
Setting Up UNIX

R. C. Haight

T. J. Kowalski

M. J. Petrella

L. A. Wehr

1. INTRODUCTION

1.1 Prerequisites

Before attempting to generate a UNIX† system, you should understand that a considerable knowledge of the

related documentation is required and assumed. In particular, you should be very familiar with the

following documents:

• The UNIX Time-Sharing System

• UNIX User’s Manual

• C Reference Manual

• Administrative Advice for UNIX

A complete set of pertinent documentation is contained in Documents for UNIX . Throughout this

document, each reference of the form name(N), where N is a Arabic number, refers to entry name in

Section N of the UNIX User’s Manual .

You must have a basic understanding of the operation of the hardware. This includes the console panel, the

tape drives, and the disk drives, all of which are assumed to have standard UNIX addresses and interrupt

vectors. It is also assumed that the hardware works and has been completely installed. All appropriate

DEC diagnostics and the Equipment Test Package should have been run to test the configuration, and you

must have a detailed description of the hardware, including device addresses, interrupt vectors, and bus

levels. This information is necessary to generate the UNIX system.

See Attachment 1 for a list of supported CPUs and devices.

1.2 Procedure

UNIX is distributed on a single, multi-file magnetic tape, recorded in 9-track format at 800 bpi. Distribution

tapes will be marked either ‘‘PDP-11’’ or ‘‘VAX’’; be sure you have the correct tape for your machine.

The initial load program will copy a file system from tape (VAX: TE16; PDP-11: either a TU10 or a TU16) to

disk (VAX: RP06; PDP-11: either an RP03, an RK05, an RL01, or an RP06). In this document, we consider

RP04 and RP05 drives to be equivalent to RP06 drives; any differences will be noted explicitly. Once the

root file system has been successfully loaded to disk, UNIX may be booted and the available utility

programs may then be used to complete the installation.

The remaining files on the tape contain source text and supplemental commands. These files contain

essential information to generate a new system that will match your particular hardware and software

environment.

In order for any of the update procedures to work correctly, you must be running UNIX/TS or PWB/UNIX

Edition 2.0. Older versions of UNIX cannot be correctly updated with a UNIX system. The cpio(1)

program will not replace any file if its replacement has a modification time that is less than (i.e., earlier

than) the modification time of the original file. This can be due to local modifications. Furthermore,

certain administrative files (e.g., /etc/passwd , /usr/lib/crontab) are sent with a modification time of January

1, 1970 to ensure that they do not replace their counterparts during updates. Any file not copied will cause

† UNIX is a Trademark of Bell Laboratories.

2 Setting Up UNIX

cpio(1) to print a message to that effect. These messages should always be investigated to ensure that any

files not copied were of that type. However, note that, depending on respective modification times, a

locally-modified file may get updated, thus destroying the local modifications.

There are several difficulties that can arise when installing a UNIX system. One of the most common

problems is running out of disk space when performing an update. Should this occur, the original contents

of the file system should be restored from a backup copy and the contents of the update tape should be read

into a spare file system using the cpio(1) program. Unwanted material can then be removed and the

original file system can be updated from this new file system using the −p option of cpio(1). Modification

times of files should also be preserved using the −m option of cpio(1).

This document is not strictly linear. Read it thoroughly, from start to finish, and then read it again. Also,

remove the write-protect ring, if present, from the distribution tape to guard against accidental erasure.

2. LOAD PROCEDURES

2.1 Distribution Tape Format

The eight files are: a loader, a physical copy of the root file system, the cpio(1) program, a cpio(1)

structured copy of the root file system, and three files (cpio) that make up /usr. Root refers to the directory

‘‘/’’, which is the root of all the directory trees. The format of this tape is as follows:

record 0: Tape boot loader−512-bytes;

record 1: Tape boot loader−512-bytes;

remainder of file 1: Initial load program−several 512-byte records;

end-of-file

file 2: root file system (physical)−several 5,120-byte records (blocking factor 10);

end-of-file

file 3: cpio program (latest version)−several 512-byte records;

end-of-file

file 4: root file system (structured in cpio format)−several 5,120-byte records (to be

used only for updating an earlier UNIX);

end-of-file

file 5: /usr file system except src and man (cpio).

end-of-file

file 6: /usr/src part 1.

end-of-file

file 7: /usr/src part 2.

end-of-file

file 8: /usr/man.

end-of-file

The root (/) file system contains the following directories:

bck: Directory used to mount a backup file system for file restoring.

bin: Public commands; most of what is described in Section 1 of the UNIX User’s

Manual .

dev: Special files, all the devices on the system.

etc: Administrative programs and tables.

lib: Public libraries, parts of the assembler, C compiler.

mnt: Directory used to mount a file system.

lost+found: Directory used by fsck(1M) for disconnected files.

stand: Stand-alone programs.

Setting Up UNIX 3

tmp: Directory used for temporary files; should be cleaned at reboot.

usr: Directory used to mount the /usr file system; user directories often kept here also.

2.2 Initial Load of root

Mount the distribution tape on drive 0 and position it at the load point.

2.2.1 PDP-11

Bootstrap the tape by reading either record 0 or record 1 into memory starting at address 0 and start

execution at address 0. This may be accomplished by using a standard DEC ROM bootstrap loader, a

special ROM, or some manual procedure; see romboot(8), tapeboot(8), and 70boot(8).

2.2.2 VAX

See ‘‘Installation Boot Procedures’’ under vaxops(8). This UNIX User’s Manual entry describes initial tape

booting, and modification of the console floppy disk to simplify UNIX administration.

2.3 Common to PDP-11 and VAX

The tape boot loader will then type ‘‘UNIX tape boot loader’’ on the console terminal and read in and

execute the initial load program. The program will then type detailed instructions about the operation of

the program on the console terminal. First, it will ask what type of CPU you have. Second, the program

will ask what type of disk drive you have and which drive you plan to use for the copy. The disk controller

used must be at the standard DEC address indicated by the program. However, other disk controllers on

your system may be at non-standard addresses. You must mount a formatted, ECC flag-free pack on the

drive you have indicated. If necessary, use the appropriate DEC diagnostic program to format the pack.

Note that the pack will be written on. Third, the program will ask what type of tape drive you have and

which drive contains the tape. Normally, this will be drive 0, but the program will work with other drives.

Note that the tape is currently positioned correctly after the end-of-file between the initial load program and

the root file system. When everything is ready, the program will copy the file system from the tape to disk

and give instructions for booting UNIX. After the copy is complete and you have booted the basic version

of UNIX, check (using fsck(1M)) the root file system and browse through it.

2.3.1 PDP-11/70 Only

The file /stand/mmtest is a stand-alone memory mapping diagnostic program for the PDP-11/70. It should

be booted and run (20 minutes) if you are not absolutely sure that DEC FCO (field change order)

M8140-R002 has been applied to your PDP-11/70 CPU.

2.4 Update of root

It is very important that the system be running in single-user mode during the update phase. To update an

already existing root file system, files three and four will be used. It is necessary to first make a copy of

your root file system using volcopy(1M) and then update this copy. The copy should be made on a separate

disk pack using the same section number as your root file system (always section 0). Also, after the update

is completed, check if any of your local administrative files in the directory /etc need modification. Most of

these are mentioned in Section 4 below.

Mount the tape on drive 0 and position it at the load point. We assume that disk drive 1 is available for

making the copy, and that the root file system is on /dev/rp0. This shell procedure will be different for

RK05 and RL01 disk drives. The following procedure will first make a copy of the root file system, and

then update this copy. Note that /dev/mt4 refers to tape drive 0 but has the side effect of spacing forward to

the next end-of-file (no rewind option). The B option of cpio specifies that input is in 5,120-byte records:

4 Setting Up UNIX

volcopy root /dev/rrp0 pkname1 /dev/rrp10 pkname2

mount /dev/rp10 /bck

The 2 echoes will move the tape to file 3

echo </dev/mt4

echo </dev/mt4

cp /dev/mt4 /bck/bin/cpio

chmod 755 /bck/bin/cpio

chown bin /bck/bin/cpio

cd /bck

/bck/bin/cpio −idmB </dev/rmt0

cd /

umount /dev/rp10

Pkname1 and pkname2 are the volume names of the source and destination disk packs, respectively. If the

new copy is satisfactory, shut down and halt the system, change disk packs, and reboot the system using the

new root.

2.5 Files 5, 6, 7, and 8 (/usr) Format

File 5 contains the /usr file system in cpio(1) format (5,120-byte records). The /usr file system contains

commands and files that must be available (mounted) when the system is in multi-user mode. The tape

contains the following directories:

adm: Miscellaneous administrative command and data files, including the connect-time

accounting file wtmp and the process accounting file pacct.

bin: Public commands; an overflow for /bin.

dict: Dictionaries for word processing programs.

games: Various demonstration and instructional programs.

include: Public C language #include files.

lib: Archive libraries, including the text processing macros; also contains data files for

various programs, such as spell(1) and cron(1M).

mail: Mail directory.

man: Source for the UNIX User’s Manual; see man(1).

lost+found: Directory used by fsck(1M) for disconnected files.

news: Place for all the various system news.

pub: Handy public information, e.g., table of ASCII characters.

spool: Spool directory for daemons.

src: Source for commands, libraries, the system, etc.

tmp: Directory for temporary files; should be cleaned at reboot.

A table of contents of this tape may be obtained by using the cpio(1) options −itB. Also, after installation,

files and directories deemed useless by the local administrator may be easily removed. Alternately, only

parts of the tape may be extracted using the pattern matching capabilities of cpio(1).

2.6 Initial Load of /usr

Mount a file system (device) as /usr. The ultimate size and location of this file system on a device is an

administrative decision; initially, the following procedure will suffice:

Setting Up UNIX 5

The 4 echoes will move the tape to file 5

(mt4 is the no-rewind device)

echo </dev/mt4

echo </dev/mt4

echo </dev/mt4

echo </dev/mt4

cd /

mkfs /dev/rrp1 35000 7 418

The magic numbers "7 418" above refer to free-list ordering:

(rotational angle of 7 and 418 blocks/cylinder for RP04/5/6/s)

If you have RL01 drives, use mkfs /dev/rrl1 10240 13 20

If you have RK05 drives, use mkfs /dev/rrk1 4872 3 24

labelit /dev/rrp1 usr pkname

mount /dev/rp1 /usr

cd /usr

cpio −idmB </dev/rmt4 # file 5: /usr except /src and /man

cd /usr/src

cpio −idmB </dev/rmt4 # file 6: 1st part of /usr/src

cpio −idmB </dev/rmt4 # file 7: last of /usr/src

cd /usr/man

cpio −idmB </dev/rmt0 # file 8: /usr/man

If you have RL01 or RK05 drives, you will have to use separate

packs for files 5-8.

Pkname is the volume name of the pack (e.g., ‘‘p0001’’).

Because /usr must be mounted when the system is in multi-user mode, the file /etc/rc must be changed to

include the command lines to mount and unmount the file systems in single-user and multi-user mode.

These lines must be inserted at the appropriate places in /etc/rc, as indicated by comments in the prototype

file. Next the file /etc/checklist should be changed to include /dev/rrp1, /dev/rrl1, or /dev/rrk1; see also

fsck(1M), labelit(1M), mkfs(1M), mount(1M), and checklist(5).

2.7 Update of /usr

It is advisable that the system be running in single-user mode during the update phase. It is also wise to

first make a copy of your /usr file system for backup purposes. Next, mount the distribution tape on drive 0

and position it at file 5. The /usr file system must also be mounted. The following procedure will perform

the update:

cd /usr

cpio −idmB </dev/rmt4

cpio −idmB </dev/rmt4

cpio −idmB </dev/rmt4

cpio −idmB </dev/rmt0

3. CONFIGURATION PLANNING

3.1 UNIX Configuration

The basic UNIX operating system supplied supports only the console, a disk controller (disk drive 0), and a

tape controller (tape drive 0). The actual configuration of your system must be described by you. All of the

UNIX operating system source code and object libraries are in /usr/src/uts. All of the configuration

information is kept in the directory /usr/src/uts/∗ /cf . There are only two files that must be changed to

reflect your system configuration, low .s and conf .c; the program config(1M) should be used to make these

changes.

Config requires a system description file and produces the two needed files. The first part of the system

6 Setting Up UNIX

description file lists all of the hardware devices on your system. Next, various system information is listed.

A brief explanation of this information follows; for more details of syntax and structure, see config(1M)

and the associated master(5); TABLE I lists the values and sizes of the various parameters for the different

CPUs.

TABLE I. UNIX Configuration Parameters

PDP-11/34, /23 PDP-11/45, /70 VAX-11/780

Value Size Value Size Value Size
Item

nswap 1000 − 3000 − 9000 −

buffers 15-20 26† 25-60 26† 50-120‡ 560

sabufs 4-6 538 10-15 538 − −

inodes 30-50 74 100-250 74 100-250 76

files 30-50 8 100-250 8 100-250 12

mounts 3-5 8 8-16 8 8-16 16

coremap 50-100 4 50-100 4 − −

swapmap 50-100 4 50-100 4 50-100 4

calls 15-30 6 30-60 6 30-60 12

procs 30-50 30 50-200 30 50-200 52

texts 10-15 12 25-50 12 25-50 16

clists 10-20 28 100-300 28 100-300 32

maxup 15 − 15 − 25 −

† Plus 512 bytes outside system space.

‡ 127 buffers is the system maximum.

• root−Specifies the device where the root file system is to be found. The device must be a block

device with read/write capability because this device will be mounted read/write as ‘‘/’’. Thus, a tape

can not be mounted as the root, but can be mounted as some read-only file system. Normally, root is

disk drive 0, section 0.

• pipe−Specifies where pipes are to be allocated (must be a file system−the root file system is normally

used).

• dump−Specifies the device to be used to dump memory after a system crash. Currently only the

TU10 and TU16/TE16 tape drives are supported for this purpose.

• swap−Specifies the device and blocks that will be used for swapping. Swplo is the first block

number used and nswap indicates how many blocks, starting at swplo, to use. Care must be taken

that the swap area specified does not overlap any file system. For example, if section 0 is 8,000

blocks long, the root file system could occupy the first 6,000 blocks and swap the remaining 2,000

by specifying:

root rp06 0

swap rp06 0 6000 2000

The VAX release is set up for a root of 7,000 blocks and a swap of 9,000 blocks.

• buffers−Specifies how many system buffers to allocate. Real time response improves as more buffers

are allocated. UNIX buffers form a ‘‘data cache’’. Improvement in the hit rate of this cache tends to

fall as the number of buffers is increased.

• sabufs−PDP-11 only: specifies how many system addressable buffers to allocate. One buffer is

needed for every mounted file system. Certain I/O drivers need such buffers.

• inodes−Specifies how many inode table entries to allocate. Each entry represents a unique open

inode. When the table overflows, the warning message ‘‘Inode table overflow’’ will be printed on the

console. The table size should be increased if this happens regularly. The number of entries used

depends on the number of active processes, texts, and mounts.

• files−Specifies how many open-file table entries to allocate. Each entry represents an open file.

When the table overflows, the warning message ‘‘no file’’ will be printed on the console. The table

Setting Up UNIX 7

size should be increased if this happens regularly.

• mounts−Specifies how many mount table entries to allocate. Each entry represents a mounted file

system. The root (/) will always be the first entry. When full, the mount(2) system call will return

the error EBUSY.

• coremap−PDP-11 only: specifies how many entries to allocate to the list of free memory. Each entry

represents a contiguous group of 64-byte blocks of free memory. When the list overflows, due to

excessive fragmentation, the system will undoubtedly crash in an unpredictable manner. The number

of entries used depends on the number of processes active, their sizes, and the amount of memory

available.

• swapmap−Specifies how many entries to allocate to the list of free swap blocks. Exactly like the

coremap, except it represents free blocks in the swap area, in 512-byte units.

• calls−Specifies how many call-out table entries to allocate. Each entry represents a function to be

invoked at a later time by the clock handler. The time unit is 1/60 of a second. The call-out table is

used by the terminal handlers to provide terminal delays and by various other I/O handlers. When the

table overflows, the system will crash and print the panic message ‘‘Timeout table overflow’’ on the

console.

• procs−Specifies how many process table entries to allocate. Each entry represents an active process.

The scheduler is always the first entry and init(8) is always the second entry. The number of entries

depends on the number of terminal lines available and the number of processes spawned by each

user. The average number of processes per user is in the range of 2-5. When full, the fork(2) system

call will return the error EAGAIN.

• texts−Specifies how many text table entries to allocate. Each entry represents an active read-only text

segment. Such programs are created by using the −i or −n option of the loader ld(1). When the

table overflows, the warning message ‘‘out of text’’ is printed on the console.

• clists−Specifies how many character list buffers to allocate. Each buffer contains up to 24 bytes.

The buffers are dynamically linked together to form input and output queues for the terminal lines

and various other slow-speed devices. The av erage number of buffers needed per terminal line is in

the range of 5-10. When full, input characters from terminals will be lost and not echoed.

• maxup−Specifies how many concurrent processes a user is allowed to run.

• power−Specifies whether to attempt restart after a power failure. A value 0 (default) indicates no

restart, a value of 1 attempts power-fail restart. On restart, device drivers are called and process 1

(i.e., init) is sent a hangup signal; see init(8). VAX power-fail is provided for experimental use only

in UNIX 3.0.

3.2 UNIX Generation

To generate a new UNIX operating system, make sure that the directories under /usr/src/uts are up-to-date.

Follow the procedure below:

cd /usr/src/uts

ed dfile

a

[information as described above]

.

w

q

make −f uts.mk VER=ver SYS=sys CONFIG=dfile TYPE=type NODE=uucpname

Dfile is the complete path name or the path name relative to /usr/src/uts/∗ /cf of the file containing the

configuration information, sys is a system name, ver is normally mmdd (month and day). The resulting

operating system executable file name is the result of concatenating sys and ver (i.e., ‘‘utsa0513’’). The

uucpname is for network identification. Type is the CPU type: i is used for PDP-11/23 and /34, vax is used

for VAX, and id is used for other CPUs. The procedure will compile low .s (univec .c on the VAX) and

conf .c , and load them together with the object libraries into a file called name.

The PDP-11 system has a relatively small address space, so that if table sizes or the number of device types

are too large, various error messages will result and the above procedure will only create an a .out file. In

8 Setting Up UNIX

particular, the maximum available data space is 49,152 bytes (57,344 bytes on the PDP-11/23 and the /34).

The actual data space requested can be found by using size(1) on a .out and adding the data , bss , and, for

PDP-11/23 and /34, text segment sizes. One then reduces the specified values for the various system entries

until it all fits. The amount of space in the bss segment used for each entry is indicated in Section 3.1

above.

When you are satisfied with the new system, you can test it by the following procedure:

cd /usr/src/uts

cp sysver / # sysver as above

cd /

rm /unix

ln /sysver /unix

sync

Then halt the processor and reboot the system. Note that this procedure results in two names for the

operating system object, the generic /unix, and the actual name, say /utsa0501. An old system may be

booted by referring to the actual name, but remember that many programs use the generic name /unix to

obtain the name-list of the system.

If the new system does not work, verify that the correct device addresses and interrupt vectors have been

specified. If the wrong interrupt vector and the correct device address have been specified for a device, the

operating system will print the error message ‘‘stray interrupt at XXX’’ when the device is accessed, where

XXX is the correct interrupt vector. If the wrong device address is specified, the system will crash with a

panic trap of type 0 (indicating a timeout) when the device is accessed.

3.3 Special Files

A special file must be made for every device on your system. Normally, all special files are located in the

directory /dev. Initially, this directory will contain:

console console terminal

error see err(4)

mem, kmem, null see mem(4)

tty see tty(4)

rp[0-7], rrp[0-7] disk drive 0, sections 0-7

rl[0-1], rrl[0-1] disk drives 0 and 1

rk[0-1], rrk[0-1] disk drives 0 and 1

mt0, rmt0 tape drive 0 (800 bpi)

mt4, rmt4 tape drive 0 (800 bpi, no rewind).

There are two types of special files, block and character. This is indicated by the character b or c in the

listing produced by ls(1) with the −l flag.

In addition, each special file has a major device number and a minor device number. The major device

number refers to the device type and is used as an index into either the bdevsw or cdevsw table in the

configuration file conf .c . The minor device number refers to a particular unit of the device type and is used

only by the driver for that type. The config program with the −t option will list major device numbers.

The program mknod(1M) creates special files. For example, the following would create part of the

initially-supplied /dev directory:

cd /dev

mknod console c 0 0

mknod error c 20 0

mknod mem c 2 0; mknod kmem c 2 1; mknod null c 2 2

mknod tty c 13 0

mknod rp0 b 0 0; mknod rrp0 c 7 0

mknod mt0 b 1 0; mknod rmt0 c 6 0

mknod mt4 b 1 4; mknod rmt4 c 6 4

Setting Up UNIX 9

After the special files have been made, their access modes should be changed to appropriate values by

chmod(1). For example:

cd /dev

chmod 622 console

chmod 444 error

chmod 644 mem kmem

chmod 666 null

chmod 666 tty

chmod 400 rp0 rrp0

chmod 666 mt0 rmt0

chmod 666 mt4 rmt4

Note that file names have no meaning to the operating system itself; only the major and minor device

numbers are important. However, many programs expect that a particular file is a certain device. Thus, by

convention, special files are named as follows:

block device conf .c /dev

RP03 disk rp rp∗
RP04/5/6 disk hp rp∗
RS03/4 fixed head disk hs rs∗
RK05 disk rk rk∗
RL01 disk rl rl∗
TU10 tape tm mt∗
TE/TU16 tape ht mt∗

character device conf .c /dev

DL11 asynch. line kl tty∗ , console

DH11 asynch. line mux dh tty∗
DMC11 sync. unit dmc dmc∗
DZ11 asynch. line mux dz tty∗
DN11 auto call unit dn dn∗
DU11 synch. line du du∗
KMC11 micro kmc kmc∗
DZ11/KMC11 assist dza,dzb tty∗
LP11 line printer lp lp∗
RP03 disk rp rrp∗
RP04/5/6 disk hp rrp∗
RS03/4 fixed head disk hs rrs∗
TU10 tape tm rmt∗
TE/TU16 tape ht rmt∗
error err error

memory mm mem, kmem, null

terminal sy tty

For those devices with a /dev name ending in ∗ , this character is replaced by a string of digits representing

the minor device number. For example:

mknod /dev/mt1 b 1 1

mknod /dev/rp24 b 0 024

Note that for disks, an octal number scheme is maintained because each drive is split eight ways. Thus,

/dev/rp24 refers to section 4 of physical drive 2. There is also a special file, /dev/swap, that is used by the

program ps(1). This file must reflect what device is used for swapping and must be readable. For example:

rm /dev/swap

mknod /dev/swap b 0 0

chmod 440 /dev/swap

10 Setting Up UNIX

3.4 File Systems

Each physical pack is split into eight logical sections. This split is defined in the operating system by a

table with eight entries. Each table entry is two words long. The first specifies how many blocks are in the

section, the second specifies the starting cylinder; see hp(4) (RP04/5/6) and rp(4) (RP03) for default

cylinder and block assignments.

These values are described to the system in the header file /usr/include/sys/io .h which may be changed by

using the editor ed(1). After such a change, the system must be made again (see Section 3.2 above).

A file system starts at block 0 of a section of the disk and may be as large as the size of that section; if it is

smaller than the size of a section, the remainder of that section is unused. Note that the sections themselves

may overlap physical areas of the pack, but the file systems must never overlap.

The program mkfs(1M) is used to initialize a section of the disk to be a file system. Next, the program

labelit(1M) is used to label the file system with its name and the name of the pack. Finally, the file system

may be checked for consistency by using fsck(1M). The file system may then be mounted using

mount(1M).

3.5 DZ11 software with KMC11 assist

KMC microprocessors may be used to control DZ11 asynchronous multiplexers, thus off-loading terminal-

oriented functions from the main CPU. The software is distributed in two forms. The KMC11-A version

does DMA output of data, character translations, tab expansions, etc. The KMC11-B version does these

output functions in addition to doing DMA input of data. Each KMC11 can control up to four DZ11

multiplexers for a total of thirty-two asynchronous lines. Each system can support up to four KMC11

microprocessors. Up to sixty-four DZ11 lines can be controlled by KMC11 microprocessors.

3.5.1 Installation

1. Generate a system (see Section 3.2 above) by including each DZ11 to be controlled by a KMC11 in

the configuration file. For example:

For the KMC11-A

dza X Y Z

For the KMC11-B

dzb X Y Z

where X is the vector address, Y is the UNIBUS address, and Z is the bus request priority. Also

include the KMC11 microprocessors in the configuration file:

kmc X Y Z

2. Install the KMC11 microcode in /lib:

For the KMC11-A

cd /usr/src/uts/*/up/dza/dzkload

/lib/cpp dza.s  kas −o /lib/dzkmc.o

For the KMC11-B

cd /usr/src/uts/*/up/dzb/dzkload

/lib/cpp main.s  kasb −o /lib/dzkmc.o

3. Copy dzkload into /etc:

For the KMC11-A

cp /usr/src/uts/*/up/dza/dzkload /etc

For the KMC11-B

cp /usr/src/uts/*/up/dzb/dzkload /etc

Setting Up UNIX 11

4. Update /etc/rc to execute dzkload for multi-user and power-fail init states. Each KMC11 used to

control a DZ11 must be loaded with microcode. For each KMC11 used to control a DZ11 include:

/etc/dzkload /dev/kmc?

where ? is the minor device number of that KMC11.

5. Special files (see Section 3.3 above) must be created for each KMC11 and DZ11 line:

Example

/etc/mknod /dev/kmc? c X ?

/etc/mknod /dev/tty?? c Y Z

X is the major device number of the KMC11 and ? is the minor device number of the KMC11

controlling the DZ11 multiplexers, i.e., the KMC11 loaded with microcode in step 4. Y is the major

device number of the dza/dzb device as is supplied by config(1M). Z is the minor device number

for a particular line on a DZ11. This number is composed of three fields. The low-order three bits

are the line number relative to a DZ11. The next three bits contain the minor device number of the

DZ11 controlling these lines. Note that this number is the absolute DZ11 number, not the number

relative to the KMC11. The high-order two bits are the minor device number of the KMC11

controlling this DZ11. For example:

mknod /dev/tty?? c Y 0241

specifies the second line (0 through 7) on the fifth DZ11 to be controlled by the KMC11 with minor

device number 2. The DZ11 number is specified by the order of appearance in the configuration file.

The first four DZ11 multiplexers must be associated with one KMC11 and the next four must be

associated with another KMC11. The order in which the KMC11 microprocessors are specified is

not significant.

4. ADMINISTRATIVE FILES

4.1 /etc/motd

This file contains the message-of-the-day. It is printed by /etc/profile after every successful login.

4.2 /etc/rc

On the transition between init states, /etc/init invokes /bin/sh to run /etc/rc (must have executable modes).

So that /etc/rc can properly handle the removal of temporary files and the mounting and unmounting of file

systems, it is invoked with three arguments: new state, number of times this state has been entered, previous

state. When the system is initially booted, /etc/rc is invoked with arguments ‘‘1 0 1’’; when state

two(multi-user) is subsequently entered, the arguments are ‘‘2 0 1’’.

Daemons may be invoked either by /etc/rc or by including lines for them in /etc/inittab.

The /etc/rc file is also used to initialize KMC11 microprocessors (see /etc/dzkload and /etc/vpmload below).

This file must be edited to suit local conditions; see init(8).

4.3 /etc/inittab

This file indicates to /etc/init which processes to create in each init state. By convention, state 1 is single-

user and state 2 is multi-user. For example, the following line creates the single-user environment:

1:co:c:env HOME=/ PATH=/bin:/etc:/usr/bin /bin/sh </dev/console\

>/dev/console 2>/dev/console

1:xx:k:/etc/getty console ! 0

This indicates that for state 1 a process with the arbitrary unique identifier co should be created. The

program invoked for this process should be the shell and when it exits it should be reinvoked (c flag).

To attach a login process to the console in the multi-user state, add the line:

12 Setting Up UNIX

2:co:c:/etc/getty console 4

and for line /dev/tty00 for use by 300/150/110 baud terminals, add the following line:

2:00:c:/etc/getty tty00 0 60

The arguments to getty are the device, speed table, and number of seconds to allow before hanging up the

line.

Again, this file must be edited for local conditions; see getty(8), init(8), and inittab(5).

4.4 /etc/dzkload

This file is invoked as a command by /etc/rc. It contains instructions for initializing a KMC11

microprocessor which is to function as a controller for one or more DZ11 communications multiplexers (see

Section 3.5 above). This file must be edited to suit the configuration.

4.5 /etc/passwd

This file is used to describe each user to the system. You must add a new line for each new user. Each line

has seven fields separated by colons:

1. Login name: normally 1-6 characters, first character alphabetic, the remainder alphanumeric, no

upper-case characters.

2. Encrypted password: initially null, filled in by passwd(1). The encrypted password contains 13

bytes, while the actual password is limited to a maximum of 8 bytes. The encrypted password may

be followed by a comma and up to 4 more bytes of password ‘‘age’’ information.

3. User ID: a number between 0 and 65,535; 0 indicates the super-user. These other IDs are reserved:

bin::2: software administration;

sys::3: system operation;

adm::4: system administration;

uucp::5: UNIX-to-UNIX file copy;

rje::68: remote job entry administration;

games::196: miscellaneous; never a real user.

4. Group ID: the default is group 1 (one).

5. Accounting information: this field is used by various accounting programs. It usually contains the

user name, department number, and account number.

6. Login directory: full path-name (keep them reasonably short).

7. Program name: if null, /bin/sh is invoked after a successful login. If present, the named program is

invoked in place of /bin/sh.

For example:

ghh::38:1:6824-G.H.Hurtz(4357):/usr/ghh:

grk::44:1:6510-S.P.LeName(4466):/usr/grk:/bin/rsh

See also passwd(5), login(1), passwd(1).

4.6 /etc/group

This file is used to describe each group to the system. You must add a new line for each new group. Each

line has four fields separated by colons:

1. Group name: normally 1-6 characters, first character alphabetic, rest alphanumeric, no upper-case

characters.

2. Encrypted password: initially null, filled in by passwd(1). The encrypted password contains 13

bytes, while the actual password is limited to a maximum of 8 bytes.

3. Group ID: a number between 0 and 65,535.

4. Login names: list of all login names in the group, separated by commas.

We strongly discourage group passwords. See also group(5).

Setting Up UNIX 13

4.7 /etc/profile

When the shell is executed and is the leader of a process group, as is the case when it is invoked by login, it

will read and execute the commands in /etc/profile before executing commands in the user’s .profile file.

This allows the system administrator to set up a standard environment for all users (e.g., executing umask,

setting shell variables, etc.) and take care of other housekeeping details (such as news −n).

4.8 /etc/checklist

This file contains a list of default devices to be checked for consistency by the fsck(1M) program. The

devices normally correspond to those mounted when the system is in multi-user mode. For example, a

sample checklist would be:

/dev/rp0

/dev/rrp1

4.9 /etc/shutdown

This file contains procedures to gracefully shut down the system in preparation for file-save or scheduled

down-time.

4.10 /etc/filesave.?

This file contains the detailed procedures for the local file-save.

4.11 /usr/adm/pacct

This file contains the process accounting information; see acct(1M).

4.12 /usr/adm/wtmp

This file is the log of login processes.

5. REGENERATING SYSTEM SOFTWARE

System source is issued under the directory /usr/src. The sub-directories are named cmd (commands), lib

(libraries), uts (the operating system), head (header files), and util (utilities); see mk(8) for details on how

to remake system software.

A couple of anomalies: the accounting routine that deals with holidays and the prime/non-prime time split

must be recompiled at the end of each year (it is currently correct for BTL-Murray Hill in 1980). The file is

/usr/src/cmd/acct/lib/pnpsplit .c . A reminder is sent to /usr/adm/acct/nite/log, the standard place for such

messages, starting a week before year-end and continuing until pnpsplit .c is recompiled.

5.1 PDP-11 Command Regeneration

The distributed object code has been compiled for machines without separate ‘‘I/D’’ space and without

floating-point hardware. If your system has separate I/D space (i.e., is a PDP-11/70 or PDP-11/45), you

should mkcmd adb, awk, bs, cc, cpio, dc, du, dump, efl, f77, fgrep, find, fsck, lex, make, mkfs, nm, pcat,

restor, spell, spline, tbl, tplot, troff, units, unpack, uucp, volcopy, and yacc. If your configuration has an

FP11-[ABC] floating-point processor (or the compatible 11/23 chip), you should mkcmd acct, adb, awk, bs,

cc, pack, spline, tplot, typo, and units. If your configuration has both separate I/D space and floating point,

you should mkcmd acct, adb, awk, bs, cc, cpio, dc, du, dump, efl, f77, fgrep, find, fsck, lex, make, mkfs,

nm, pack, pcat, restor, spell, spline, tbl, tplot, troff, typo, units, unpack, uucp, volcopy, and yacc.

6. FILE SYSTEM CONVERSION TO UNIX (VAX)

Procedures have been developed for converting UNIX file systems from PDP-11/UNIX (including UNIX/TS,

PWB Edition 2.0, and Research Version 7) to VAX UNIX. Direct conversion from other systems (i.e.,

Version 6-based or UNIX/RT) is also possible, but the administrator should get help.

The following UNIX commands are referenced in this section: cpio(1), find(1), fsck(1M), fscv(1M),

mkdir(1), mkfs(1M), mount(1M), and umount(1M). The reader is assumed to be familiar with them.

Unless you have repealed Murphy’s Law, you should allow plenty of time for the conversion. As a lower

14 Setting Up UNIX

bound, it takes about two hours to convert each 65K of file system space.

6.1 Preliminaries

Obviously, the new system should be generated and decently tested before conversion is attempted. Source

for local commands and libraries should be moved to the VAX and compiled and tested. Your users may

also reasonably require time to develop conversion programs for data files that contain binary information.

6.1.1 The Old System

The file systems should be pruned of marginal files. The following shell sequence will get rid of all

executables:

For each user file system:

find /usr−fs−list −type f −print  xargs file  \

sed −n −e ′s/\([ˆ:]*\):.*executable/\1/p′ >/usr/tmp/exfiles

You may want to look this file over before the next step.

xargs rm −f</usr/tmp/exfiles

rm /usr/tmp/exfiles

6.1.2 Spare Packs

Do not convert without spare packs−that is courting disaster. It is best to keep the old packs for several

days, and to make backup tapes as well.

6.2 Converting the Hard Way

Using find and cpio takes much longer, but you will have optimized converted user file systems when you

are finished (compacted inodes and directories, file and free-list blocks arranged for fastest access).

6.2.1 Copying from the Old System

The following steps should be executed by the super-user on an idle, stand-alone (old) system:

For each user file system:

cd /file-system-name

find . −cpio /dev/rmt1

The −cpio option of find produces ten-block records on physical tape in cpio format. Unless there are a

great many linked files, a 1,600-bpi, 2,400-foot reel should hold about 65K file system blocks. If you have

larger file systems, the easiest (fastest, safest) thing to do is to use a raw disk pack in place of the tape (i.e.,

/dev/rrp?? in place of the /dev/rmt1 above). In our tests, multi-reel find/cpio tapes have worked. Find

can also be used to pick up parts of file systems that can be combined later as described below.

6.2.2 Under the New System

Re-create each file system as follows:

mkdir /file-system-name

mkfs /dev/rrp? blocks:inodes 7 418

The magic numbers "7 418" above refer to free-list ordering:

(rotational angle of 7 and 418 blocks/cylinder for RP04/5/6s)

labelit /dev/rrp? file-system-name pack-num

mount /dev/rp? /file-system-name

cd /file-system-name

Mount tape created during step 3

cpio −idmB </dev/rmt1

If you are combining the smaller file systems,

you may copy-in more than one tape per new file system

(but make sure that first-level directory names are unique)

After the tapes have been copied in, the new file systems should be unmounted and checked (using

fsck(1M)).

Setting Up UNIX 15

6.3 Converting the Easy Way

The fscv(1M) command has been provided for fast conversion between PDP-11 and VAX file systems.

Note that fscv will not convert ‘‘special files’’ (user file systems only). Fscv source will compile and run on

either system. It was designed primarily for use in computer labs where there are a mixture of PDP-11 and

VAX systems.

Example 1:

Converting PDP-11 to VAX:

Make sure that file system cylinder boundaries agree!

fscv −v /dev/rrp21 /dev/rrp31

Example 2:

Converting ‘‘in place’’ to the PDP-11:

Anyone who does this without making a copy first deserves

whatever bad (plenty) that can happen!

fscv −p /dev/rrp12 /dev/rrp12

See the fscv(1M) manual entry.

6.4 A Final Precaution

It is only sensible to do another complete file system backup under the new operating system (using another

set of tapes or packs).

16 Setting Up UNIX

ATTA CHMENT 1

Processors and Peripherals Supported by UNIX

The following table summarizes the hardware configurations supported by UNIX:

CPU with floating point PDP-11/23 PDP-11/34 PDP-11/45 PDP-11/70 VAX-11/780

Memory 256KB 256KB 256KB 0.5-1MB 1-4MB

ECC MOS ECC MOS ECC MOS ECC MOS ECC MOS

or core or core

Disk drives:

RL01 (2 required) F F S N −

RK05 (2 required) − O O − −

RP03 − − O − −

RP04 − O O O −

(UNIBUS) (UNIBUS) (MASSBUS)

RP06 − S F F F

(UNIBUS) (UNIBUS) (MASSBUS) (MASSBUS)

Fixed-head disks:

RF11 − − O − −

RS03,4 − − N N −

(UNIBUS) (MASSBUS)

Tape drives:

TU10 − O O − −

TU16 − O O O −

TE16 − F F F F

TU45 − − − S S

Line printer:

LP11† − N N N N

Asynch. interfaces:

DLV11 S − − − −

DL11-E − S S S −

DZ11 − S S S S

KMC11B/DZ11‡ − F F F F

DH11 − O O O −

Synch. interfaces:

KMC11B/DMC line unit − S S S S

DMC11 − S S S S

DU11 − O O O −

DQS11B − − O O −

Auto-call unit:

DN11AA/DA − S S S S

Parallel interface:

DRV11 S − − − −

DR11C − S S S −

DR11B − S S S −

DA11B (use DMCs) − S S S −

Ke y: F → First choice.

S → Supported.

O → Driver provided, but device is obsolete.

N → Driver provided, but device is not recommended.

− → No support.

† Use a printer on an RS232 interface.

‡ 4 DZ11s (32 lines) per KMC.

Setting Up UNIX 17

June 1980

