AT&T Bell Laboratories Technical Journal
Vol. 63, No. 8, October 1984
Printed in U.S.A.

The UNIX System:

The Fair Share Scheduler

By G.). HENRY*
(Manuscript received July 19, 1983)

The Fair Share Scheduler (FSS) is a process scheduling scheme within the
UNIX™ operating system that controls the distribution of resources to sets of
related processes. This control offers features that are useful to many appli-
cations, including user control of service level, execution predictability, fair
resource allocation, predictable and fair billing, and load insulation between
user communities. This paper discusses the concepts of a fair share scheduler,
the motivation for and history behind FSS, some practical FSS applications,
the user and administrator interfaces to FSS, and the design philosophy of
FSS.

I. INTRODUCTION

The primary motivation for the original versions of the UNIX
operating system’ was to create a powerful tool for the interactive user
that was inexpensive in both equipment and human effort. Its most
important implementation goals were to provide a system character-
ized by simplicity, elegance, and ease of use. The popularity of the
system verifies the achievement of these goals. As the UNIX system
enters production environments outside of the research world, en-
hancements are continually being made to allow it to adapt to different
applications. This paper describes an enhancement to the process

* AT&T Bell Laboratories.

Copyright © 1984 AT&T. Photo reproduction for noncommercial use is permitted with-
out payment of royalty provided that each reproduction is done without alteration and
that the Journal reference and copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed royalty
free by computer-based and other information-service systems without further permis-
sion. Permission to reproduce or republish any other portion of this paper must be
obtained from the Editor.

1845

scheduler within the UNIX operating system, called the Fair Share
Scheduler (FSS), that controls the distribution of resources to sets of
related processes. This control is useful to a wide variety of environ-
ments, such as computation centers, project-managed facilities, and
universities.

Il. HISTORY

The original version of the process scheduler for the UNIX operating
system was tailored to optimize process throughput for interactive
users. It resolves Central Processing Unit (CPU) contention between
processes by considering the recent CPU activity of each process. If
the recent CPU activity of a process has low ratios of compute time
versus real time, it will be associated with a good priority.? This implies
that processes whose CPU activity is bursty in nature or small in total
demand will be favored. These characteristics are typical of interactive
processes, where there is some “think” time between each burst of
processing.

This priority scheme works well because short tasks are predominate
in the UNIX system. For example, editing is a common task on a
UNIX system. Editing is interactive in nature and bursty with respect
to system resource consumption requirements. The command inter-
preter for the UNIX system promotes joining small tasks to solve
some larger task.® These small tasks typically request a single short
burst of system resources and then exit.

The disadvantage of this scheduling scheme is the indeterminate
nature of system response. Resource distribution to a process by the
process scheduler within the standard UNIX operating system largely
depends on the activity of the system as a whole. Since the total
system activity is normally unknown over a given time period, the
system response to a process (or user) is also unknown.

The original implementation of FSS was motivated by the compu-
tation center’s need for giving a prespecified rate of system resources
at a fixed cost to a related set of users. FSS provides a mechanism for
contracting an average system response rate to a set of users that
could predict their average system usage rate. This version has been
used on production computation center systems since January of 1983,
Since that time, FSS has proved to be beneficial to other applications
and has been proposed as a desirable enhancement to the UNIX
operating system.

i1l. CONCEPTS

Introducing FSS to the UNIX operating system changes conceptions
inherent to the structure of the UNIX system. This section describes
these changes, along with the new features provided by FSS.

1846 TECHNICAL JOURNAL, OCTOBER 1984

3.1 System resources

System resources are the services provided to a process by the
operating system, such as use of the processor or disk. Access to system
resources by a process may be obtained only by going through the
operating system. FSS maintains control over the distribution of all
system resources by scheduling the processor based on the system
resource consumption rate of a set of related processes.

3.2 Distribution of system resources

The standard UNIX operating system process scheduler considers
the processor consumption rate of the full set of active processes on
the system (see Fig. 1). It distributes all of the available system
resources to n users (U), each having a domain of processes (p) owned
by them. Each user may possess a different number of processes, each
of which shows a variance in processing characteristics. The amount
of resources available to a user is dependent on the number of active
processes in a user’s domain, the number of active processes in the
system domain, and the type of activity exhibited by each process.

FSS considers the resource consumption rate of a related group of
processes, along with the individual processor consumption rates for
each active process on the system. A group of processes associated
with the same resource consumption rate is called a fair share group.
FSS controls the UNIX system by dividing the system resources into
fair share groups and associating each fair share group with a set of
users. The process scheduler for the standard UNIX operating system
handles contention between processes within each fair share group.
Thus, resource distribution by FSS to a user is also determined by the

SYSTEM
RESQURCES

100 PERCENT

PROCESS
SCHEDULER

100 PERCENT

[Uz Uz Uy s Up
P 2 D
P
p P)

Fig. 1—Standard process scheduler.

FAIR SHARE SCHEDULER 1847

SYSTEM

RESOURCES
100 PERCENT
FAIR SHARE
SCHEDULER
50 PERCV 25 PERCENT 25 PERCENT
PROCESS PROCESS PROCESS
SCHEDULER SCHEDULER SCHEDULER
T 1
i Us Uy : co e Uy
|
| R [p
| i
{ @ p/\p | p/\n
| |
| p /I
! | p P
1
Gy I Gz I Gs

Fig. 2—Fair share scheduler.

user’s association with a fair share group and the allocation of system
resources to that fair share group.

Figure 2 shows the same set of users (U) and processes (p) as Fig.
1. Each user process domain is now bounded by a fair share group. In
this example, FSS distributes the total resources to a set of three fair
share groups (G, Gz, and Gs); G, is allocated 50 percent of the available
resources; Gy and Gj are each allocated 25 percent of the available
resources. In effect, each fair share group is provided with a virtual
UNIX system.

3.3 Access to system resources

Access to system resources by a process with FSS is determined by
the user that owns the process, the fair share group the user is
associated with, and the resource consumption rate of the fair share
group. A fair share group process association or resource consumption
rate may change dynamically.

Controlling fair share group access and resource consumption rates
allows a new set of administrative alternatives on UNIX systems that
may be represented with a pie chart (see Fig. 3). The area of the pie
chart represents the total amount of available system resources. Each
pie chart slice is the amount of system resources allocated to a given
fair share group. The filling of each pie chart slice is the number of
users associated with a fair share group.

1848 TECHNICAL JOURNAL, OCTOBER 1984

Gy

A

Us

G

Fig. 3—Resource allocation.

@ ®)

Fig. 4—Unused resource distribution.

3.4 Unused system resources

When a fair share group is not using its full resource portion, FSS
distributes the extra resources in relative proportions to other fair
share groups that show the demand. This has the desirable effect of
using all the system resources when a demand exists, while maintain-
ing boundaries for distributing resources that are relative to fair share
group allocations.

Consider the fair share group allocations described in Fig. 3. If G, is
not using any of its allocated resources, FSS gives those resources in
equal portions to G, and G; because they are both allocated an
equivalent amount of system resources (see Fig. 4a). If G, is not using
any of its allocated resource, FSS gives G, twice as much of these
resources as it gives (; because G, is allocated twice the amount of
resources as G (Fig. 4b). Therefore, G, receives two-thirds of the total
system resources, while G receives the rest.

FAIR SHARE SCHEDULER 1849

1V. APPLICATIONS

The general benefit of FSS is the dynamic control it has over the
distribution of resources in the UNIX system. That is, knowing the
number and type of processes that are using a virtual system of a
given size allows greater predictability for the execution of a given
task or the responsiveness for a given user. This section will point out
some practical applications of how this control may be used.

A computation center may use FSS to allocate resources to a
predefined set of users at a fixed cost. The cost is calculated by the
relationship between the total cost of the real system versus the
percentage allocated to a virtual system. The set of users have the
advantage of being able to define their responsiveness and predict the
charges that they will incur. The computation center has the advantage
of providing a billing procedure that is both predictable and fair.

Providing a fixed processing rate to a set of users has the added
advantage of insulating that set from other sets of users on the same
system. A system with a heterogeneous user population has the poten-
tial for one set of users to monopolize system resources. This typically
happens when a system is saturated with a set of users from a related
project. For example, employees from the same department are reach-
ing a project deadline or students from the same class have a project
due. Users that are not related to that project must compete on equal
terms with these users. Figure 5a shows the process scheduler for a
standard UNIX operating system with two user groups, A and B.
Group A has the potential to obtain more system resources than group
B simply because group A owns more active processes. FSS can resolve
this by associating each group with a fixed portion of the system (see
Fig. 5b). This means that group B will be insulated from the activities
of users in group A.

A system administrator can use FSS to achieve a resource-limiting

(b)

Fig. 5—Load insulation.

1850 TECHNICAL JOURNAL, OCTOBER 1984

BACKGROUND

@ (b)
Fig. 6—Upper bound enforcement.

scheme by associating process sets with a small virtual system. Most
UNIX systems have many active background processes competing
with interactive processes for system resources, such as networking
tasks or system monitors. FSS may be used to give the interactive
processes a higher priority over the background processes by associ-
ating the background processes with a small resource consumption
rate relative to the other fair share groups (see Fig. 6a). When there
is a high interactive and background demand, the background proc-
esses will be confined to a fixed limit (see Fig. 6b). When there is a
low interactive demand and high background demand, the unused
resources go to the background processes (see Fig. 6¢).

A project manager can use FSS to dynamically select the amount of
resources available to users in (or not in) the critical path of a project.
Raising the upper bound of a fair share group consumption rate to a
large limit relative to other fair share groups and associating users in
the critical path with this large fair share group may give good response
to a set of users. Users in the small fair share group will have worse
response but may use the resources left over when the demand de-
creases from users in the large group. This allows a project manager
to allocate resources to critical activities without requiring a dedicated
system.

A final example of FSS use is to divide the system resources evenly
among the interactive users on the system, that is, to divide a system
with n interactive users into n fair share groups, each provided with
1/n of the system resources. This has the advantage of insulating users
from each other, while ensuring that each user has an equal share of
the system resources.

V. INTERFACE

The user interface to FSS requires a small set of commands for
administration and fair share group access. This section provides some

FAIR SHARE SCHEDULER 1851

examples of their use and assumes knowledge of basic UNIX system
concepts.

5.1 Establishing fair share groups

The system resource division in Fig. 3 may be established through
the following sequence of commands:

fsadm-a -s 50 -1 1G1
fsadm -a -s 25 -i 2 G2
fsadm-a -s 25 -i 3 G3

These commands inform FSS of three fair share groups, 61, 62, and
63, which are allocated 50, 25, and 25 shares, respectively, of the
available system resources and are identified to FSS by the integers
1, 2, and 3. (The number of shares associated with a fair share group
determines its allocation of resources. In this example, there is a total
of one hundred shares of system resources. Thus, one share is equiv-
alent to 1 percent of the total system resources.)

Dynamic share modification may be done through the same com-
mand. The command sequence

fsadm -m -s 25 G1
fsadm -m -s 50 G2

reverses the resource allocation rates between fair share groups 61
and G2, described previously.

5.2 Associating users with fair share groups

The fair share group administrator may provide user access to a fair
share group by explicitly associating a user with a fair share group.
Figure 3 shows two users (U1, U2) associated with fair share group 1.
The command

fsgadm ~-a -gG1 U1

allows the user with the login name U1 to access the fair share group
named G 1. If no other fair share groups are associated with this user,
the fair share group G1 will be the only one accessible to this user.
Generally, one fair share group is used as a system default for those
users not associated with any fair share group.

5.3 User access to fair share groups

The association between a fair share group and a user process is
normally established when the user logs in. Each new process created
by a user inherits the same fair share group association as its parent
process. This association may be dynamically changed to an alternate
fair share group by

chfsg-gG1U1

1852 TECHNICAL JOURNAL, OCTOBER 1984

which associates the UNIX system processes owned by the user with
the login name U1 to the fair share group named G1.

VI. DESIGN

FSS was designed to minimize the number of changes and amount
of overhead in the process scheduler, while preserving the basic struc-
ture of the UNIX operating system. The resulting FSS implementation
incurs less than one-percent operating system overhead and requires
no change in any user-level programs. The following section describes
an overview of the operation of FSS and is not intended as a complete
proof of the algorithm,

6.1 Standard process scheduler

The process scheduler for the standard UNIX operating system
distributes resources by using a prioritized round-robin queueing
scheme (see Fig. 7). The priority is actually a number that is associated
with each process. A logical queue exists for each priority value. When
the process scheduler selects another process to run, it simply chooses
the first runnable process on the highest-priority queue. The CPU is
allocated in a round-robin fashion until a higher-priority event occurs,

DISK INPUT/QUTPUT

TERMINAL INPUT/QUTPUT
KERNEL—

USER PROCESS
ENTRY CENTRAL EXIT

UNIT
USER PROCESS + 1

USER PROCESS + 2
USER—

USER PROCESS +n

Fig. 7—Standard queueing model.

FAIR SHARE SCHEDULER 1853

causing another process to become active; the process is done with the
CPU; or a time limit expires. If the process still requires more service
after relinquishing the CPU, the process is reinserted into a lower-
priority queue. The priority structure is divided into two types: kernel
and user.

Kernel priority is used when a process is executing within the
operating system for a user process (for example, when a process
requests a block from disk). Kernel priorities are the highest and are
used for reserved operating system functions. Priorities at this level
are roughly layered with respect to the response one would expect for
a particular event. Disk events have high priority and terminal events
have low. This structure is established to optimize throughput of
critical resources.

A process generally has a user priority when it is contending for the
use of the CPU. User priorities are lower than any of the kernel levels
and are calculated at least every second for each process. The user-
level process priority is considered to be high when it contains a low
numerical value and may be represented by the following ratio:

recent CPU usage
real time)

UNIX system priority =

A process generally enters the system at the highest user priority
because it has no recent CPU activity. The user priority drops as the
process uses the CPU and rises when the process is kept from using
the CPU.

6.2 Fair share scheduler

FSS maintains fair share group resource consumption rates by
expanding the definition of user priority to include resource usage by
a fair share group.-Resource usage is a function of the entities provided
to a process by the operating system, such as use of the CPU and
access to disks. The expanded definition logically separates processes
into another set of user priority queues, while maintaining the same
kernel-level priorities (see Fig. 8). That is, the user priority queues are
divided into a set of user priority queue structures, one set for each
fair share group. The fair share group that is farthest from achieving
its resource consumption rate will have its set of queues on top of the
user queues, the set for the next farthest fair share group follows, and
so on. Fair share group sets are reordered every second along with
processes within each set. The FSS user-level process priority function
is then expanded to

recent fair share group
resource usage

FSS priority = UNIX system priority + -
real time

1854 TECHNICAL JOURNAL, OCTOBER 1984

DISK INPUT/QUTPUT

TERMINAL INPUT/OUTPUT

KERNEL—
L]

USER PROCESS + G

Gy ENTRY CENTRAL EXIT
UNIT

USER PROCESS + Gy + 1

— [[[

USER PROCESS + Gy +n

— [[[

USER— *

USER PROCESS + G,

——

USER PROCESS + G, + 1

— [[[

USER PROCESS + G, +n

— [[[}—

Fig. 8—FSS queueing model.

The fair share group resource usage is calculated by taking the
exponentially weighted sum of the system resources recently used by
all the processes within the fair share group. This sum is normalized
to the allocated resource consumption rate associated with the fair
share group and compared to a similar measure for all the other fair
share groups. This additional priority function ratio has the same
characteristics as the UNIX system priority. The priority will drop as
the fair share group uses more resources than are allocated to it and
rise when it is kept from using system resources. Thus, the new priority
function distributes system resources according to the resource con-
sumption rate associated with each fair share group, while maintaining
the same scheduling philosophy as the standard UNIX operating
system within each fair share group.

FAIR SHARE SCHEDULER 1855

100

—— — — ALLOCATION (75% INTERACTIVE, 256% ADMINISTRATIVE)
INTERACTIVE USAGE
—— -— ADMINISTRATIVE USAGE

PERCENT OF SYSTEM RESOURCES

8 AM. 5 P.M.
TIME OF DAY

Fig. 9—Actual fair share group usage.

VILI. LIMITATIONS

The queue model of the UNIX operating system suggests that
precedence is given to the optimization of critical resources at the
kernel level. This implies that it is not always possible to guarantee
an exact resource consumption rate to a fair share group over a given
period of time. However, the average resource consumption rate should
approach the allocated fair share group resource consumption rate,
providing that there is a sufficient demand. Figure 9 shows the actual
usage of two fair share groups on a typical UNIX system. One fair
share group is used for interactive users and is allocated 75 percent of
the system resources, while the other is used for administrative tasks
and is allocated the remaining system resources. The usage of each
fair share group, in general, fluctuates around its corresponding allo-
cated rate. Also notice that the peaks of the administrative fair share
group, above its allocation, correspond to the valleys below the allo-
cation of the fair share group for interactive users.

VIII. SUMMARY

FSS was designed to extend the process scheduling criteria in the
UNIX operating system for the purpose of giving a prespecified rate

1856 TECHNICAL JOURNAL, OCTOBER 1984

of service at a fixed cost to a related set of users in a computation
center environment. The resulting implementation gives the UNIX
system an additional control mechanism that is beneficial to many
different applications. This control allows the division of system
resources into parts and the constriction of user access to each part.
The user interface requires a small set of commands for administration
and user access. The implementation incurs a small amount of oper-
ating system overhead and relies on the existing process priority
structure within the UNIX operating system.

IX. ACKNOWLEDGMENTS

I would like to thank Roger Polsley for the insight that he gave me
through our discussions. Much of the FSS design and implementation
is based on his pioneering efforts.

REFERENCES

1. D. M. Ritchie and K. Thompson, “UNIX Time-Sharing System: The UNIX Time-
Sharing System,” B.S.T.J, 57, No. 6 (July-August 1978), pp. 1905-29.

2. K. Thompson, “UNIX Time-Sharing System: UNIX Implementation,” B.S.T.J, 57,
No. 6 (July-August 1978), 1931-46.

3. S. R. Bourne, “UNIX Time-Sharing System: The UNIX Shell,” B.S.T.J, 57, No. 6
(July-August 1978), pp. 1971-90.

AUTHOR

Gary J. Henry, B.S. (Computer Science), 1977, University of Wisconsin,
Madison, WI; Raytheon, Portsmouth, RI, 1978-1979; M.S. (Information En-
gineering), 1982, University of Illinois, Chicago, IL; AT&T Bell Laboratories,
1979—. From 1978 to 1979, Mr. Henry introduced the UNIX operating system
to Raytheon as a programmers workbench for several ongoing projects. Since
December of 1979, Mr. Henry has been providing technical UNIX system
support for the Computing Technology department at AT&T Bell Laborato-
ries at Naperville, Illinois, and is responsible for support development, con-
sulting, problem solving, coordination of UNIX system release conversions,
and configuration planning. His project involvement has included the Fair
Share Scheduler, AT&T-Philips Joint Venture consultation and installation
of UNIX system software for the first European AT&T 3B20S, UNIX system
conversion coordinator for releases 4.0 and 5.0 for the Naperville computation
center systems, UNIX system internals instructor, UNIX system 5.0 perform-
ance improvements, and shared memory implementation project member. Mr.
Henry is currently responsible for global UNIX system support functions for
all of the AT&T Bell Laboratories computation centers. Member, USENIX
Association and/usr/group.

FAIR SHARE SCHEDULER 1857

