
AT&T Bell Laboratories Technical Journal
Vol. 63, No.8, October 1984
Printed in U.S.A.

The UNIX System:

Cheap Dynamic Instruction Counting

By P. J. WEINBERGER*

(Manuscript received October 18, 1983)

There are two ways to profile the behavior of a program: timing and
counting. Timing is traditional in UNIX'" operating systems. This paper
describes an easy implementation of count profiling, and gives several exam
ples and applications. It has been implemented on the Motorola 68000, VAX'",
and AT&T 3B20 computers.

I. INTRODUCTION

Measurement and testing form the bridge between the algorithms
of the theoreticians and efficient working programs. In all but the
simplest and shortest-running programs, the implementer makes as
sumptions about the form and quantity of the input, and about which
parts of the program do or do not need to be fast. Unless these
assumptions are based on careful measurement, they are usually
inaccurate, and so the program is unexpectedly slow. Likewise, it is a
common observation that testing a large program does not find all the
bugs, and that it is hard even to execute all parts of the program.

This paper presents a technique for ameliorating both of these
difficulties. If a programmer is told how often each instruction is
executed, then it is easy to tell whether a set of tests has executed all
the instructions, and the parts of the program executed most fre-

* AT&T Bell Laboratories.
Copyright © 1984 AT&T. Photo reproduction for noncommercial use is permitted with
out payment of royalty provided that each reproduction is done without alteration and
that the Journal reference and copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed royalty
free by computer-based and other information-service systems without further permis
sion. Permission to reproduce or republish any other portion of this paper must be
obtained from the Editor.

1815

quently stand out clearly. This is not a new idea; several compilers
have generated counting code (see Ref. 1.) Strangely enough, counting
facilities are rare to nonexistent in production environments. (See
Ref. 2, Section 3.1, for more comments on testing and profiling.)

The next section contains a brief discussion of time-based profiling.
Following that is a description of an implementation of counting
based profiling. Then follow some examples and applications.

II. TIME PROFILING

The usual way of measuring performance is by timing. At best this
gives fairly crude data, unless the machine has an accurate clock." The
UNIX operating system includes a profiler based on timing. A program
that requests profiling tells the system the location of an array of
counters, one for each n bytes of its executable test. Then every time
the hardware clock ticks (50, 60, or 100 times a second) when the
program is running, the kernel increments the word in the counting
array corresponding to the program counter. When the program fin
ishes, the user can see how much time is spent in each routine. This
is an immensely valuable but flawed tool. First, it requires quite a
large table to record exactly which instruction was being executed
when the clock ticked, and this is not the default. Typically, the values
are compressed corresponding to a single counter with each range of
n = 8 bytes. Occasionally, counts from one routine are attributed to a
neighboring one, when the section of the program corresponding to a
counter spans two routines. Second, even on a slow machine, 10,000
instructions are executed for everyone that is profiled, so it is impos
sible to get reliable counts for any but a few subroutines except on
long-running programs. For instance, a program that runs 40 seconds
is sampled 2400 times. If a subroutine accounts for 20 percent of the
time, it should have been counted 480 times, with a standard deviation
of about 22 counts. Thus, the expected inaccuracy even for an 8
second routine is about 10 percent, and for less time, even less accuracy
is expected. Correspondingly, there is little chance of estimating test
coverage with sampling. Finally, if the behavior of the program is at
all correlated with the clock, then the sampling is not random. Com
munications programs and those that do a lot of input/output (I/O)
are at least partially synchronized with the clock, and their timings
are unreliable.

III. COUNTING

An alternative is to count every execution of every instruction. For
the moment, think of the program as being in assembly language. If
you insert a counting statement at the beginning of each basic block
of the program, you know how often each instruction is executed. For

1816 TECHNICAL JOURNAL, OCTOBER 1984

the purposes of this paper, a basic block is a contiguous set of
instructions, all of which have to be executed exactly once if the first
is executed, and conversely. If the program terminates abnormally,
then the last basic block will have been started, and so counted, but
instructions after the failure are not counted. In that case a few
instructions in one basic block may have counts that are one too large.

What does it take to carry this out? First, detect the beginning of
basic blocks. Second, insert some counting code that does not affect
the correctness of the program. Third, retrieve the counts when the
program terminates. (It is also useful to get counts from programs that
do not terminate, like the operating system.) Fourth, find some way
of correlating the data with the original source of the program.
Thus the implementation consists of two parts. The first scans through
the program, inserting counting code and allocating storage for the
counts. The second takes the count output and produces various sorts
of reports. In between, run the program being profiled.

IV. C, FORTRAN, AND PASCAL
Above I maintained the fiction that counting was for assembly

language programs. Assembly language is produced by the compilers,
so that the counting code is inserted by a separate pass after the
compiler and before the assembler. The association between basic
blocks and lines of the source program is made by compiling with an
option that produces line numbers in the symbol table for the debugger.
The program that inserts counting code also interprets line number
and file name assembler directives, and leaves a file containing the
correspondence between basic blocks and line numbers. The following
diagram shows the normal flow of events for C programs (see Fig. 1).

A program named bb inserts counting code in the assembly language
(see Fig. 2).

The file x , sL contains each machine instruction in the original
program with the number of the basic block it is in, together with
lines noting line numbers and function names.

=-I COMPILER M ASSEMBLER FI LOADER P
Fig. I-Normal compilation flow for C programs.

x.sL

Fig. 2-Inserting counting code.

INSTRUCTION COUNTING 1817

This file, the source file, and the output file containing counts are
combined to give program listings containing the number of times
each line was executed.

V. BASIC BLOCKS
It should be easy to find the beginning of a basic block. Any

instruction that is the target of a branch and any instruction following
a branch starts a basic block. Fortunately, UNIX system assemblers
have the property that all branches lead to labels, so one can take all
labeled instructions to begin basic blocks, rather than doing flow
analysis or address arithmetic (except that the label the compiler
generates just after a case or switch instruction must be ignored,
since inserting code would spread out the jump table and make the
program incorrect).

It is clear that one need not count all basic blocks. The counts
associated with some are implied by counts associated with others.
For instance, in

if cond then true-piece else false-piece
the sum of the counts for the true and false pieces must equal that of
the cond piece (see Ref. 4). A compiler could take advantage of this
information, but a program processing assembly language would have
to do flow analysis. Also, the program that prints the counts would
need the source, the count data, and the rules for deriving the implied
counts. I do not take advantage of this opportunity.

VI. TRANSPARENT COUNTING CODE

What kind of code should be inserted? With each compilation unit
(a file), allocate an array of integers, one for each basic block. Then
the counting code for a basic block should add "one" to the array
element for the basic block.

Although an array of integers is specified above, it requires a
moment's consideration to show that integers are satisfactory. A 32
bit integer can hold counts up to 232(=4,294,967,296). If a basic block
executes in a microsecond, then it would take more than an hour in
that basic block before the count overflows. Therefore, integer counts
are pretty safe, but for programs that summarize the data it is best to
use double precision.
6.7. Counting instructions

The ideal counting instruction increments an arbitrary location in
memory, changing nothing else. Few, if any, machines have such an
instruction. Either the machine has condition codes, which are affected
by adding 1, or some address arithmetic is needed, or the number to
be incremented must be in a register, or some combination of all of
these.

1818 TECHNICAL JOURNAL, OCTOBER 1984

For the Motorola 68000 and the VAX* processors, two of the
machines with counting implementations, there are instructions that
increment an arbitrary integer using an address contained in the
instruction stream. The only drawback is that these instructions affect
the condition codes.

6.2. Condition codes
If the counting instructions affect the condition codes, then it may

not be safe to insert an instruction at the beginning of a basic block.
I use a simple test: if the first instruction of the basic block kills (in
the charming language of flow analysis) the condition codes, then the
increment instruction is inserted. Otherwise the program inserts a
more complicated sequence, which preserves the condition codes
around an increment. It is not always easy to find such a sequence,
being somewhat tricky on the VAX machine (Kirk McKusick provided
relatively simple code). One would think that a subroutine call would
always suffice but on some machines subroutine calls change the
condition codes.

The required trick is a consequence of processing assembly language.
If the code were being inserted by compilers, the generated instructions
could be chosen by mechanisms otherwise present in the compiler,
rather than requiring special consideration.

6.3. Addressing
The counting code needs to add 1 to some location in memory. This

requires that the inserted code be able to generate the address of the
location without affecting the execution of the program. Fortunately,
many machines can address all of memory from the instruction stream.
If yours cannot, you may view this as an amusing challenge.

6.4. Storage for counts

The arrays for counts could be allocated globally, or for each source
file, or for each procedure. The middle choice is the natural one, since
files are compilation units. The program that processes the assembly
language generates the space for the arrays at the end of the file when
it knows how many basic blocks there are.

The counting arrays are linked together at run time (following a
suggestion of Channing Brown). Special code is generated after the
entry point of a procedure to check to see if the file's counting array
has been linked into the list of active arrays, and to link it in if
necessary.

* Trademark of Digital Equipment Corporation.

INSTRUCTION COUNTING 1819

6.5. Span-dependent instructions
Many machines have several forms of branches varying in how far

the target is from the branch instruction. Inserting counting code
between a branch and its target moves them apart, so short branches
may no longer reach their targets. The command bb changes all short
branches into long ones. Of course this slows the program down, but
not much.

There is a similar problem with certain special loop instructions
(e.g., aoblss on the VAX processor) which implicitly contain short
branches. These are replaced by equivalent code that includes a long
branch. In both these cases the reported counts are those for the
original program.

VII. GETTING THE COUNTS OUT

Before the program terminates, it must write the counts out, lest
they be lost. To this end the library's standard exit routine, which
flushes buffers, is replaced by a routine that flushes buffers and then
appends the counts to a file named prof. out in the current directory.
It produces the counts by scanning the linked list of counting arrays.
Each array contains the full name of the file it corresponds to, its
length, and the actual counts. The first two were provided by bb and
the counts come from executing the program. The name and the
counts are written on prof. out.

It is useful to be able to extract counts from programs that never
call the system exit routine, such as the operating system kernel and
various network servers. In the case of the operating system, it is
easy to read the counting arrays out of the system's memory using
dev/mem. Also, it is easy to recover the information from a system
dump. On most versions of the system it is not generally possible for
one program to read the memory of another, so getting counts out of
a running program requires prearrangement: the program must write
out the counts itself, and any way of telling it to do so is reasonable. I
usually use some signal. When the program gets the signal it writes
out the counts, using the algorithm described above, and then contin
ues. If a program aborts it is not hard to extract the count arrays from
the core file.

VIII. A SHORT EXAMPLE

Here is the program max. c, the interesting part of which finds the
location of the maximum element of an array of length 100,000 of
random integers. After looking at the code, but before looking at the
statement counts, the reader might like to guess how often a new
maximum is found.

1820 TECHNICAL JOURNAL, OCTOBER 1984

#def ine N 100000
int x [N] ;
main()
lint i;

srand (getpid ()) ;
for(i=O; i<N;i++)

x [i] = lrand();
ma x j x, N);

max(v I n)
int v [] ;
lint i I j;

j = 0;
for (i = 1; i < n; i ++ >l

if(v[i] >v[j])
j = i;

return(j);

The user gets an executable program by typing lcomp max. c. After
executing the program, the user types Ipr int, and gets the following
output (the italic line numbers are not part of the output).

1. 1 #def ine N 100000
2. 1 int x [N] ;
3. 1
4.1 main()
5.1 I inti;
~ 1 srand(getpid(»;
7.1 for(i=O; i<N;i++)

8. 100000 x [i] = lrand();
9. 1 max(x, N);

10. 1

11. 1

12. 1 rnax (v, n)
13. 1 int v [] ;
14. 1 lint i I j;
15. 1 j = 0;
16.1 for(i=1;i<n;i++)1
17. 99999 if (v [i] > v l f l)
18. 10 j = i;

19. 99999
20. 1 return(j) ;
21. 0

INSTRUCTION COUNTING 1821

The 10 new maxima are approximately what the theory predicts. The
counts of 1 on the declarations and blank lines come from the next
executable basic block (see Section 10.1). Thus, a blank line after line
17 would have a count of 99,999 in the output.

IX. PRINTING THE RESULTS

The program, Iprint, prints counts. It produces output broken
down by instructions, source line, function, or file. At its most verbose
it will print each assembly language instruction with the number of
times it was executed. By default it prints each line of the source with
the number oftimes it was executed, as above. Because the correspond
ence between basic blocks, which is what are being counted, and source
lines for compiled languages is inexact, these line counts need to be
viewed with a modicum of understanding (see below). For intermediate
amounts of detail, Ipr int summarizes by functions, or prints each
line with the number of machine instructions executed. Later there
are some examples of line counts. Here is an example of summary by
function:

16779455ie 524353calls 38i Oine -.naput
99211687ie 524353calls 80i 17ine -.naget

Oie Ocalls 31i 31ine -.nafree
3686ie 67calls 60i 2ine -.naupdat

91478ie 1434calls 73i 3ine -.naread
4779ie 81calls 69i 10ine -.nawrite
420ie 14calls 31i 1ine -.natrunc

30344908ie 523189calls 61i 1ine -.nastat
457595ie 1333calls 368i 80ine -.nanami

72571404ie 1576004calls 107i 11ine _send

The first column shows how many instructions were executed in
that function. The second column gives the number of times the
function was executed. The third gives the number of instructions in
the compiled function, the fourth gives the number of those that were
never executed, and the last column is the name of the function. The
same data summarized by file are

219465412ie 918i 156ine 60352487bbe 255bb 59bbne neta.c

The new information is in columns four, five, and six. These are the
number of executions of basic blocks, the number of basic blocks in
the file, and the number of those never entered during execution,
respectively.

1822 TECHNICAL JOURNAL, OCTOBER 1984

x. USING THE OUTPUT

panic ("no imt") ;

ip- > i_count + +;
ip-> i_flag I = ILOCK;
return(ip);

slot = INOHASH(dev, ino, fstyp);
ip = &inode [inohash [s lot]] ;
while (ip!= &inode[-1]){

if (ino ==ip->L-.number&&dev = =
ip->i_dev
&&fstyp = = ip-> i_fstyp){
if ((ip- > i_flag& ILOCK) ! = O){

ip- > i_f lag I = IWANT;
sleep«caddr_t)ip,PINOD);
goto loop;

I
if((ip->i_flag&IMOUNT)! = O){

for (mp = &mount [0] ; mp < &mount
[NMOUNT] ; mp + +)

if (mp- > In-inodp = = ip){
dev = mp- > In-dev ;
ino = ROOTINO;
fstyp = mp- >In-fstyp;
goto loop;

I

loop:2204448
2204448
2204448
4378850
2919642

6. 2919642
7. 745240
8. 513
9. 513

10. 513
11. 744727
12. 744727
13. 418411

14. 4509270
15. 418411
16. 418411
17. 418411
18. 418411
19. 4090859
20. 4090859
21. 326316
22. 326316
23. 326316
24. 326316
25. 2174402

10.1. But what does it really mean?

Here is an example. The italic numbers are not part of the program's
output. The code is a piece of the operating system, and the data are
real.

1.
2.
3.
4.
5.

Note that there are some peculiarities in the output. This is the case
for the for statement at line 13, where the first basic block, the
initialization, is executed 418,411 times, while the test is executed at
least 4,509,270 times, as can be seen from the next line. Also, the C
compiler (at least the one used for the example) has a slightly inac
curate count of line numbers, as we can see from the large numbers
on statement 20, which actually was never executed. The problem here
is that the C compiler did not recognize the end of the loop until it
got to that line, so the loop increment code was associated with that
line. Finally, the large count on line 25 is from the first line not shown,
and represents the false branch of the test at line 5.

INSTRUCTION COUNTING 1823

The problem with the compiler is that there is no exact correspond
ence between basic blocks and statements in C (or Fortran or Pascal).
While this is regrettable, the data are not randomly weird, but system
atically weird, and thus are usually interpreted unambiguously. Adding
curly braces frequently helps with compound statements. Also, the
profiler's idea of lines is the same as the debugger's idea, so it would
appear to the user, for instance, that the line after the loop is being
executed each time the debugger single steps through the loop.

This part of the kernel is profiled on purpose, not just for this paper.
The loop at line 13 searches a linked list, and the question is whether
the ordering of the items in the list should be changed, or whether
some other data structure should be used. Since the list was searched
418,411 times using 4,509,270 comparisons, and since I know that the
list is usually about 16 items long, it appears that some rearranging
might make a slight difference. As a side effect of the profiling, note
that of the 745,240 times the test at line 7 succeeded, 513 times the
resource found was locked.
10.2. Bottlenecks

Time profiling determines which routines are taking lots of time.
Then count profiling, by highlighting the busy parts, gives information
that explains why the routines are taking so much time. Reference 4
gives examples in which count profiling led to a speedup by factors of
2 to 4.
10.3. Testing

The next example is the body of a routine to find the square root of
the number a modulo a prime p, It was run several times on random
data in the hope that all the code would be covered.

1. 8 extern short pr imetab [1;
2. 8 modsqrt(a, p)
3. 8 I short *x;
4.8 inti,j,s,t,e,u;
5. 8 a %= p ;
6. 8 if (a < 0)

7.0 a+=p;
8. 8 if (a = = 0)
9. 0 return(0);

10. 8 if (p % 4 = = 3)
11.5 return(mpow(a, (P+1)/4,p»;
12. 3 u = p - 1;
13.3 for(e=O;(u&1) ==O;e++)
14. 10 u > > = 1 ;
15. 3 s =mpow(a, u, p);
16. 3 if (s = = 1)

1824 TECHNICAL JOURNAL, OCTOBER 1984

17. 0
18. 3
19. 5
20. 3
21. 5
22. 3
23. 2
24. 2
25. 3
26. 3
27. 2
28. 3
29. 3
30. 3
31. 3
32. 3
33. 3
34. 3
35. 3
36. 0
37. 3

return(mpow(a, (u+ 1)/2, p»;
for (x = pr imetab + 1; legendre (*x, p) ! = -1 ;

x ++);
for(j=O; j<e; j++)

if (s==p-1)
break;

else
s=(s*s)%p;

s =mpow(*x, u, p);
for(i=O; i<e-j-2;i++)

s=(s*s)%p;
i=(1-u)/2;
i%=p-1;
if(i<O)

i+=p-1;
t = mpow (a, i, p) ;
t = (s*t)%p;
s = (s*s)%p;
while((t*t)%pl = a)

t=(t*S)%p;
return(t);

Unfortunately, the return at line 17 and the loop at line 36 were
never tested. The trivial tests at lines 7 and 9 seem safe enough. Before
I used this subroutine in a program I managed to find tests that
covered all the statements. (There is still no guarantee that the
program is correct, but at least all the parts have been executed.)

10.4. An application to microcomputer architecture

Dynamic instruction counting can be used to compare alternative
architectures for new machines. The simplest case is that of a micro
processor with fixed-length instructions and no cache. In this case one
expects that the memory bus is the limiting factor, so that the
processor is either retrieving instructions, retrieving data, or storing
data. Instruction counts transform into program timing directly. Of
course we can't get counts from executing the program on nonexistent
hardware. Instead, we write the compiler so it will produce code for an
existing machine but preserve the basic block structure it would
produce on the new machine. Execution counts on the existing ma
chine then give execution counts for the new machine. In more realistic
cases, of course, it requires elaborations of the basic counting technique
to get all the data needed to compare architectures. Other ways of
getting this information, such as simulation or instruction traces,
require much more computer time.

INSTRUCTION COUNTING 1825

XI. BUTWHAT DOES IT COSH
Not much. Each basic block contains one extra counting instruction,

one that involves both a fetch and a store, and so is relatively
expensive. Hence, the cost depends on how long basic blocks are, and
they are typically short (2.54 VAX instructions for a set of several
common C programs). Usually profiling costs between 50 percent and
a factor of 2 in CPU time.

XII. SOCIOLOGY
This work raises an obvious question. Why not modify the compilers

to insert counting code? The problems with condition codes and
addressing just would not come up. Alternately, wouldn't a preproces
sor, which inserts counting statements into the source be a better
idea? This latter idea was implemented by Mike Lesk in a preprocessor
named vee, which only checked for test coverage. It is hard to insert
legal statements in some contexts without doing a careful job of
parsing, and if one is going to parse, why not change the compiler?

I have at least four reasons for processing the assembly language,
the last of which turns out to be the most important. First, it is easy.
The programs stand alone, rather than having to be inserted in the
complicated compiler. The whole package, including a table of machine
instructions for the VAX machine, is 993 lines of C, and the first
version took about three days to write. Second, it is not restricted to
C, as all the compilers put out assembly language. Third, profiling can
include library routines, some of which are in assembly language. Last,
it can be distributed and installed by unprivileged users, which is not
true of a modified compiler. Thus, the programs have spread widely
inside AT&T Bell Laboratories without any official support, or even
recognition, from system administrators.

REFERENCES
1. E. H. Satterthwaite, "Debugging Tools for High Level Languages," Software Pract.

Exper., 2, No.3 (July 1973), pp. 197-217.
2. J. L. Bentley, Writing Efficient Programs, Englewood Cliffs, NJ: Prentice Hall,

1982.
3. Cray-1 Computer System Hardware Reference Manual, Cray Research Inc., 1976.
4. J. Fitch, "Profiling a Large Program," Software Pract. Exper., 7, No.4 (July 1977),

pIJ·511-8.
5. D. E. Knuth and F. R. Stevenson, "Optimal Measurement Points for Program

Frequency Counts," BIT, 13 (1973), pp. 313-22.

AUTHOR
Peter J. Weinberger, B.S. (Mathematics), 1964, Swarthmore College; Ph.D.
(Mathematics), 1969, University of California at Berkeley; Bellcomm, Inc.,
1969-1970; Instructor and Assistant Professor of Mathematics, University of
Michigan, 1970-1976, AT&T Bell Laboratories, 1976-. Mr. Weinberger is
Head of the Computer Systems Research Department. Since coming to AT&T
Bell Laboratories, he has worked on databases, operating systems, networking,
and compilers.

1826 TECHNICAL JOURNAL, OCTOBER 1984

