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Because comparison in the standard UNIX™ operating system sort routine,
/bin/sort, is interpretive, it is generally more time-consuming than the
standard paradigm of comparing two integers. When a colleague and I modified
sort to improve reliability and efficiency, we found that techniques that
improved performance for other sorting applications sometimes degraded the
performance of sort. Input and output are important when comparisons are
simple, but as comparisons become more complex, the number of comparisons
quickly dominates the performance of sort.

I. INTRODUCTION
1.1 Background

In 1981, Terry Crowley and I modified the standard UNIX™ oper-
ating system sort routine, /bin/sort, hereinafter referred to as sort,
to relax the 512-byte limit on record size and to make it more robust

and efficient. The main modifications were to use more memory in
the sort phase and to merge more files on each pass in the merge
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Table 1—Performance of original and modified
sort

Time (Seconds)

Version Elapsed User System
Original 9334 2995 913
Modified 5142 3036 322

phase. We also incorporated several ideas from the scientific literature
in an attempt to improve performance. Our first test results from a
large sort run by the AT&T Bell Laboratories library located in
Murray Hill, New Jersey, are shown in Table I.

The reduction in elapsed and system times was gratifying, but the
observed increase in user time was puzzling. Although the original
sort had to make an extra pass over the data, it had consumed less
processor time. This paper explains the differences in times between
the old and new sort routines and describes additional changes that
have improved the performance of the new version.

1.2 Related research

Sorting is a well-studied area of computer science. Knuth’s Volume
III is both a fine introduction to sorting and a thorough analysis of
techniques.! sort uses a modified version of Quicksort, an algorithm
introduced by C. A. R. Hoare.? Hoare suggested several optimizations
on the original algorithm.® Most of our algorithmic changes to sort
were inspired by Sedgewick’s study of Quicksort implementations.*
Kernighan and Plauger present a sort routine that is structurally
similar to sort.>®

1.3 Overview

After giving a brief description of sort, we show why comparison
of two records can be computationally expensive. The general opera-
tion of sort is sketched.

We consider the sort phase in greater detail. After a review of
Quicksort and insertion sort, the techniques of changing to insertion
sort for small partitions and median-of-three selection for the Quick-
sort partition element are considered. The first technique reduces
administrative overhead at the expense of additional comparisons, a
poor trade-off in sort, while the second technique reduces compari-
sons. Artificially partitioning the records, sorting the partitions, and
merging the sorted results is also shown to reduce comparisons.

The merge phase is the topic of the next section. We look at the
effect of merging more files on each pass and show that the use of a
heap generally makes things worse for the number of files sort will
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be merging. A merging routine based on binary search is shown to be
better than either a heap or an insertion sort. We look at the special
case of long runs of records coming from a single merge input and
introduce a simple adaptive technique to improve the behavior of the
binary search method.

We close with performance comparisons of the original sort and
the new version, and we mention new directions for even greater
improvements.

II. COMPARISON IN SORT

I will assume that most readers are familiar with the externals of
sort as presented in UNIX system user manuals. The input to sort
is a stream of characters broken into lines by the occurrence of new-
line characters. Blanks and tab characters break each line into fields
of characters. sort can operate either on the line as a whole or on one
or more of the fields in a line. Dynamic delimiting of fields distin-
guishes sort from many other sort procedures whose fields are defined
by their length and their offset from the start of fixed format records.
(The free format also discourages optimizations such as generating an
executable comparison routine tailored to the sort arguments. We
considered the portability of sort to be more important than its
performance, so we generally avoided modifications that were ma-
chine-dependent. Bentley describes machine-dependent as well as
machine-independent methods for improving sort programs.)” sort
can operate on fixed positions within fields and lines, but fixed format
data are the exception rather than the rule on most UNIX systems.

In its simplest form, sort compares lines or fields left to right, byte
by byte. sort supports options to ignore the distinction between
uppercase and lowercase letters; to ignore leading blanks; and to
consider only letters, digits, and blanks. sort can be instructed to
perform numerical rather than lexicographical comparison, so that,
for example, 5 would precede 42. Even if we ignore the complexity of
comparison, simply isolating the fields to be compared can require
considerable computation. For example, if the major sort field is the
tenth field in each line, sort must skip over the first nine fields and
the white space separating them. If comparison based on the major
sort field results in a tie, sort starts over from the beginning of the
line to isolate the next sort field. Comparison in sort therefore tends
to be much more costly than the standard paradigm of comparing two
integers. As we shall see, techniques that are attractive when compar-
ison is efficient may not apply when comparison is expensive. Con-
versely, the techniques that improved the performance of sort may
make other sort procedures run more slowly.
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2.1 General operation of sort

Sort operates in two phases. In the sort phase, lines are read into
main memory until no more will fit. The lines are then sorted and
written to a temporary file, and the process is repeated until the input
is exhausted. In the merge phase, collections of the sorted temporary
files are merged together to form larger sorted temporary files. Even-
tually, all remaining temporary files can be merged to produce the
sorted output.

Each line is read and written exactly once in the sort phase. If main
memory is large enough to accommodate all the lines, then no merge
phase is necessary. If a merge phase is necessary, then each line will
be read and written at least one more time, as the final collection of
temporary files are merged to produce the sorted output. sort can
merge approximately 20 files at one time, limited only by the number
of files that a process may have open simultaneously. (If very long
lines are being sorted, main memory could, in principle, impose an
even more stringent limit. In practice, lines are not that large nor
memory that small.) In the merge phase, therefore, lines may be read
and written several times until the number of temporary files is
adequately reduced.

To the extent that input and output dominate the time it takes to
sort, a reduction in the number of merge passes is the best hope for
improved times. This can be achieved by writing larger, and hence
fewer, temporary files in the sort phase and by merging more files at
each step in the merge phase. In the sections that follow, we will look
at the sort and merge phases of sort in more detail and see how it
was possible to increase the size of sort temporary files and reduce
the number of merge passes. We will see how these changes can
increase processor time as they reduce the time spent on input and
output, and we will describe some additional changes to help reduce
the processor time as well.

. THE SORT PHASE

3.1 Introduction

In the sort phase, available memory was originally divided into two
areas of fixed size. Four-fifths of memory was reserved for storing the
lines to be sorted. Because lines differ in length, it is not practical to
exchange two lines in memory. Instead, the remaining one-fifth of
memory was dedicated to hold pointers to the stored lines, and it is
the pointers to the lines, not the lines themselves, that are reordered
in the sort phase. It is simpler to talk about “swapping two lines” than
“swapping pointers to two lines,” so we will drop the distinction.

With this fixed partitioning of main memory, memory was consid-
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ered full when there were no more pointers or when there were fewer
than 512 bytes left in the line storage area. If both a pointer and 512
bytes of line storage were available, sort would set the pointer to the
start of the remaining free space and read another line into the area.
(If the line was longer than the remaining line storage, pointers were
overwritten with data and a core dump usually ensued. Otherwise,
lines longer than 512 bytes could survive the sort phase only to be
silently truncated in the merge phase.) Unless lines were quite short,
less than four times the size of a pointer, the algorithm would exhaust
line storage before running out of pointers, meaning that sorted
temporary files were roughly four-fifths of the size of available mem-
ory.

We added an option to sort to allow it to allocate more memory in
the sort phase. Increased work space would obviously increase the size
of the temporary files. However, that would not remove the line size
restriction and a purist would still be dissatisfied with running out of
line space while there were unused pointers, or vice versa. We therefore
eliminated the fixed partitioning of allocated memory, reading lines
into the top of the work space, and assigning pointers from the other
end. When lines met pointers, we sorted the complete lines, wrote the
temporary file, copied the incomplete line to the start of the work
space, and continued. The size of the largest line was recorded so
adequate buffers could be allocated in the merge phase. Although
detecting that lines had reached the pointers added time to an already
expensive read routine, it virtually eliminated any limit on line length,
made the best possible use of available memory, and removed a cause
of core dumps from a command that should be user-proof.

3.2 Quicksort and insertion sort

The changes to memory management did not require any changes
to the basic sort or merge algorithms. However, while we were changing
the program, we took the opportunity to implement some proposed
improvements, primarily those from Sedgewick’s study of Quicksort
implementations.* Detailed analysis of the algorithms can be found
there or in Sedgewick’s thesis® or in Knuth.! For convenience, we
review the basic Quicksort and insertion sort algorithms. Quicksort
sorts an array of lines as follows:

e If an array contains no lines or one line, do nothing. This correctly
sorts arrays of size zero and one, and establishes the inductive base
for the correctness of the overall method.

e If an array contains two or more lines, pick any line and compare it
to all the others. Put all the lines that compare low or equal to its left,
put all the lines that compare high to its right, and recursively
“quicksort” the arrays to the left and to the right. This puts the
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selected line where it belongs in the array and creates two strictly
smaller arrays that sort correctly by induction. To be precise, Quick-
sort is less constrained, allowing equal lines in either the left array or
the right array.

Insertion sort is also easy to understand and implement.

e If the first j lines in an array are already correctly ordered, a j + 1st
line can be put where it belongs by swapping it with each previous
line to which it compares low.

This procedure can be used to sort an array of N lines by invoking
it to put line 2 into place relative to line 1, then invoking it to put line
3 into place relative to the first two lines, and so on until line N is put
into place. This is similar to the way many people arrange a card
hand, putting each new card in its correct place as it is dealt.

3.3 Small subarrays

Although Quicksort is extraordinarily elegant, the recursive ap-
proach incurs substantial bookkeeping overhead for small arrays.
Hoare observed that a more efficient technique, such as an insertion
sort, should be used when array size falls below some threshold, M.?
Sedgewick took Hoare’s suggestion a step further and noted that
instead of doing an insertion sort on each small interval, one could
leave them unsorted, and invoke a single insertion sort on the entire
array of lines when all quicksorting was complete.

Sedgewick was able to improve performance by 10 to 15 percent
because, in his model, comparison and exchange were simple opera-
tions, comparable in complexity to pushing an argument onto a stack.
He made large reductions in administrative overhead at the cost of a
small increase in comparisons and exchanges. sort does not fit
Sedgewick’s model. The processing required to compare two lines in
sort can easily exceed the total processing that Sedgewick measured
for sorting a small array. When averaged over all permutations of N
distinct elements, Quicksort never does more comparisons than inser-
tion sort, and for four elements or more, it does fewer. Table II shows
calculated values for the average number of comparisons performed
when sorting small arrays.

The ill-advised implementation of this technique helps to account
for the excessive user time we first observed. When I removed the
insertion sort on small arrays and restored the original Quicksort
algorithm, sort ran faster.

3.4 Median of three selection

Like many divide-and-conquer algorithms, Quicksort works best
when it divides the remaining work into nearly equal pieces. If a line
is chosen at random, it is unlikely that half the remaining lines will

1832 TECHNICAL JOURNAL, OCTOBER 1984



Table Il—Average number of comparisons on small arrays

N 2 3 4 5 6 7 8 9
Insertion sort 1.000 2.667 4.917 7.717 11.050 14.907 19.282 24.171
Quicksort 1.000 2.667 4.833 7.400 10.300 13.485 16.921 20.579

compare low to it and half high. We are as likely to pick the minimum
or maximum line as the median.

Hoare suggested partitioning around the median of several randomly
selected lines. Sedgewick, following Singleton,’ recommended choosing
the median of the first line in the array, the last line in the array, and
the line in the middle of the array. This approach leads to several
positive effects. (Our first rewrite of sort did not include this tech-
nique. Just as the suggestion we implemented was worth leaving out,
the one we left out was worth implementing.) Using the median
increases the probability of a favorable partitioning. Suppose we have
N distinct values, 1 through N, and a particular value i in that range.
By definition, i is the median of three values if one value is less than
i and one value is greater than i. There are { — 1 values less than i and
N — i values greater than i, so of all choices of three values, (i — 1)*
(N — i) have median i. The effect therefore is to scale up the probability
of selecting a value in the middle of the range and reduce the chances
of selecting values near the extremes.

The Quicksort algorithm eventually compares the first and last lines
in the array to the partitioning element to determine where they
belong. The two or three comparisons that determine the median of
three lines also establish the relative order of the three lines. As a side
effect of the median selection, we therefore can move some of the work
out of the main loop. Of course, the Quicksort subroutine becomes
more complex. Arrays of size 3 or less become special cases, but we
can terminate the recursion for these arrays where Quicksort formerly
terminated for arrays of size 1 or 0. This produces some of the
administrative savings that Sedgewick* observed from using a simpler
technique on smaller arrays.

Table III shows calculated values for the average number of com-
parisons performed while quicksorting arrays of various sizes, with
and without the median-of-three modification.

3.5 Sorting by merging

Table III shows that sorting a 4000-line array with the median-of-
three feature requires an average of 47,868 comparisons. One can sort
two arrays of 2000 lines each for 21,564 comparisons per array, then
merge the two arrays for one more comparison per line, resulting in
2 % 21,564 + 4000 = 47,128 comparisons, 740 fewer than the straight-
forward sort on 4000 lines.
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Table 1ll—Number of comparisons with and without median-of-
three selection

Number of Lines in Array

N 10*N 100* N 1000 * N
With- With- With- With-
N With out With out With out With out
1 0.000 0.000 22.59 24.44 573.5 647.9 9,600 10,986
2 1.000 1.000 64.42 7111 13762 1563.0 21,564 24,730
3 2.667 2.667 11476 127.69 2268.2 25822 34,425 39,520
4 4.667 4833 170.73 190.84 32182 3669.1 47,868 54,989
5 7.067 7.400 23092 25892 42114 48064 61,744 70,963
6 9.733 10.300 294.49 33094 5239.1 5983.9
7 12,648 13.486 360.89 406.26 62954 7194.8
8 15.776  16.921 42970 48441 7376.3 84345
9 19.095 20.579 500.64 565.03 8478.6 9699.1
Table IV—Effect of partitioning and then merging 4000 lines
Number of groups 1 2 4 8 16 32
Comparisons sorting 47,868 43,128 38,400 33,691 29,018 24,405
Comparisons merging 0 4,000 8,000 12,000 16,000 20,000
Comparisons total 47,868 47,128 46,400 45,691 45,018 44,405
Comparisons saved 0 740 1,468 2,177 2,850 3,463
Lines moved 0 0 6,000 14,000 30,000 62,000

The idea of artificially partitioning a memory load into groups,
sorting the groups, and then merging the sorted results can be used
for any number of groups. The merging can be done using a sorted
array of the minimum lines from each of the groups. A binary search
can be used to determine the proper place in this array for a new line.
It takes only log N comparisons to establish the proper place for a line
in such an array, but an average of (N — 1)/2 lines must be moved to
allow the new line to be put in place. Table IV shows the savings in
comparisons against the cost in lines moved for partitioning and
merging a 4000-line array into a varying number of groups. (The
number of lines exchanged while quicksorting also varies as NlogN,
but it grows more slowly than the number of comparisons. Detailed
analysis is quite complicated, but the number of exchanges saved by
partitioning and merging is less than the number of comparisons
saved. The number of exchanges saved while quicksorting does not
compensate for the extra moves shown in the table.)

The optimum trade-off of comparisons against moves will depend
on their relative complexity. Ideally, one might determine the com-
plexity of comparisons dynamically, then pick a group size accordingly.
In practice, the new sort always uses 32 groups.
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IV. THE MERGE PHASE
4.1 Balancing the merge tree

In the merge phase, M sorted temporary files are merged to produce
a single sorted output. If there are M or fewer files to be merged, this
output becomes the output of the sort. Otherwise, the output is written
to a new temporary file to be processed later. Since we replace M files
with one file, the number of temporary files is constantly decreasing;
thus, the merge eventually completes.

On the last merge pass, all the input records participate in the
merge. If fewer than M files participate in the final merge pass, it
would have been better to reduce the number of inputs to the previous
merge step to leave exactly M files for the final pass, thereby saving
an extra pass over some of the temporary files. But, since the size of
temporary files is constantly increasing, the same argument can be
made for the penultimate step. The previous step should leave it with
just the right number of temporary files so that after merging M of
them onto a new temporary, exactly M remain. The argument contin-
ues from step to step, leaving us with a goal of merging the right
number of temporary files on the first step, when files are smallest, to
ensure that all subsequent steps have exactly M inputs.

Knuth provides a formula for determining the number of files to
merge at the first step.’ The typical merge step reduces the number of
temporary files by M — 1. The number of temporary files remaining,
modulo M — 1, is therefore unchanging. If we can arrange to make
one file remain, then the final merge step, instead of writing this one
temporary file, can produce the sort output. If the merge phase begins
with T files, then the first merge step merges T modulo (M — 1) of
them, establishing the right number of temporary files for all subse-
quent merge steps. If 7' modulo (M — 1) is one, we do nothing; if it is
zero, M — 1 files are merged.

4.2 Merge width

The number of times each byte must be read and written in the
merge phase varies as the logarithm, base M, of the number of files to
be merged. When sort was written, there was limit of ten file descrip-
tors. The standard output and standard error descriptors were re-
served. Standard input is always read first when it is among the input
files, and it can be closed when it is no longer needed. This meant that
seven files could always be merged onto an eighth, so M was originally
seven. Most UNIX systems now provide 19 or 20 file descriptors, so
we increased M to 16.

4.3 Use of a heap in the merge phase
To merge M sorted temporary files, the original sort maintained a
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sorted array of M lines, one from each temporary file. The basic loop
in the merge phase was to write the line in the first entry of the array,
read another line from that input file, and then swap the line with
adjacent entries to which it compared high. This left the array ready
for another cycle. In view of our expanded number of input files, we
decided that we could, to quote Kernighan:

.+ do better with a better algorithm and data structure.

One of the best is to arrange the lines as a heap. A heap has two
desirable properties; its smallest element can be found immediately,
and a new element can be put into the proper position in a heap in
a time that grows only logarithmically with the heap size. You can
imagine the heap as a binary tree (that is, each element has at most
two descendants) in which each element is less than or equal to its
children.®

Because each element is smaller than its children, the minimum
element is at the root of the heap. The typical loop using a heap writes
the line at the root and reads another line from that file. In general,
this new element will not be less than both of its children, so it is
necessary to sift it down in the heap and to sift up lesser elements.
This is done by comparing the two children to establish the lesser and
then comparing the new element to the lesser child. If the new element
is low or equal, we can stop sifting and start another merge loop. If
the new element is high, then we swap it with the lesser child and
continue sifting the new element down in the heap.

Both the number of comparisons and number of swaps are logarith-
mic in the number of elements in the tree. Unfortunately, because of
the comparison of the children to establish the lesser child, there are
two comparisons at each of the upper levels of the tree. Figure 1 shows
the number of comparisons and the number of swaps involved, de-
pending on where the new line finally comes to rest.

Assuming that elements are equally likely to end up at any node,

= /”\
4,1/ . 2,1 2,1
6,2/\6,2 62 5.2

/
4

Fig. 1—Comparisons and swaps for heaps of 16 and 32 elements.

7
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the average number of comparisons and swaps are 5.625 and 2.375 for
the 16-element heap, and 2 and 0.667 for the 3-element heap. The
original insertion sort would have averaged 8.438 comparisons and
moved an average of 7.5 elements for a 16-way merge, but, interestingly
enough, would have averaged 1.667 comparisons and one move for a
3-element array. The heap requires 20 percent more comparisons in
the three-element case and also does worse for four- or five-element
arrays. In short, the heap technique does not scale down nicely.

In principle, one might not worry about the scaled-down case, since
it only happens at the start of the merge, when we balance the merge
tree. In practice, with sort temporary files larger than half a million
bytes, sorts that get into the merge phase at all probably will not have
more than two or three inputs. (On many UNIX systems there is a
limit of about a million bytes on individual files. Only users with
special privileges can write larger files.) Fortunately, there is another
alternative that works well for all the cases that we might encounter.

4.4 Binary insertion sort

With comparisons being our major concern, the problem with a
simple insertion sort is that it averages too many comparisons when
installing a new line into an array of more than a few lines. A binary
search can hold the number of comparisons to the log of the number
of inputs. Unlike the heap algorithm, we do not have to perform two
comparisons at interior nodes of the binary tree, so the technique
averages fewer comparisons for three lines or more. Having found the
proper place in the array for the line, it is still necessary to move an
average of half the lines to make room for the new line. Table V shows
for arrays of various sizes the average number of comparisons required
by a simple insertion sort, a binary insertion sort, and a heap algo-
rithm. As the table shows, the binary insertion technique saves a
significant number of comparisons over both of the other techniques.

V. SPECIAL CASES

Most of the analysis that I have included has measured performance
averaged over all permutations of distinct lines. There are some special
cases that deserve special emphasis.

5.1 Equal keys

It is not unreasonable to assume that it takes the same amount of
time to compare any two integers, but this is certainly not valid when
we consider the comparisons performed by sort. In particular, it is
generally more expensive to detect equality than it is to detect ine-
quality. If the sort key comprises several fields, we can stop comparing
as soon as there is a difference, but we must isolate and process all
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Table V—Average number of comparisons to
add a new line

Number  Plain Inser-  Binary Inser-
of Lines tion Sort tion Sort Heap
2 1 1 1
3 1.66667 1.66667 2
4 2.25 2 2.5
5 2.8 2.4 3.2
6 3.33333 2.66667 3.33333
7 3.85714 2.85714 3.71429
8 4.375 3 4
9 4.88889 3.22222 4.44444
10 5.4 3.4 4.6
11 5.90909 3.54545 4.90909
12 6.41667 3.66667 5
13 6.92308 3.76923 5.23077
14 7.42857 3.85714 5.28571
15 7.93333 3.93333 5.46667
16 8.4375 4 5.625

the key fields to establish equality. Since sort is often used for the
purpose of eliminating duplicate keys, its behavior in the presence of
equal keys is worth noting.

The Quicksort algorithm in sort moves all the lines that compare
equal to the partitioning line next to it. This is sometimes called a fat
pivot. Quicksort would work correctly if the equal lines were simply
left where they were found, since subsequent processing would cause
them to sort where they belonged. There would be several adverse side
effects, however. The partitions would be a little larger. If there were
several equal keys, they would be compared again while processing the
partitions. And, to eliminate duplicate keys, it would be necessary to
compare adjacent keys again at output time, guaranteeing that all
equal keys participated in another comparison. For these reasons, the
fat pivot is worthwhile for sort.

5.2 Nearly ordered input

In the merge phase, suppose one of the inputs contains a series of
lines that are less than the next line from any of the other inputs.
This would be observed if the original input was in nearly sorted order.
Using a simple insertion sort technique, a single comparison verifies
that the new line is the minimum element. Using heaps, there are two
comparisons, one to find the lesser child of the root, and one to verify
that the root compares low or equal. Using the binary insertion
technique, the number of comparisons will be the log of the number
of input files.

Under these circumstances, the simple insertion sort makes fewer
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comparisons than either a heap implementation or the binary insertion
technique. Because I expect this behavior to be fairly common in
practice, and because the overhead of doing the binary lookup is quite
severe, I added an adaptive technique to the binary insertion merge
algorithm. The algorithm keeps track of how often the new merge
input remains in the first position. Each time this happens, the log of
the number of merge inputs is added to a bonus counter. Each time it
does not happen, one is added to a penalty counter. If the bonus
counter exceeds the penalty counter, the new line is compared to the
second line in the array. If it compares low or equal, we are done.
Otherwise, we fall into the binary lookup technique, with the array
shrunk by one to exclude the second line, which is now known to be
less than the new line. If the penalty counter exceeds the bonus
counter, we do a binary lookup on the entire array. In this way, we do
only a single compare on input that demonstrates a significant amount
of pre-ordering, and we do the standard binary lookup on random
input.

VI. OBSERVED RESULTS

To measure the effect of the changes to sort, variants of the sort
were timed on an AT&T 3B20 running in single-user mode. The input
to all of the tests was employee data of the form

000876543p0B45138pBPmh3c333PPPmh 9999p¥proe, richard

rppoPP¥roe, richard rp

with fields delimited by the B character. Counting from 0, as sort
does, the only fields involved in the tests were

Field 0 (000876543) A nine-digit employee identification number.

Field 2 (45138) A department code of five or fewer digits.

Field 8 (mh 9999) A telephone extension, the first two characters of
which identify an AT&T Bell Laboratories location, like
“Murray Hill.”

Field 16 (roe, richard r) The employee name, suitable for alpha-

betizing.

The input file was initially in order of employee surname (roe) with
ties broken using employee identification number.

Two sets of comparison options were used on the tests. The simple
option amounted to running sort with no arguments, so lines would
be compared left to right with all bytes significant. No two employee
identification numbers are the same, and all numbers have at least
three leading zeros, so the sense of the comparison is determined by
the fourth through ninth characters. The complex option ran
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sort—t'P'+8—8.2+2—3+16—17

generating an alphabetical list of employees by department within
location. The simple option therefore made comparisons about as easy
as possible, and the complex option forced a fairly complicated form
of comparison.

The effect of differing amounts of main-memory work space was
measured by running some small tests with 32,768 bytes available, and
some large tests with 500,000 bytes of available memory. The effect of
differing file size was measured by running tests on the full file
containing 29,157 lines and totaling 2,218,964 bytes, and a partial file
of 380,609 bytes comprising the first 5000 lines of the full file. The
smaller size was chosen so the entire file could fit in main memory
when the large work areas were being tested. Tests were run on the
old version of /bin/sort (with known bugs removed) and the new
version I have been describing. In all cases, the final output was
directed to /dev/null. The results for various combinations of these
parameters are summarized in Table VL.

6.1 Analysis of the timings

By looking at temporary files on trial runs, I was able to determine
that the original sort temporary files averaged around 25,435 bytes
when there were 32,768 bytes of work space available, and around
399,185 bytes when there were 500,000 bytes of work space. Because
of its dynamic use of work space, the new sort averaged 31,100-byte
temporary files from the smaller space, and 475,000-byte files from

Table VI—Timing results

Times as Hours:Minutes:Seconds (Seconds) Parameters
Real User System Compares File Memory Sort
1:07 (67) 44 (44) :08 (8) Simple Partial Small Old
42 (42) 129 (29) :05 (5) Simple Partial Small New
122 (22) 219 (19) :02 (2) Simple Partial Big Old
21 (21) 117 (A7) :02 (2) Simple Partial Big New
8:24 (504) 5:28 (328) 1:02 (62) Simple Full Small Old
6:17 (377) 4:06 (246) :44 (44) Simple Full Small New
4:20 (260) 3:17 (197) :28 (28) Simple Full Big Old
4:06 (246) 3:00 (180) :29 (29) Simple Full Big New
14:27 (867) 14:08 (848) :08 (8) Complex Partial Small old
5:11 (311) 4:59 (299) :05 ) Complex Partial Small New
14:52 (892) 14:49 (889) :02 (2) Complex Partial Big old
4:51 (291) 4:47 (287) :02 (2) Complex Partial Big New
1:37:59 (5879) 1:35:35 (5735) 1:05 (65) Complex Full Small Old
38:09 (2289) 36:07 (2167) 47 (47) Complex Full Small New
1:44:54 (6294) 1:43:54 (6234) :29 (29) Complex Full Big Old
35:41 (2141) 34:39 (2079) :29 (29) Complex Full Big New
34:41 (2081) 33:38 (2018) :28 (28) Complex Full Medium New
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Table VIi—Number of sort temporary files

Old Sort New Sort
Work Space
File Large Small Large Small
Full 6 88 5 72
Partial 1 15 1 13

the larger space. The number of sort temporary files for the various
parameters is shown in Table VII.

There are no surprises in the timings when comparison is simple.
The extra time required by the old sort running in a small work space
reflects the extra merge passes. The improvement of the new sort over
the old sort in a large work space, while modest, suggests that even
when comparisons are very simple, our efforts to avoid them have
been worthwhile.

The results for more complex comparisons are more dramatic. The
old version of sort consistently runs two to three times longer than
the new version. The relatively small effect of changes in working
space is another manifestation of what originally surprised me when
the library tested our first version of sort. With complex comparisons,
input and output times are inconsequential. The smaller work spaces
trade off input and output against comparisons in much the same way
that the artificial partitioning technique trades moves for comparisons.
It is for this reason that the old sort runs longer when it uses the
large work space. The new sort is not immune to this phenomenon.
When the work space was reduced from 500,000 bytes to 150,000 bytes
to force exactly 16 temporary files from the sort phase, the last line in
Table VI shows that about a minute was saved. Simply increasing the
work space, one of the changes we initially thought would make the
biggest improvement, may not improve performance at all, and may,
in fact, make things worse.

I have no experience running the new sort on paged systems. In
the sort phase, lines are accessed at random, so if the work space size
exceeds the working set size, sort could suffer a page fault for every
new line reference. It would be prudent to allocate a work space
comfortably smaller than the expected working set size.

VI. FUTURE DIRECTIONS

The timings presented here are not comprehensive enough to justify
sweeping generalizations about the performance of sort. Nevertheless,
the following guidelines are hard to refute: (1) The complexity of
comparison dominates the performance of sort. (2) Input and output
are inconsequential by contrast.
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Reducing the number of comparisons gave our most dramatic per-
formance improvements. While it is possible to continue making
improvements in this way, it will be much more fruitful to make
comparison less expensive.

Profiling indicates that scanning lines for fields is a major contrib-
utor to the expense of comparison. This parsing currently takes place
each time lines are compared, and it may be repeated several times if
several fields participate in the comparison. It could be done once,
when a line is read into main memory, if space for field pointers were
associated with each line. This would reduce the effective capacity of
main memory and increase the number of temporary files, but the
guidelines above suggest that this is a favorable trade-off.

Another alternative is to remove most of the options from sort and
put them in a separate key-manipulation command. The command
would construct a suitable sort key for each input line, append the
line to the key, pass the key and line to sort, and strip the keys from
the output of sort. All the parsing of fields, mapping of upper- and
lowercase, preparation of numeric fields and so on could be done, once
per line, by the key manipulator, so sort could do simple comparisons.
I wrote a simple awk script to add to the beginning of each line a sort
key corresponding to the complex sort command, and another script
to remove the key.

These scripts looked like
awk -F'B' {printf'%s:%s:%s:%s\n",
substr($9,1,2),$3, $17, $0)}"
and
awk -F: '{printf("%s\n", $4)}’

respectively.

When I ran the scripts and the new sort on the full test file, they
completed in about 635 seconds of elapsed time. This is less than one-
third of the time it took the fastest running new sort, almost ten
times as fast as the old. The first awk script consumed only two fewer
seconds of user time than the sort (211 seconds versus 213 seconds),
so a well-tuned command should do even better.

A separate key-building command has aesthetic appeal as well.
Instead of further complicating a command that is already difficult to
understand, sort could be simplified. The new command, which would
also be much simpler than the current sort, would be more amenable
to change. For example, it would be easy to add a time stamp or line
counter to the sort keys so sort would appear to be stable, a change
that would be difficult to make to sort itself. Options for sorting new
types such as dates or times would be practical because the processing
would only be done once per line. The timings give us reason to believe
that we can provide greater flexibility at significantly reduced cost.
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ViIl. SUMMARY AND CONCLUSIONS

When we first set out to modify /bin/sort, we thought that per-
formance was closely related to input and output, and we sought to
reduce these by increasing the work space during the sort phase and
by merging more files per pass in the merge phase. These changes
reduced input/output (I/O) as expected but made it clear that com-
parison, not I/0, dominates the performance of sort when a compar-
ison is nontrivial. Additional changes to reduce the number of com-
parisons dramatically improved the performance of complicated sorts
and modestly improved even simple sorts.

The size limit on lines has been effectively eliminated. This is
important for database applications and it paves the way for architec-
tural changes to sort that trade line size for simplicity of comparison.
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