have been introduced that allow more memory to be addressed,
and memory prices have fallen steadily." Disks have grown larger and
storage costs have fallen. Instruction rates (at least for some key
UNIX system machines) have not kept pace. This has created an
impetus to trade memory and disk space for improved performance.
Other hardware developments, such as terminal-handling front-end
processors and improved peripheral functionality, have also contrib­
uted.

Some potential trades for performance have been avoided. Assem­
bler encoding, machine-specific code tuning, and use of special algo­
rithms to take advantage of features of particular machines, can
improve performance but sacrifice long-term goals of portability and
maintainability.

1.3 System versions and results

The performance results presented here were accumulated from
efforts to monitor system performance during development, as well as
to characterize performance to UNIX system-based applications. The
common practice of instituting a group of changes at once has, in
many instances, precluded quantification of the improvements offered
by each individual change. The machines for which performance
results spanning an interval oftime are available are the AT&T 3B20S
computer and the VAX* and PDP-ll* models.

In tracing performance changes over time, it is most instructive to

* Trademark of Digital Equipment Corporation.

SYSTEM PERFORMANCE 1793

Internal
Version

Table I-UNIX system versions
External Date

Equivalent Developed Machines
PG le-300
3.0
4.0
4.1.1
4.2
5.0

System III

System V

1977
1980
1981
1981
1981
1982

PDP-H
PDP-H, VAX
PDP-H, VAX
AT&T 3B20S
PDP-H, VAX, 3B20S
PDP-H, VAX, 3B20S

associate results with the times at which the development of the
respective UNIX systems was completed, which typically coincide
with the times at which the measurements were made. This allows
comparison with unofficial prototype 3B20S UNIX system versions
that illustrate the effect of performance tuning during the period
immediately following a port to a new machine.

The system versions measured are listed in chronological order in
Table I; all but the first were issued by AT&T Technologies, Inc.
PDP-U/70 computer results prior to 1980 are for the Generic 3 (PG
lC-300) UNIX system version, which was at the time available from
the UNIX Support Group at AT&T Bell Laboratories for use in
operating company support system applications.* The 3.0 and 5.0
releases described here are especially significant since they are very
close to the System III and System V releases, respectively, licensed
(for the VAX and PDP-U computers) outside of AT&T and the Bell
operating companies.

II. C LANGUAGE PERFORMANCE

C is the major UNIX system language and the one in which the
bulk of the kernel is written. Unfortunately, performance, as deter­
mined by the speed of the object code produced by AT&T Bell
Laboratories C compilers, has remained relatively static.

We made the measurements of relative rates in executing C code
using a collection of small C language programs that do not reference
either the operating system or the C library. They bunch together the
performance of machine and C compiler, and are used to determine
the effect of compiler changes, as well as to provide approximate
estimates of machine speed. The benchmarks do not use floating-point
arithmetic and make only light use of multiplication and division
operations. The object code produced contains a mixture of procedure

* The UNIX System Support Group Generic 3 system is a derivative of AT&T Bell
Laboratories Research Version 6. AT&T Technologies Release 3.0 is a derivative of
Research Version 7 and 32V systems.

1794 TECHNICAL JOURNAL, OCTOBER 1984

Table II-Normalized C object
code execution speed

Machine
3B20S
VAX-ll/780
VAX-ll/750
PDP-ll/70

Relative C
Execution

Speed
1.00
0.97
0.61
0.83

calls, memory, and register operations roughly typical of the larger
body of UNIX system programs.* (In fact, the benchmarks were
extracted from existing system programs.) The grouping of machine
with compiler performance is unfortunate, but in general, there is no
way to separate these two without resorting to hand coding of assem­
bler benchmarks, a procedure that inserts an uncontrolled and unde-
sirable variable. .

Table II shows the relative speeds of several machines in executing
C code for Version 5.0 compilers as obtained by normalizing individual
benchmark results to the corresponding result for the 3B20S computer
and then averaging. Larger numbers indicate better performance. All
results are for "peephole" optimized code. The peephole optimizers
typically reduce program text space by 5 to 15 percent and execution
time by about 5 percent. The error tolerance on these results, due to
timing granularity and machine variations, is a few percent." Except
for the 3B20S computer, this error tolerance is sufficiently large to
cover all of the observed speed differences since 1979. (The VAX
compiler is actually known to have become marginally slower as a
result of changes to bring the handling of sub-word-size register
quantities into conformance with the C language specification.) The
3B20S compiler and microcode performance improved about 12 per­
cent between its first release, 4.1.1, and Version 5.0.

The VAX-ll/750* computer runs essentially the same system soft­
ware as the VAX-ll/780* computer but at 60 to 65 percent of its
speed. In Table I, the VAX-ll/780 computer shows only about a 15­
percent advantage relative to its predecessor, the PDP-ll/70* com­
puter. This difference is small, especially considering the number of

* The benchmark programs used are small and thus run with atypically high cache
hit ratios. They also suffer from other problems arising from the process of extracting
them from larger code segments.

t Measurements were made on the same machine sample but at different times, and
thus do not account for minor performance changes due to field service updates and
machine peripheral modifications.

*Trademark of Digital Equipment Corporation.

SYSTEM PERFORMANCE 1795

years involved. This small difference is misleading, however. As we
noted in Section III, architectural differences between the two ma­
chines, most notably the larger VAX computer word size and address­
ability, yield markedly higher VAX computer performance when run­
ning the UNIX system. Pure C language speed can be misleading
when comparing low-end Ifi-bit microcomputers with larger word-size
machines possessing special features to help support operating sys­
tems.

The times to compile the benchmark program present an interesting
sidelight. As a result of the combined effect of improvements to the
kernel, C libraries, and software involved in program compilation,
VAX programs compile on System V more than 25 percent faster and
3B20S programs compile more than twice as fast relative to 4.0
systems. PDP-llj70 compilation speed is essentially unchanged since
System III.

III. KERNEL

The kernel comprises only a small fraction of the total system in
terms of source lines, but typically consumes half or more of the
execution time. It has thus been the focus of much tuning effort over
the years. This effort has yielded improved throughput as well as a
steady decline in the proportion of central processing unit (CPU) time
spent in the kernel. In the following, the approximate importance of
some key operations has been indicated by giving the percentage of
total CPU time consumed in a program development environment, as
calculated from the occurrence frequency and CPU time for the
operation. A range of values is needed to cover different machines and
the effect of improvements affecting time and frequency. Although
program development CPU percentages are cited, the items mentioned
are likely to be important in other applications that spend significant
time in the kernel.

3.1 System call overhead
UNIX system calls all incur some common overhead in transferring

control to and from the operating system. This overhead consumes 4
to 7 percent of the CPU in a program development environment.
System call overhead is measured by executing a getpid (return
process id) system call, which essentially fetches a small amount of
information from the kernel; getpid CPU time is mostly taken up by
the system call mechanism.

Figure 1 shows the change in system call times with release. [Due
to the relatively short «I-ms) time for the getpid call, memory cache
transients comprise a substantial fraction of the total time; the times
shown are for the typical situation of nothing useful in the memory

1796 TECHNICAL JOURNAL, OCTOBER 1984

500Q;o-----------------------------,

1J)
o
15 400
u
w
1J)
oa:
u
~
z
w
:2
1= 300
:>
t

A.
SYSTEM ill

(3.0)

VAX-111750
COMPUTER

19831980 1981 1982
YEAR

Fig. I-System call overhead - getpid (invalid cache).

200'-- ---' ---' --'- ---'
1979

cache at the time of system call invocation.] In this and Figs. 2, 3, and
5, the dotted curve portions for the 3B20S computer indicate mea­
surements of unofficial laboratory operating systems prior to initial
release. These show the relatively large improvements that occur
during the time interval following a new UNIX system first becoming
operational, as the more obvious and important steps to improve
performance are taken. Performance gains become more difficult to
achieve as the system matures, as evidenced by the ultimate leveling
off of the curves in Fig. 1. Note that the 30-percent improvements due
to tuning of the C and assembler code for the VAX line actually exceed
in magnitude the differences in performance of adjacent machine
family members, the VAX-ll/780 and VAX-ll/750. PDP-ll/70 Re­
lease 4.0 performance was slightly worse than that of its predecessor
as a result of inadvertent change in some highly tuned code segments
during a functional enhancement; this was subsequently fixed.

3.2 Context switch
A key measure of kernel performance is the CPU time it takes to

transfer control between user processes, referred to here as the context­
switch time. Context switches are performed whenever a program has
to wait for data to arrive from the disk or terminal; the state of the
process is saved and a new process is set up to run so as to keep the
CPU as busy as possible. (The term "context switch" is sometimes

SYSTEM PERFORMANCE 1797

used to describe the transfer of control between a user process and the
kernel. In this paper, control transfers between user and kernel are
treated as system call overhead and covered in Section 3.1.)

Figure 2 shows the change in context-switch overhead over the
years, as measured using a benchmark program that forces control
transfers between two processes by passing a byte of data back and
forth between them. The times to perform equivalent I/O without
context switches have been subtracted to obtain the values plotted.
The overall pattern is similar to that of Fig. 1; substantial improve­
ments take place early during the development cycle, followed by a
stabilization in performance as the system matures. Again, the 25- to
30-percent improvement in VAX performance over time rival the
differences in performance between machine family members.

The time spent in context-switch operations has fallen dramatically.
VAX-11/780 machines that used System III for program development
performed about 100 context switches per second, consuming about
10 percent of the total CPU time. As a result of the efficiency
improvements just described and changes to reduce frequency de­
scribed in Section 3.6, VAX-11/780 systems doing the same kind of
work with System V perform about 40 context switches per second,
consuming only about 3 percent of the total CPU time.

1.4r---------------------------,

1.2 PDP-ll!70
COMPUTER

1.0
'"ozoo
w

:J 0.8
...J

::;;
Z

~ 0.6
i=
::l

~
0.4

...
SYSTEM ill

(3.0)

VAX-ll!7BO
COMPUTER

3820S
COMPUTER

VAX-111750
COMPUTER

...
SYSTEM Y

(5.0)

0.2

19B319B219BO
O'-- --'- --'--- -'-- ----J

1979

Fig. 2-Context switch.

1798 TECHNICAL JOURNAL, OCTOBER 1984

.----

1983

•
SYSTEM :lZ:

(5.0)

VAX-111750
COMPUTER

e

19821981

YEAR

q 3820S
\ COMPUTER

'q
\
\
\
\
\ VAX-11 1780

• \ COMPUTER

\
\
\

PDP-11170 \
COMPUTER ~--~=a.~==-~,-

•
SYSTEM ill

(3.0)

1980

70

60

50
U)
0z
0ow
U) 40
:J
..J

~

~
w 30:;;
i=
:::>a-
t)

20

10

0
1979

Fig. 3-Fork/exi t + 32K-byte process.

3.3 Fork

Figure 3 shows the change in CPU time to fork (create) a new
process and then exit (terminate it). For the UNIX system releases
in this paper, the fork implementation requires the duplication of the
data portion of the parent process; the time required is a function of
the size of this data portion. The numbers in Fig. 3 are for a very
small benchmark program to which 32 kilobytes of data have been
artificially added.*

The strong improvements for the 3B20S computer in Fig. 3 are due
largely to improvements in the kernel facility for copying data, sup­
plemented by related microcode improvements. The unusually good
performance of the PDP-ll/70 computer on forks is due to the use
of a different algorithm to replicate process data; the data part is
copied to disk using a Direct Memory Access (DMA) transfer followed
by a second DMA transfer of this data region into a different region
of memory. The total CPU overhead for the two DMA transfers is

* This is done by having the benchmark program request more memory by means of
an sbrk system call.

SYSTEM PERFORMANCE 1799

well below that of a comparable single memory-to-memory copy by
the CPU.

Fork system calls are time-consuming, but their low rate of occur­
rence on program development systems (about one per second) keeps
the total CPU consumption under 4 percent. The frequency of fork,
however, is very dependent on application design.

3.4 Table searches
The original UNIX systems were implemented with linear table

searches. These were well matched to the scarce memory and address­
ability, as well as smaller user communities supported by the low-end
PDP-ll machines available at the time. Address space and memory
are commonly no longer scarce, and user communities have grown
larger. As a result, the key linear table searches have, one by one, been
replaced by higher-performance ones. The UNIX operating system for
the IBM 3703 has been a leader at AT&T Bell Laboratories in this
regard. The table search revisions have been a main factor in improved
kernel performance.

First altered (done prior to System III) was the search to determine
the presence of a particular disk block in the in-memory cache of disk
buffers used to reduce disk accesses. Between Systems III and V the
following additional search improvements were implemented:

1. Faster location of free slots in the in-memory file-table used to
track current file transactions. This was done by maintaining a list of
free entries.

2. Faster searches of the process table for releasing process road­
blocks.

3. Faster searches of the in-memory i-node table used to track
current activity on files and devices.

The i-node table searches were improved by instituting a "hashed"
search strategy. Figure 4 demonstrates the improvement resulting
from the faster i-node searches, by plotting the CPU time to locate a
particular table entry as a function of its position. The actual operation
measured is a chd i r ".", that is, change directory to the directory
where the program resides. This minimal operation does not accom­
plish anything useful; it does, however, entail a search for the i-node
representing ... " (The position of ... " is controlled by starting with
an empty i-node table and then opening a prespecified number of files.
We then cause "." to be brought into the desired location of the
i-node table by transferring into it as a directory.)

In Fig. 4, the systems with linear search strategies (PDP-ll/70
computer; VAX-ll/780 computer, Version 4.0) are shown with dashed
lines; those with high-speed searches (VAX-ll/780 and 3B20S com­
puters) are denoted with solid lines. Version 5.0 results for VAX-ll/

1800 TECHNICAL JOURNAL, OCTOBER 1984

6-

5-

tn
ozo
~ 4-
tn
::;
...J

:ii
;;e: 3-

--- BEFORE
--AFTER

-

300

t:<:::: :::::.::::::.:.:.:.:.:.:.::::::::::::.:::::.:.::.....<:.:::::I
TYPICAL OPERATION

I I I I I
50 100 150 200 -:;0

NUMBER OF FILLED I-NODE TABLE SLOTS

Fig. 4-Effect of modified i-node search (chdir v , -),

o,:-----::::----~--_____,_=_--~c::_--_::_:_:,____-~o

1-

780 and 3B20S computers are close, and are shown as one line; data
points are for the VAX computer. Typical table fill levels for time­
sharing use are indicated at the bottom of Fig. 4. PDP-11j70 and
VAX-11/750 computers tend to operate at the lower end of the region
shown (-160 slots in use); and VAX-11/780 and 3B20S computers at
the upper end (-240 slots in use). The CPU time saving for this table
search change on the VAX-11/780 computer is given by the distance
between the respective solid and dashed curves. This saving depends
on whether the desired entry is in the table, and on its position.
Entries present in the table are located in a linear search, on the
average, about halfway through the table. Entries not present result
in searches through to the end of the table. One consequence of the
old linear search strategy is that, if kernel tables were configured
larger, failed searches would take longer, causing the operating system
to run more slowly. Note that with the improved "hashed" search,
search times are nearly constant. Furthermore (using the VAX com­
puter as an example), measured search times are essentially equal to
those for linear searches of nearly empty tables. (Theoretically,
"hashed" searches of full tables should take slightly longer due to
collisions; in practice, however, this effect is small enough to be
difficult to measure.)

SYSTEM PERFORMANCE 1801

3.5 Data movement via pipes

UNIX system pipes transfer data between processes. They are
implemented by copying data from the sender process into kernel
buffers and then from these buffers into the address space of the
receiver. Pipe measurements are important, because pipes are used a
lot, and because they exercise operating system data copy and other
mechanisms used more generally in reading and writing files; good
performance here is especially important for applications that transfer
large amounts of data.

Thus far we have looked at performance in terms of the time it
takes to perform an operation; for pipes we view the work accomplished
per unit time, which has the effect of reversing the ordinate direction
representing good performance in the figures. Figure 5 shows the
maximum rate at which data can be transferred between two processes
using a pipe. This rate depends on the size of the chunks of data that
are transferred. For the time being, let us direct attention to perform­
ance at 512-byte transfers. Several things are worth noting. First, for

400 r---------------------------,

300 -
3B20S0}

COMPUTER 1024 BYTES
PER

VAX-111780 TRANSFER
COMPUTER •

VAX-111750 <!)
COMPUTER

512 BYTES
PER
TRANSFER

2:::COMP::

17
/

/
I

I
cf

VAX-111780
COMPUTER "___~"'~-'7'----

200 -
ozoow
tJ)

a:w
Q.

tJ)
W

~cc
~

z 100-
w
~ 90 - PDP-11170 ...0-
a: ~OMPUTER -80 - -....r

70 ...

SYSTEM ill
60 - (3.0)

...
SYSTEM :ll

(5.0)

50 -

I
1983

I
1982

I
1981

I
1980

40 '-- ---''-- ---I. ---'- ----'--__----J

1979
YEAR

Fig. 5-Pipe bandwidth.

1802 TECHNICAL JOURNAL, OCTOBER 1984

512-byte transfers, the 32-bit 3B20S and VAX-ll/780 computers
outperform the 16-bit PDP-ll/70 system by almost a factor of two.
This contrasts with the approximately 15-percent difference between
these machines on general C language programs noted in Section II.
The strong performance of the 3B20S and VAX computers is due to
the greater efficiency of copying data for larger word-size machines.
In fact, even the VAX-ll/750 computer, which is notably slower than
the PDP-ll/70 computer in C language instruction rate (Table II),
easily outperforms it on an operation such as piping, which involves
moving data.

Over the time interval shown in Fig. 5, the DEC machines show
little change in performance for 512-byte transfers. 3B20S computer
performance has improved, owing to the data-copy microcode revisions
described earlier.

For Version 5.0, the internal block size for the 32-bit 3B20S and
VAX computers was changed to 1024 bytes, and the C library was
changed to cause programs to read and write in 1024-byte chunks.
Note in Fig. 5 that these changes combine to yield a factor of 1.5 to 2
improvement in overall throughput relative to 512-byte transfers. The
PDP-ll/70 computer retained the 512-byte size due to space limita­
tions. As a result, there is a factor of three to four difference in System
V pipe performance between the PDP-ll/70 computer and the other
machines.

3.6 Disk interaction
Until now, this paper has focused on improvements arising from

doing things more quickly. Another way to gain performance is to do
things less often. Disk accesses are a main consumer of UNIX system
resources, affecting two critical areas:

1. The disk-The accesses create a load on the disk subsystem,
most notably contention for the moving arm on each disk drive, which
must be directed from place to place to fetch blocks from different
cylinders of the disk.

2. The CPU-There is overhead on the CPU due to the need to
queue disk transfers, service interrupts when disk transactions com­
plete, and context switch so as to keep busy while waiting for data to
arrive.

Disk and CPU overhead are each incurred on a per-transfer basis,
and (for transfers of the sizes discussed here) are largely independent
of transfer size. This creates a strong incentive to reduce the number
of disk transfers that take place.

One technique has been to increase the file system block size. This
has the effect of cutting almost in half the number of accesses for
sequential reads and writes of large files. (Transfers to access small

SYSTEM PERFORMANCE 1803

pieces of data such as file system i-nodes, small files, and directories
are not helped by this change.) An unpleasant performance side effect
of the large block size is that a given size memory cache is able to hold
fewer buffers; this reduces effectiveness, since some blocks are retained
that hold only a small amount of useful data. There are also adverse
disk space side effects, but these have been alleviated by the availa­
bility of higher-capacity disks as technology advances.

Reduced buffer-cache effectiveness was helped by a second major
step taken to reduce the need for disk transfers: the use of a larger
buffer cache. This reduces disk interaction by increasing the likelihood
that desired data will be retained in memory. Main driving forces here
were inexpensive memory and the release from size restrictions in
moving from 16-bit to 32-bit addressability, creating an incentive to
use large amounts of memory effectively.

Figure 6 shows the evolution in the number of buffers used by UNIX
systems. For early systems, disk buffers were part of the kernel data
address space; operating systems were configured by allocating to

2000,...-----------------------.----,

1000 - SYSTEM :ll

500 -

ena:
w
u,
u,
::J
'" 200 f­
:;:
w
t;;
>­en

o 100r
a:
w

'":;:
::J
Z

SYSTEM ill

50 I-

SEPARATE FAST SEARCH
BUFFERS VAX COMPUTER

EXTEND
LIMIT

20 -
BUFFERS IN

KERNEL

19B3

I

1982

I

1981

I

197B

I I

1979 19BO

YEAR

Fig. 6-Number of system buffers.

I

1977

10 L-__--'---__---L__---JL--__...L.-__--'--__----l.__-----'

1976

1804 TECHNICAL JOURNAL, OCTOBER 1984

buffers whatever space was left over by the rest of the kernel. This
typically left room for twenty to thirty-five 5l2-byte buffers.

The first significant change was to place kernel buffers in their own
separate address space on PDP-ll computers. This allowed on the
order of 100 buffers. When attempts were made to configure with this
many buffers, however, performance got worse due to the increased
search time to determine whether a buffer was in memory (using the
then extant linear search strategy).

The next major change, which occurred for System III, was the use
of the "hashed" buffer-cache search scheme. This coincided roughly
with the initial UNIX system release for the VAX computer line. At
this point in time, VAX systems using 150 to 200 buffers became
common. Most recently, led by enthusiastic reports on experiments
by AT&T Bell Laboratories computation centers, changes were made
to relax remaining size restrictions, leading to systems where more
than two thousand 1024-byte buffers can be configured on 3B20S and
VAX computer installations carrying large amounts of memory. [Un­
fortunately, when run with this many buffers, our time-sharing bench­
mark (Section VI) operates with an unrepresentatively high buffer­
cache hit ratio; we have not yet quantified the improvement offered
by running with lots of buffers.]

The reductions in disk accesses especially help disk-limited appli­
cations. By lowering disk loads, they have also made less critical the
tuning and distribution of disk activity for other applications. The
resultant CPU savings played a large role in the time-sharing through­
put gains described in Section VI.

3.7 Comparisons of Systems 11/and V

Table III gives times for some System V operations, along with
improvements calculated by dividing System III operation times (tIll)

Table III-System V kernel operations
3B20S
Com- VAX-ll/780 PDP-ll/70
puter Computer Computer

Time Time (tv)
Operation (ms) (ms) tm/tv

1. * ehdir" . .. 1.2 1.2 (2.5)
2. * Open/c lose "file" 1.9 2.5 (2.8)
3. * Search path 3rd level 4.1 5.9 (2.9)
4. * Search dir 32nd position 2.2 3.0 (2.5)
5. Access disk block 3.1 3.1 (1.0)
6. Read 4K file 16. 19. (2.1)
7. Fork/ex i t 8K data 17. 22. (1.1)
8. Exec 8K BSS 14. 19. (1.2)

* I-node table entries: VAX = 120; PDP = 80

Time (tv)
(ms) tm/tv

3.4 (1.0)
6.8 (1.0)

17.1 (1.0)
11.1 (1.0)
4.2 (0.9)

66. (0.9)
24. (1.0)
35. (1.1)

SYSTEM PERFORMANCE 1805

by the respective System V operation times (tv). Version 5.0 results
for the 3B20S computer have also been included for comparison.

The first four lines of Table III show the improvements for some
representative file operations: chdir "." (as previously described);
open then close a file that is not already open by another process;
search (via access system call) to a third-level directory, and search to
the 32nd position in a large directory. The data were taken with target
entries at the halfway point with typical i-node table fill levels, and
show improvements for the VAX computer by factors of 2.5 or more
due to the faster table searches previously described.

As we see from lines five and six, the VAX CPU time to access a
disk block has changed relatively little. (The time given includes disk
management overhead and context switches, but not system call
overhead or the time to copy the data into the address space of the
user program.) However, since the System V blocks are twice as big,
the respective CPU overhead to read a 4K-byte file is improved by
more than a factor of two. The last two lines of Table III also show
some modest VAX improvements in fork/eXit and exec time.

In contrast to the VAX computer, PDP-ll/70 kernel performance
has been, across the board, relatively static. Many of the changes
(particularly the block size and table search) involved trades of space
for performance that were unattractive on a machine that was already
pushing the limits of its 16-bit address space.

IV. TERMINAL HANDLING
The terminal-handling portion of the UNIX system performs a

variety of services to make life easy for users at terminals. Terminal
ports are also used for networking connections to other machines by
means of cu and uucp. The general trend towards higher-speed lines,
screen editors, new kinds of terminals such as the Teletype" terminal
DMD 5620 (Blit),4 and networking, have resulted in ever-increasing
demands on terminal-handling software and hardware. Terminal han­
dling is an area in which performance has improved most dramatically.
This section addresses kernel overhead; there have also been C library
improvements related to terminal handling, which we will discuss
later.

Figure 7 depicts the change in terminal-handling overhead over time
by showing the maximum achievable output traffic levels for cooked
(characters processed) and raw (transparent) modes, assuming that
the CPU is involved with nothing else but character output. The
measurements were made while data were being outputted simulta­
neously on some twenty 9600-baud outgoing terminal lines. For some
recent UNIX systems, even this very highly stressful situation is

1806 TECHNICAL JOURNAL, OCTOBER 1984

50

40

30

20

0z
0
0
w
U>
a::
w
a- 10
U>
w 9
f-
r 8co
~ 7
~ 6
w
f-..: 5a::
f-
:::l 4a-
f-
:::l
0

3

2

COOKED RAW·i
VAX-111780
COMPUTER
+ DZ ONLY

COOKED.J

....
SYSTEM Y.

(5.0)

1981

1'----__...L-__-L__----' .L-__--l-__---L__----:'--------l
1976

Fig. 7-Terminal output at IOO-percentCPU use.

insufficient to load the CPU fully; ultimate capacity was then projected
based on the traffic level and leftover CPU with 20 lines driven. (CPU
consumption is approximately linear with traffic level.) The terminal­
handling capacity measured in this fashion depends on the size of the
data chunk that is written to the terminal. To stress the terminal
handling maximally as opposed to other kernel parts, relatively large
(256-byte) chunks were used for Fig. 7. Unfortunately, early (prior to
1977) data for the PDP-ll/70 computer are unavailable; the first data
point shown in Fig. 7 is an approximate projection of PDP-ll/70
capability based on measurements made on the PDP-ll/45 computer.
(A 2.5:1 ratio in CPU power between the two machines was assumed
for this.) Figure 7 shows that more than an order of magnitude
reduction in terminal-handling overhead has occurred over time.

SYSTEM PERFORMANCE 1807

The original UNIX system terminal-handling algorithms had sev­
eral design properties that severely limited the traffic levels that could
be achieved. They were:

1. Interrupt for each outgoing character
2. Slow buffering mechanism (the original clist), involving a sub­

routine call to enqueue and dequeue each character
3. Poor (inefficient) provision for bypassing character processing

for transparent output (raw mode). Transparency is especially needed
in communicating with other machines.

The first major change, which occurred in PDP-11 systems released
around 1977, was to take advantage of the DMA output capability of
the DEC DH11 peripheral, then in heavy use. This removed the need
for an interrupt for each character, substituting instead one every
eight characters, and effectively halving total output overhead.

A second major set of changes occurred around 1980, and was
centered around the introduction of a revised clist mechanism. The
new scheme retained the old byte-at-a-time interface of the original
clist, but also added a new one in which characters could be placed on
and removed from queues in groups of up to 64 (24 for the PDP-11
computer). In addition to saving subroutine call overhead to enqueue
and dequeue characters, the new scheme made possible bulk copies of
outgoing data between user and kernel address spaces, thereby by­
passing another extremely slow byte-at-a-time mechanism. For trans­
parent output, the bulk-copied 64-byte regions of data were handled
directly to the device driver as DMA output areas to achieve very low
overhead. These changes permitted PDP-11/70 rates of approximately
6 and 20K-bytes per second in cooked and raw modes, respectively.

The VAX computer utilized the DEC DZ11 peripheral, which un­
fortunately lacked the DMA output feature that enabled the high
performance levels of the PDP-11/70 computer. However, the Digital
Equipment Corporation made available at about this time the KMCll
front-end computer, which AT&T Bell Laboratories developers pro­
grammed to handle UNIX system output character processing. It was
possible to formulate a means of operation whereby the KMC11 was
handed large blocks of unprocessed characters, and would process and
transmit them via the DZ11, but still appear to the kernel as a simple
DMA device. This mode of operation permitted all of the previously
discussed efficiencies of transparent mode; overhead and achievable
traffic levels for raw and cooked modes were then essentially equal.
Continued minor refinements have appeared since System III, so that
at this point VAX-11/780 machines using the KMC11 peripheral can
achieve traffic levels in excess of 40 kb/s.

Figure 7 also shows the traffic levels that can be achieved on a VAX­
11/780 computer without the KMC11. As we can see, the KMC

1808 TECHNICAL JOURNAL, OCTOBER 1984

introduces an order of magnitude improvement relative to the DZll
used alone.

The 3B20S incorporated a terminal-handling front-end from the
outset, and thus throughout has had very low terminal-handling
overhead. With current software, the terminal-handling performance
of the PDP-ll/70, VAX-ll/780 (with KMC), and 3B20S computer is
sufficiently good that character processing overhead due to screen
editors, new terminals, and high line speed takes no more than 1 to 2
percent of the CPU and has ceased to be an issue of concern.

Character input overhead is roughly an order of magnitude higher
than output overhead. Fortunately, input traffic levels from human
typists are at least an order of magnitude lower and impose no
significant load. Networking connections, however, often impose CPU
loads in the neighborhood of 5 percent due to terminal input; this
remains as an area where some performance improvement would be
worthwhile.

V. C LIBRARY AND COMMANDS

The lack of formal benchmarks and systematic measurements for
the C library and commands prevents giving a detailed performance
history. This section presents the highlights of what we know.

5.1 C library

The C library routines act as an interface between commands and
application code running at user level, and the kernel. The following
focuses on performance changes in commonly used portions of the C
library dealing with file I/O, string manipulation, and conversion
between ASCII and numeric quantities. For System V, used in program
development, these C library components are responsible for about 10
percent of the total CPU consumption. Although there is some differ­
ence between the actual changes and respective times at which they
occurred for the various machines, some general trends emerge.

1. Assembler encoding-Beginning with the portable C versions of
the C library, improvements were achieved on the VAX computer by
recoding in assembler language, utilizing the functionality of special
VAX machine instructions. A similar approach, supplemented by some
specially tailored new instructions implemented in microcode, was also
subsequently taken on the 3B20S computer. New machines entering
the picture and rising support costs, however, have caused this ap­
proach to be reexamined. Fortunately, a good understanding of critical
areas of C library performance has made it possible to recode major
portions of the library routines in C and still preserve the performance
of the assembler versions.

SYSTEM PERFORMANCE 1809

2. Changed level of abstraction-The original C library routines for
file I/O and string handling were coded using character-at-a-time
primitives (putc, getc, etc.). By eliminating these, it has been pos­
sible to take advantage of the functionality of UNIX system read and
wr i te calls as well as special machine features for handling large
blocks of data. In some cases, the performance improvement from this
change alone exceeds an order of magnitude.

3. Arithmetic on integers where possible-Since floating-point op­
erations are commonly slower than their integer equivalents, it was
desirable to change routines involving conversion between floating­
point numbers and ASCII strings to do as much as possible of their
total work using integer quantities.

4. Larger buffer size-When the 3B20S and VAX kernels were
changed from 512- to l024-byte orientation, the C libraries were
similarly changed to buffer I/O in l024-byte quantities to reduce
system call overhead.

5. Buffered output to terminals-Buffering by the C library can
interfere with interactive conversations with terminals. This is because
output is held in buffers without being sent; users don't see it at the
point when a response is intended. The original, heavy-handed solu­
tion to this problem was to make all output to terminals unbuffered.
This caused output to be written in units of a single byte, resulting in
very high overhead. System V handles the problem by buffering
terminal output in units of lines and flushing partial lines to the
terminal when input is requested. This permits interactive terminal
operation and reduces overhead to output lines of any sizable length
by an order of magnitude relative to the unbuffered approach.

5.2 Commands

Overall, the rather large body of command code has not been as
finely tuned as either the kernel or C library. Many commands have
been modified and made faster or slower according to whether the
momentary purpose involved new features, performance, maintaina­
bility, or use of the C library. However, attempts to improve command
performance have often yielded sizable gains. For example, a modest
effort recently resulted in a factor of three improvement to the cat
command, and a factor of two improvement to the who command.
(These improvements appear in System V, Release 2.)

Nroff, owing to its prominence in overall CPU consumption at
many installations, has been the most discussed command. Unfortu­
nately, its complexity has discouraged attempts at tuning. For some
applications, there are substitutes for nr 0 f f that are several times
faster. Some feel, however, that a complete reworking of the text
package would be the best approach.

1810 TECHNICAL JOURNAL, OCTOBER 1984

VI. PERFORMANCE ON TIME-SHARING WORK LOADS

This paper has described improvements by widely differing amounts
in various portions of the UNIX system. Work-load modeling bench­
marks are used to determine the impact of the different individual
improvements on ability to support specific real-life loads. These are
constructed by observing a target application for a period of time and
then creating a set of programs that imitate the application with
respect to usage and proportion of time spent in various commands,
libraries, and the kernel, as well as amounts of I/O and swapping
activity. A number of such benchmarks have been developed to model
various UNIX system usage situations, but most focus on special­
purpose telephone company operations-support systems. This section
will describe results for a benchmark intended to model some typical
time-sharing use. The benchmark was based originally on a 1978 study
of a community of programmers using a PDP-11/70 machine to
develop software for the 5ESS™ switching equipment;" the actual
command mix has been updated, however, to reflect more recent UNIX
system usage. Modeling every aspect of an application, however, can
be difficult in practice, and requires some compromise. Observations
of resource consumption of real-life work loads, therefore, provide a
useful supplement.

Our time-sharing work-load benchmark operates by running in­
creasing numbers of scripts consisting of UNIX system and editor
commands in parallel, so as to obtain a picture of system performance
under increasing load. The order in which the commands are issued is
permuted in the various scripts so as to avoid synchronization effects.
Commands and editor input are read from files, thus bypassing the
terminal-handling portion of the system. This should distort results
minimally, however, since terminal handling does not significantly
consume resources on the UNIX systems described in this paper when
used for program development. In accord with real-life program de­
velopment situations, the benchmark is CPU-limited for the applied
load range of interest and does not swap except at very high applied
loads.

Figure 8 shows the throughput versus load for Systems III and V.
Throughput increases as additional scripts are added during the early
portion of the curves. This is because several scripts running in parallel
are necessary to provide work for the CPU while I/O is taking place
so as to achieve maximum throughput. There is a slight tendency of
the curves to droop at high loads due to decreasing buffer-cache hit
ratio and slightly higher system overhead.

Table IV summarizes the peak throughputs for System V and
improvements since System III. The 32-bit VAX computer has enjoyed
a 25-percent throughput improvement. Note that the VAX-11/750

SYSTEM PERFORMANCE 1811

10,000r-------------------------,

VAX-11/780~----­
COMPUTER

PDP-11/70
COMPUTER------------- - - SYSTEM ill (3.0)

-- SYSTEM JZ: 15.0)

r' - - - - - - - - - - -­ --I ----------- _
I VAX-ll/780
I COMPUTER

I
I
I /r-_- _

t' ----
I

I
I

I
I

a:
::Jo
I

ffi 8000
0..

en
w
~w
Uoa:
0..

I­
::J
3: 6000
<:J
::Joa:
I
I-

20155 10

SIMULTANEOUS SCRIPTS

Fig. 8-Performance on time-sharing benchmark.

4000
0
L-- - - - ---L - - - - - -'-- - - - ----'-- - - - - --'

computer running System V outperforms the PDP-11/70 computer,
whose performance has remained relatively static as the result of
having been left out of key changes.

Throughput results from Fig. 8 and Table IV are supported by
experience in monitoring amounts of work done in real program
development environments with the systems in question. An attempt
to calibrate the ordinate in Fig. 8 with the number of users capable of
being supported was performed by surveying AT&T Bell Laboratories
computation centers and asking how many time-sharing users would
be placed on the various systems. This survey indicated that 10,000
processes/hour in Fig. 8 correspond roughly to being able to support
35 users with reasonable response.

Table IV-System V (5.0) peak
benchmark throughput (processes/

hour)

Machine

Percent
Change

Throughput (Since 3.0)
3B20S
VAX-ll/780
VAX-ll/750
PDP-ll/70

10,000 na
9,800 +25
6,000 na
5,800 -3

1812 TECHNICAl JOURNAL, OCTOBER 1984

VII. SUMMARY AND CONCLUSIONS

This paper has described changes involving various portions of the
UNIX system that have given rise to a 25-percent improvement in
ability to support time-sharing users. Kernel revisions to take advan­
tage of large address spaces and inexpensive memory have been the
most significant factors, but improvements in the C library and
selected commands have also helped. Kernel overhead, which in the
past typically consumed 65 to 70 percent of the CPU, now consumes
only about 50 percent. The most spectacular change has been a
reduction by better than an order of magnitude in terminal-handling
overhead, which has greatly eased the migration to higher line speeds,
screen editors and networking. Performance of the object code pro­
duced by the C compiler has remained relatively static.

Kernel and C library improvements are pervasive and are likely to
help any application that uses these components. On the other hand,
the static picture for compiler code efficiency implies that applications
that predominately execute application-specific code, and do not often
use the kernel or libraries, will see no performance change.

It is difficult to compare UNIX system performance with that of
other operating systems. Where an application makes only light use
of operating system services, the comparison generally hinges on the
relative efficiency of the compilers and libraries, performance of avail­
able software packages, and the suitability of the languages available
on the systems to the task at hand. Where operating system services
are used heavily, comparison is impeded by the difficulty of defining
equivalences between operations for different operating systems and
of determining the impact of missing functions and services. Efficient
application architectures for the operating systems in question may
be very different.

Where do we currently stand with respect to UNIX system perform­
ance, and what can we expect to see in the future? At this point, for
the kernel and C library, we have addressed the more straightforward
tuning steps and critical program areas as identified by profiling; we
can obtain major improvements only by making fundamental changes
and by moving functionality into hardware. As examples, new file
system designs using much larger block sizes show greatly improved
performance in transferring data, and systems with paged memory
management can efficiently handle very large programs. The com­
mands continue to be a fertile area for tuning and algorithmic revision.
Global optimization for the C compiler also appears promising, al­
though the extensive hand tuning that has already taken place
throughout the system will reduce its impact.

Evolution towards greater functionality, such as transparent net­
working, will create challenges to implement new features without

SYSTEM PERFORMANCE 1813

hurting performance. The machines described here were originally
designed without significant knowledge of hardware characteristics
amenable to the UNIX system. Currently, as a result of experience in
optimizing C, kernel and C library performance, we are in a much
better position.

VIII. ACKNOWLEDGMENT

The author expresses his thanks to Jeffrey Lankford and Steven
Sutor, who helped perform the measurements described in this paper,
and Lawrence Resler, who provided the material on C library perform­
ance. Jeffrey Lankford, Lawrence Rosler, and Barton Stuck provided
helpful feedback on early drafts of this paper.

REFERENCES

1. J. L. Bentley, Writing Efficient Programs, Englewood Cliffs, NJ: Prentice-Hall,
1982.

2. C. G. Bell, J. C. Mudge, and J. E. McNamara, Computer Engineering, Chapter 2,
Bedford, MA: Digital Press, Digital Equipment Corporation, 1978.

3. M. J. Bach and S. J. Buroff, "The UNIX System: Multiprocessor UNIX Systems,"
AT&T Bell Lab. Tech. J., this issue.

4. R. Pike, "The UNIX System: The Blit: A Multiplexed Graphics Terminal," AT&T
Bell Lab. Tech. J., this issue.

5. S. L. Gaede, "A Scaling Technique for Comparing Interactive System Capacities,"
Proc. Computer Measurement Group XIII (December 1982), pp. 62-7.

AUTHOR
Jerome Feder, B.Sc. (Electrical Engineering), 1963, Cooper Union; M.Sc.
and Ph.D. (Electrical Engineering), New York University, 1969; AT&T Bell
Laboratories, 1969-. Mr. Feder's early work at AT&T Bell Laboratories was
in the area of machine aids and computer graphics, where he worked on the
Graphic 2, XYMASK and Electron Beam Exposure System (EBES) projects.
He is currently the Supervisor of the UNIX Performance Measurement and
Analysis group. He has been engaged in software development and perform­
ance measurements involving the UNIX operating system since 1975.

1814 TECHNICAL JOURNAL, OCTOBER 1984

