UNIX PROGRAMMER'S MANUAL

Fourth Edition

K. Thompson
D. M. Ritchie

November, 1973

Copyright © 1972, 1973
Bell Telephone Laboratories, Inc.

No part of this document may be reproduced,
or distributed outside the Laboratories, without
the written permission of Bell Telephone Laboratories.

Copyright © 1972, 1973
Bell Telephone Laboratories, Incorporated

This manual was set by a Graphic Systems photo-
typesetter driven by theoff formatting program op-
erating under th&Nix system. The text of the man-
ual was prepared using tedtext editor.

PREFACE
to the Fourth Edition

In the months since the last appearance of this manual, many changes have occurred both in the system it-
self and in the way it is used. The most important changes result from a complete rewriteyaftrsys-

tem in the C language. There have also been substantial changes in much of the system software. It is
these changes, of course, which mandated the new edition of this manual.

The number ofJNiX installations is now above 20, and many more are expected. None of these has exactly
the same complement of hardware or software. Therefore, at any particular installation, it is quite possible
that this manual will give inappropriate information. In particuléue information in this manual applies

only to UNIX systems which operate under the C language versions of the syststallations which use

older versions ofiNix will find earlier editions of this manual more appropriate to their situation.

Even in installations which have the latest versions of the operating system, not all the software and other
facilities mentioned herein will be available. For example, the typesetter, voice response unit, and voice
synthesizer are hardly universally available devices; also, some oiikesoftware has not been released

for use outside the Bell System.

The authors are grateful to L. L. Cherry, M. E. Lesk, E. N. Pinson, and C. S. Roberts for their contributions
to the system software, and to L. E. McMahon for software and for his contributions to this manual. We
are particularly appreciative of the invaluable technical, editorial, and administrative efforts of J. F. Os-
sanna, M. D. Mcllroy, and R. Morris. They all contributed greatly to the stockvof software and to this
manual. Their inventiveness, thoughtful criticism, and ungrudging support increased immeasurably not
only whatever success tbh&ix system enjoys, but also our own enjoyment in its creation.

INTRODUCTION TO THIS MANUAL

This manual gives descriptions of the publicly available featuresnok. It provides neither a general
overview (see “TheuNix Time-sharing System” for that) nor details of the implementation of the system
(which remain to be disclosed).

Within the area it surveys, this manual attempts to be as complete and timely as possible. A conscious de-
cision was made to describe each program in exactly the state it was in at the time its manual section was
prepared. In particular, the desire to describe something as it should be, not as it is, was resisted. In-
evitably, this means that many sections will soon be out of date.

This manual is divided into eight sections:

l. Commands
Il. System calls
M. Subroutines
V. Special files

V. File formats

VL. User-maintained programs
VII. Miscellaneous

VIII. Maintenance

Commands are programs intended to be invoked directly by the user, in contradistinction to subroutines,
which are intended to be called by the user's programs. Commands generally reside in diteottior

binary programs). This directory is searched automatically by the command line interpreter. Some pro-
grams also reside ihusr/bin, to save space ifbin. Some programs classified as commands are located
elsewhere; this fact is indicated in the appropriate sections.

System calls are entries into theix supervisor. In assembly language, they are coded with the use of the
opcodesys a synonym for thérap instruction. In this edition, the C language interface routines to the sys-
tem calls have been incorporated in section Il.

A small assortment of subroutines is available; they are described in section Ill. The binary form of most
of them is kept in the system libradib/liba.a. The subroutines available from C and from Fortran are
also included; they reside iifib/ libc.a and/ lib/ libf.a respectively.

The special files section IV discusses the characteristics of each system “file” which actually refers to an
I/O device. The names in this section refer to the DEC device names for the hardware, instead of the names
of the special files themselves.

The file formats section V documents the structure of particular kinds of files; for example, the form of the
output of the loader and assembler is given. Excluded are files used by only one command, for example the
assembler’s intermediate files.

User-maintained programs (section VI) are not considered part afNbxesystem, and the principal reason
for listing them is to indicate their existence without necessarily giving a complete description. The author
should be consulted for information.

The miscellaneous section (VII) gathers odds and ends.

Section VIII discusses commands which are not intended for use by the ordinary user, in some cases be-
cause they disclose information in which he is presumably not interested, and in others because they per-
form privileged functions.

Each section consists of a number of independent entries of a page or so each. The name of the entry is in
the upper corners of its pages, its preparation date in the upper middle. Entries within each section are al-
phabetized. The page numbers of each entry start at 1. (The earlier hope for frequent, partial updates of the

manual is clearly in vain, but in any event it is not feasible to maintain consecutive page numbering in a
document like this.)

All entries are based on a common format, not all of whose subsections will always appear.
Thenamesection repeats the entry name and gives a very short description of its purpose.

The synopsissummarizes the use of the program being described. A few conventions are used,
particularly in the Commands section:

Boldfacewords are considered literals, and are typed just as they appear.

Square brackets ([]) around an argument indicate that the argument is optional. When
an argument is given as “name”, it always refers to a file name.

Ellipses *..."” are used to show that the previous argument-prototype may be repeated.

A final convention is used by the commands themselves. An argument beginning with a
minus sign “ ” is often taken to mean some sort of flag argument even if it appears in a
position where a file name could appear. Therefore, it is unwise to have files whose
names begin with .

Thedescriptionsection discusses in detail the subject at hand.
Thefiles section gives the names of files which are built into the program.
A see alsesection gives pointers to related information.

A diagnosticssection discusses the diagnostic indications which may be produced. Messages
which are intended to be self-explanatory are not listed.

The bugssection gives known bugs and sometimes deficiencies. Occasionally also the suggested
fix is described.

At the beginning of this document is a table of contents, organized by section and alphabetically within
each section. There is also a permuted index derived from the table of contents. Within each index entry,
the title of the writeup to which it refers is followed by the appropriate section number in parentheses. This
fact is important because there is considerable name duplication among the sections, arising principally
from commands which exist only to exercise a particular system call.

This manual was prepared using thex text editoredand the formatting progratroff.

HOW TO GET STARTED

This section provides the basic information you need to get startesiion how to log in and log out, how
to communicate through your terminal, and how to run a program.

Logging in. You must callunix from an appropriate terminalNix supportsascil terminals typified by

theTTy 37, the GE Terminet 300, the Memorex 1240, and various graphical terminals. You must also have

a valid user name, which may be obtained, together with the telephone number, from the system adminis-
trators. The same telephone number serves terminals operating at all the standard speeds. After a data con-
nection is established, the login procedure depends on what kind of terminal you are using.

TTY 37 terminal: uNix will type out “login: ”; you respond with your user name. From thgy
37 terminal, and any other which has the “new-line” function (combined carriage return and line-
feed), terminate each line you type with the “new-line” kegtthe “return” key).

300-baud terminals: Such terminals include the GE Terminet 300, most display terminals, Exe-
cuport, Tl, and certain Anderson-Jacobson terminals. These terminals generally have a speed
switch which should be set at “300” (or “30” for 30 characters per second) and a half/full duplex
switch which should be set at full-duplex. (Note that this switch will often have to be changed
since many other systems require half-duplex). When a connection is established, a few garbage
characters are typed (the login message at the wrong speed). Depress the “break’” key; this is a
speed-independent signaldeiix that a 300-baud terminal is in usenix will type “login: " at

the correct speed; you type your user name, followed by the “return” key. Henceforth, the “re-
turn”, “new line”, or “linefeed” keys will give exactly the same results.

For all these terminals, it is important that you type your name in lower case if possible; if you type upper
case lettersynix will assume that your terminal cannot generate lower-case letters and will translate all
subsequent upper-case letters to lower case.

The evidence that you have successfully logged in is that the Shell program will type a “%” to you. (The
Shell is described below under “How to run a program.”)

For more information, consugietty (VII), which discusses the login sequence in more detail, dn@dV),
which discusses typewriter 1/O.

Logging out. There are three ways to log out:
You can simply hang up the phone.

You can log out by typing an end-of-file indication (EOT character, control “d”) to the Shell.
The Shell will terminate and the “login: ” message will appear again.

You can also log in directly as another user by givitagan command (1).

How to communicate through your terminal¥hen you type taNix, a gnome deep in the system is gath-
ering your characters and saving them in a secret place. The characters will not be given to a program until
you type a return (or new-line), as described abotv@gying in.

UNIX typewriter 1/O is full-duplex. It has full read-ahead, which means that you can type at any time, even
while a program is typing at you. Of course, if you type during output, the output will have the input char-
acters interspersed. However, whatever you type will be saved up and interpreted in correct sequence.
There is a limit to the amount of read-ahead, but it is generous and not likely to be exceeded unless the sys-
tem is in trouble. When the read-ahead limit is exceeded, the system throws away all the saved characters.
(We reassure you that this doesn’t happen often.)

On a typewriter input line, the character “@” kills all the characters typed before it, so typing mistakes can
be repaired on a single line. Also, the character “#” erases the last character typed. Successive uses of
“#" erase characters back to, but not beyond, the beginning of the line. “@” and “#" can be transmitted

to a program by preceding them with “\". (So, to erase “\”, you need two “#"s).

Theasci “delete” (a.k.a. “rubout”) character is not passed to programs but instead generaiteteanpt

signal. This signal generally causes whatever program you are running to terminate. It is typically used to
stop a long printout that you don’t want. However, programs can arrange either to ignore this signal alto-
gether, or to be notified when it happens (instead of being terminated). The editor, for example, catches in-
terrupts and stops what it is doing, instead of terminating, so that an interrupt can be used to halt an editor
printout without losing the file being edited.

The quit signal is generated by typing thaci FS character. It not only causes a running program to ter-
minate but also generates a file with the core image of the terminated process. Quit is useful for debugging.

Besides adapting to the speed of the termivoialx tries to be intelligent about whether you have a terminal

with the new-line function or whether it must be simulated with carriage-return and line-feed. In the latter
case, all input carriage returns are turned to new-line characters (the standard line delimiter) and both a car-
riage return and a line feed are echoed to the terminal. If you get into the wrong mod#yttemmand

(I) will rescue you.

Tab characters are used freelyunix source programs. If your terminal does not have the tab function,

you can arrange to have them turned into spaces during output, and echoed as spaces during input. The sys-
tem assumes that tabs are set every eight columns. Agaisttyfedmmand (1) will set or reset this mode.

Also, there is a file which, if printed omTy 37 or TermiNet 300 terminals, will set the tab stops correctly
(tabs(VII)).

Sectiondc (1V) discusses typewriter 1/O more fully. Sectibin(IV) discusses the console typewriter.

How to run a program; The Shell.When you have successfully logged intaix, a program called the

Shell is listening to your terminal. The Shell reads typed-in lines, splits them up into a command name and
arguments, and executes the command. A command is simply an executable program. The Shell looks
first in your current directory (see next section) for a program with the given name, and if none is there,
then in a system directory. There is nothing special about system-provided commands except that they are
kept in a directory where the Shell can find them.

The command name is always the first word on an input line; it and its arguments are separated from one
another by spaces.

When a program terminates, the Shell will ordinarily regain control and type a “%" at you to indicate that
it is ready for another command.

The Shell has many other capabilities, which are described in detail in strtjon

The current directory. UNIX has a file system arranged in a hierarchy of directories. When the system ad-
ministrator gave you a user name, he also created a directory for you (ordinarily with the same name as
your user name). When you log in, any file name you type is by default in this directory. Since you are the
owner of this directory, you have full permissions to read, write, alter, or destroy its contents. Permissions
to have your will with other directories and files will have been granted or denied to you by their owners.
As a matter of observed fact, fewnix users protect their files from destruction, let alone perusal, by other
users.

To change the current directory (but not the set of permissions you were endowed with at logihfluse
(0.

Path names. To refer to files not in the current directory, you must use a path name. Full path names be-
gin with “/”, the name of the root directory of the whole file system. After the slash comes the name of
each directory containing the next sub-directory (followed by a “/”) until finally the file name is reached.
E.g.: /usr/lem/filexrefers to the filefilex in the directorylem; lemis itself a subdirectory ofisr; usr
springs directly from the root directory.

If your current directory has subdirectories, the path names of files therein begin with the name of the sub-
directory (no prefixed “/”).

Without important exception, a path name may be used anywhere a file name is required.

Important commands which modify the contents of files epel), mv (1), andrm (1), which respectively
copy, move (i.e. rename) and remove files. To find out the status of files or directoriels (ise See
mkdir (1) for making directoriesmdir (1) for destroying them.

For a fuller discussion of the file system, see “Tiweix Time-Sharing System,” by the present authors, to
appear in the Communications of the ACM; a version is also available from the same source as this manual.
It may also be useful to glance through section Il of this manual, which discusses system calls, even if you
don't intend to deal with the system at the assembly-language level.

Writing a program. To enter the text of a source program intonax file, useed(l). The three principal
languages iuNix are assembly language (s&=(l)), Fortran (sedc (1)), and C (seec (1)). After the pro-

gram text has been entered through the editor and written on a file, you can give the file to the appropriate
language processor as an argument. The output of the language processor will be left on a file in the cur-
rent directory named “a.out”. (If the output is precious, usgto move it to a less exposed name soon.)

If you wrote in assembly language, you will probably need to load the program with library subroutines;
seeld (1). The other two language processors call the loader automatically.

When you have finally gone through this entire process without provoking any diagnostics, the resulting
program can be run by giving its name to the Shell in response to the “%” prompt.

The next command you will need @b (I). As a debuggerdbis better than average for assembly-language
programs, marginally useful for C programs (when completdd 1) will be a boon), and virtually useless
for Fortran.

Your programs can receive arguments from the command line just as system programsesgec(Bge

Text processing.Almost all text is entered through the editor. The commands most often used to write
text on a terminal areat, pr, roff, nroffandtroff, all in section I.

The cat command simply dumpssci text on the terminal, with no processing at all. Tprecommand
paginates the text, supplies headings, and has a facility for multi-column ottmff.andnroff are elabo-

rate text formatting programs, and require careful forethought in entering both the text and the formatting
commands into the input fileTroff drives a Graphic Systems phototypesetter; it was used to produce this
manual. Nroff produces output on a typewriter termind&off (I) is a somewhat less elaborate text format-
ting program, and requires somewhat less forethought.

Surprises. Certain commands provide inter-user communication. Even if you do not plan to use them, it
would be well to learn something about them, because someone else may aim them at you.

To communicate with another user currently loggedvimite (I) is used;mail (1) will leave a message
whose presence will be announced to another user when he next logs in. The write-ups in the manual also
suggest how to respond to the two commands if you are a target.

When you log in, a message-of-the-day may greet you before the first “%".

\Y

. COMMANDS

ar
as .
bas
cat .
catsim
cc

cdb
chdir
chmod
chown
cmp
comm
cp

cref
date
db

dc
dsw
du
echo
ed

exit

fc

fed

file
form
goto
grep

if

kill

Id

In
login
Is

mail
man .
merge
mesg
mkdir
mv
nice
nm
nohup
nroff
od

opr
passwd
pfe
plot

TABLE OF CONTENTS

archive and library maintainer
. assembler
. basic
concatenate and print
phototypesetter simulator
C compiler
oo C debugger
change working directory
change mode
change owner
. . compare two files
prlnt lines common to two files
. . copy
make cross reference listing
print and set the date
debug
desk calculator
delete interactively
summarize disk usage
echo arguments
. editor
termlnate command file
. fortran compiler
edlt assomatwe memory for form letter
determine format of file
form letter generator
command transfer
search a file for a pattern
conditional command
do in an unwanted process
link editor
make a link
sign onto UNIX
list contents of directory
send mail to another user
run off section of UNIX manual
merge several files
permit or deny messages
make a directory
move or rename a file
run a command at low priority
. print name list
run a command immune to hangups
format text
octal dump
off line print
set login password
print floating exception
make a graph

vii

pr
proof
ps
rew
rm
rmdir
roff
sh
shift
size
sleep
sno
sort
speak
split
strip
stty
sum
time
tp

tr .
troff
tss
tty
type
typo
uniq
wait
wc
who
write

II. SYSTEM CALLS

break
chdir
chmod
chown
close
creat
csSw
dup
exec
exit
fork
fstat
getgid
getuid
gtty
indir
kill

link
mknod

. print file
compare two text files
process status
rewind tape
remove (unlink) files
remove directory
. - format text
sheII (command interpreter)
adjust Shell arguments
. . size of an object file
suspend execution for an interval
Snobol interpreter
. sort a file
Word to voice translator
. split a file into pieces
remove symbols and relocation bits
set teletype options
sum file
. time a command
manlpulate DECtape and magtape
transliterate
- format text
interface to MH-TSS
get typewriter name
type on 2741
find possible typos
report repeated lines in a file
await completion of process
get (English) word count
who is on the system
write to another user

set program break
change working directory
change mode of file
change owner
close a file
create a new file
read console switches
dupllcate an open file descriptor
execute a file
terminate process
spawn new process
get status of open file
get group identification
get user identification
get typewriter status
indirect system call
send signal to a process
. link to a file
make a directory or a special file

viii

mount
nice
open
pipe
read
seek .
setgid
setuid
signal
sleep
stat
stime
stty
sync
time
times
umount
unlink
wait
write

[ll. SUBROUTINES

atan
atof
compar
crypt
ctime
ecvt
exp
fptrap
gerts
getarg
getc
getchar
getpw
hmul
hypot
ierror
[div

log
mesg
nargs
nlist
perror
pow
printf
putc
putchar
gsort
rand
reset
setfil

mount file system

set program priority
open for reading or writing
create a pipe

read from file

move read/write pointer
set process group ID
set process user ID
catch or ignore signals
stop execution for interval
get file status

set time

set mode of typewriter
update super-block

get date and time
get process times
dismount file system
remove directory entry
wait for process to die

write on a file

arc tangent function
. ascii to floating
default comparlson routine for gsort
. . password encoding
convert date and time to ASCII
output conversion
exponential function
floating point interpreter
Gerts communication over 201
get command arguments from Fortran
buffered input
read character
get name from UID
high-order product
calculate hypotenuse
catch Fortran errors
long division
. natural logarithm
write message on typewriter
argument count
get entries from name list
system error messages
floating exponentiation
formatted print
buffered output
write character
. quicker sort
random number generator
execute non-local goto
specify Fortran file name

sin
sqrt
switch
ttyn

vt

IV. SPECIAL FILES

cat
da
dc
dn
dp
kl
mem
pc
rf
rk
Y
tc
tiu
tm
S
vt

V. FILE FORMATS

a.out
ar .
core
dir
fs . .
passwd
tp
utmp
wtmp

VI. USER MAINTAINED PROGRAMS

azel
bj

cal
chess
cubic
factor
hyphen
m6
maze
moo
ov

ptx
sfs
sky

sine, cosine
square root function
switch on value

return name of current typewrlter

display (vt01) interface

phototypesetter interface
voice response unit

DC 11 communications interface

. dnll ACU interface
dpll 201 data-phone interface
KL-11/TTY-33 console typewriter
. core memory
PC 11 paper tape reader/punch
RF11/RS11 fixed-head disk file
RK-11/RK03 (or RKO05) disk
RP-11/RP03 moving-head disk
TC-11/TU56 DECtape
Spider interface

TM 11/TU 10 magtape interface

voice synthesizer interface
11/20 (vt01) interface

assembler and link editor output

archive (library) file format
format of core image file
format of directories

format of file system volume

. password file
DEC/mag tape formats

user information

user login history

obtain satellite predictions
the game of black jack
print calendar
the game of chess
three dimensional tic-tac-toe
discover prime factors of a number
find hyphenated words
general purpose macro processor
generate a maze problem
guessing game
overlay pages
permuted index
structured file scanner
obtain ephemerides

spline
tmg
ttt .
wump
yacc

VII. MISCELLANEOUS

ascii

dpd

getty
glob
greek

init

msh

tabs
tmheader
S

VIIl. SYSTEM MAINTAINANCE

20boot
boot procedures
check
clri

daf .
dump
ino
mkfs
mknod
mount
reloc
restor
su

sync
umount
update

Xi

interpolate smooth curve
compiler-compiler
tic-tac-toe
Coe hunt the wumpus
yet another compiler-compiler

map of ASCII character set
spawn data phone daemon

set typewriter mode
generate command arguments
graphics for extended ascii type-box

process control initialization

mini-shell

set tab stops

TM cover sheet

voice synthesizer code

install new 11/20 system
UNIX startup
f|Ie system consistency check
clear i-node
. disk free
mcremental file system dump
get the i-number of a file
construct a file system
build special file
mount file system
. relocate object files
incremental file system restore
become privileged user
update the super block
. dismount file system
perlod|cally update the super block

PERMUTED INDEX

20boot(VIIl) install new 11/20 system
vi(lV) 11/20 (vt01) interface
dp(IV) dp1l1l 201 data-phone interface
gerts(lll) Gerts communication over 201
20boot(VIIl) install new 11/20 system
type(l) type on 2741
dn(lV) dn11l ACU interface
shift(l) adjust Shell arguments
yacc(VI) yet another compiler-compiler
mail(l) send mail to another user
write(l) write to another user
a.out(V) assembler and link editor output
atan(lll) arc tangent function
ar(l) archive and library maintainer
ar(V) archive (library) file format
nargs(lll) argument count
getarg(lll) get command arguments from Fortran
echo(l) echo arguments
glob(VIl) generate command arguments
shift(l) adjust Shell arguments
ar(l) archive and library maintainer
ar(V) archive (library) file format
ascii(VIl) map of ASCII character set
atof(lll) ascii to floating
greek(VII) graphics for extended ascii type-box
ctime(lll) convert date and time to ASCII
ascii(VIl) map of ASCII character set
as(l) assembler
a.out(V) assembler and link editor output
as(l) assembler
fed(l) edit associative memory for form letter
nice(l) run a command at low priority
atan(lll) arc tangent function
atof(IIl) ascii to floating
wait(l) await completion of process
azel(VI) obtain satellite predictions
bas(l) basic
bas(l) basic
su(VIll) become privileged user
strip(l) remove symbols and relocation bits
bj(VI1) the game of black jack
bj(VI) the game of black jack
sync(VIIl) update the super block
update(VIll) periodically update the super block
boot procedures(VIII) UNIX startup
break(ll) set program break
break(ll) set program break
getc(lll) buffered input
putc(lll) buffered output
mknod(VIII) build special file
cc(l) C compiler

Xii

cdb(l) C debugger

hypot(lll)

calculate hypotenuse

dc(l) desk calculator

cal(VI) print

calendar

indir(Il) indirect system call

ierror(lll)
signal(ll)

chmod(ll)
chmod(l)
chown(l)

cal(VI) print calendar

catch Fortran errors

catch or ignore signals

cat(l) concatenate and print
cat(lV) phototypesetter interface
catsim(l) phototypesetter simulator
cc(l) C compiler

cdb(l) C debugger

change mode of file

change mode

change owner

chown(ll) change owner
chdir(l) change working directory
chdir(ll) change working directory
ascii(VIl) map of ASCII character set
getchar(lll) read character
putchar(lll) write character
chdir(l) change working directory
chdir(ll) change working directory
check(VIIl) file system consistency check
check(VIII) file system consistency check
chess(VI) the game of chess
chess(VI) the game of chess
chmod(l) change mode
chmod(ll) change mode of file
chown(l) change owner
chown(ll) change owner
clri(VIll) clear i-node
close(ll) close a file
close(ll) close a file
clri(VIIl) clear i-node
cmp(l) compare two files
vs(VII) voice synthesizer code
getarg(lll) get command arguments from Fortran
glob(VIl) generate command arguments
nice(l) runa command at low priority
exit(l) terminate command file
nohup(l) run a command immune to hangups
sh(l) shell (command interpreter)
goto(l) command transfer
if() conditional command
time(l) time a command
comm(l) print lines common to two files
comm(l) print lines common to two files
gerts(lll) Gerts communication over 201
dc(lV) DC-11 communications interface
cmp(l) compare two files
proof(l) compare two text files

Xiii

compar(lll) default comparison routine for gsort
compar(lll) default comparison routine for gsort
cc(l) C compiler
tmg(VI) compiler-compiler
yacc(VI1) yet another compiler-compiler
fc(l) fortran compiler
wait(l) await completion of process
cat(l) concatenate and print
if(l) conditional command
check(VIIl) file system consistency check
csw(ll) read console switches
ki(IV) KL-11/TTY-33 console typewriter
mkfs(VIIl) construct a file system
Is(l) list contents of directory
init(V1l) process control initialization
ecvt(lll) output conversion
ctime(lll) convert date and time to ASCII
cp(l) copy
core(V) format of core image file
mem(lV) core memory
core(V) format of core image file
sin(lll) sine, cosine
nargs(lll) argument count
wc(l) get (English) word count
tmheader(VIl) TM cover sheet
cp(l) copy
creat(ll) create a new file
pipe(ll) create a pipe
creat(ll) create a new file
cref(l) make cross reference listing
cref(l) make cross reference listing
crypt(lll) password encoding
csw(ll) read console switches
ctime(lll) convert date and time to ASCII
cubic(VI) three dimensional tic-tac-toe
ttyn(lll) return name of current typewriter
spline(VI) interpolate smooth curve
dpd(VIIl) spawn data phone daemon
da(IV) voice response unit
dpd(VIl) spawn data phone daemon
dp(IV) dp11 201 data-phone interface
ctime(lll) convert date and time to ASCII
time(ll) get date and time
date(l) print and set the date
date(l) print and set the date
db(l) debug
dc(lV) DC-11 communications interface
dc(l) desk calculator
dc(IV) DC-11 communications interface
db(l) debug
cdb(l) C debugger
tp(V) DEC/mag tape formats
tp(l) manipulate DECtape and magtape

Xiv

tc(lV) TC-11/TU56 DECtape
compar(lll) default comparison routine for gsort
dsw(l) delete interactively
mesg(l) permit or deny messages
dup(ll) duplicate an open file descriptor
dc(l) desk calculator
file(I) determine format of file
df(VIIl) disk free
wait(ll) wait for process to die
cubic(VI) three dimensional tic-tac-toe
dir(V) format of directories
unlink(ll) remove directory entry
mknod(ll) make a directory or a special file
chdir(l) change working directory
chdir(ll) change working directory
Is(l) list contents of directory
mkdir(l) make a directory
rmdir(l) remove directory
dir(V) format of directories
factor(VI) discover prime factors of a number
rf(IV) RF11/RS11 fixed-head disk file
df(VvIll) disk free
du(l) summarize disk usage
rk(1V) RK-11/RK03 (or RK0O5) disk
rp(IV) RP-11/RP03 moving-head disk
umount(ll) dismount file system
umount(VIIl) dismount file system
vi(lll) display (vtO1) interface
Idiv(Ill) long division
dn(lvV) dnll ACU interface
dn(lV) dn1l ACU interface
kill() do in an unwanted process
dp(lV) dpll 201 data-phone interface
dpd(VII) spawn data phone daemon
dp(lV) dpl11 201 data-phone interface
dsw(l) delete interactively
du(l) summarize disk usage
dump(VIIl) incremental file system dump
od(l) octal dump
dump(VIIl) incremental file system dump
dup(ll) duplicate an open file descriptor
dup(ll) duplicate an open file descriptor
echo(l) echo arguments
echo(l) echo arguments
ecvt(lll) output conversion
ed(l) editor
fed(l) edit associative memory for form letter
a.out(V) assembler and link editor output
ed(l) editor
Id(l) link editor
crypt(lll) password encoding
wc(l) get (English) word count
nlist(lll) get entries from name list

XV

unlink(ll) remove directory entry
sky(VI) obtain ephemerides
perror(lll) system error messages
ierror(lll) catch Fortran errors
pfe(l) print floating exception
exec(ll) execute a file
exec(ll) execute a file
reset(lll) execute non-local goto
sleep(l) suspend execution for an interval
sleep(ll) stop execution for interval
exit(l) terminate command file
exit(ll) terminate process
exp(lll) exponential function
exp(lll) exponential function
pow(lll) floating exponentiation
greek(VIl) graphics for extended ascii type-box
factor(VI) discover prime factors of a number
factor(VI) discover prime factors of a number
fc(l) fortran compiler
fed(l) edit associative memory for form letter
dup(ll) duplicate an open file descriptor
grep(l) search a file for a pattern
ar(V) archive (library) file format
split(l) split a file into pieces
setfil(lll) specify Fortran file name
sfs(VI) structured file scanner
stat(ll) get file status
check(VIIl) file system consistency check
dump(VIIl) incremental file system dump
restor(VIIl) incremental file system restore
fs(V) format of file system volume
mkfs(VIIl) construct a file system
mount(ll) mount file system
mount(VIIl) mount file system
umount(ll) dismount file system
umount(VIIl) dismount file system
chmod(ll) change mode of file
close(ll) close a file
core(V) format of core image file
creat(ll) create a new file
exec(ll) execute a file
exit(l) terminate command file
file(l) determine format of file
fstat(ll) get status of open file
file(l) determine format of file
ino(VIIl) get the i-number of a file
link(ll) link to a file
mknod(ll) make a directory or a special file
mknod(VIII) build special file
mv(l) move or rename a file
passwd(V) password file
pr(l) print file
read(ll) read from file

XVi

rf(IV) RF11/RS11 fixed-head disk file
cmp(l) compare two files
comm(l) print lines common to two files
size(l) size of an object file
merge(l) merge several files
sort(l) sort a file
proof(l) compare two text files
reloc(VIII) relocate object files
rm(l) remove (unlink) files
sum(l) sum file
uniqg(l) report repeated lines in a file
write(Il) write on a file
hyphen(VI) find hyphenated words
typo(l) find possible typos
rf(IV) RF11/RS11 fixed-head disk file
pfe(l) print floating exception
pow(lll) floating exponentiation
fptrap(lll) floating point interpreter
atof(lIl) ascii to floating
fork(Il) spawn new process
form(l) form letter generator
fed(l) edit associative memory for form letter
core(V) format of core image file
dir(V) format of directories
fs(V) format of file system volume
file(l) determine format of file
nroff(l) format text
roff(l) format text
troff(l) format text
ar(V) archive (library) file format
tp(V) DEC/mag tape formats
printf(lll) formatted print
form(l) form letter generator
fc(l) fortran compiler
ierror(lll) catch Fortran errors
setfil(lll) specify Fortran file name

getarg(lll) get command arguments from Fortran
fptrap(lll) floating point interpreter

df(VIll) disk free
read(ll) read from file
getarg(lll) get command arguments from Fortran
nlist(lll) get entries from name list

getpw(lll) get name from UID
fstat(ll) get status of open file

fs(V) format of file system volume
atan(lll) arc tangent function
exp(lll) exponential function
sqrt(Ill) square root function
bj(VI) the game of black jack
chess(VI) the game of chess

moo(VI) guessing game
m6(VI) general purpose macro processor

maze(VI) generate a maze problem

XVii

glob(VIl) generate command arguments
form(l) form letter generator
rand(lll) random number generator
gerts(lll) Gerts communication over 201
gerts(lll) Gerts communication over 201
getarg(lll) get command arguments from Fortran
time(ll) get date and time
wc(l) get (English) word count
nlist(lll) get entries from name list
stat(ll) get file status
getgid(ll) get group identification
getpw(lll) get name from UID
times(Il) get process times
fstat(ll) get status of open file
ino(VIII) get the i-number of a file
tty(l) get typewriter name
otty(ll) get typewriter status
getuid(ll) get user identification
getarg(lll) get command arguments from Fortran
getchar(lll) read character
getc(lll) buffered input
getgid(ll) get group identification
getpw(lll) get name from UID
getty(VIl) set typewriter mode
getuid(ll) get user identification
glob(VIl) generate command arguments
goto(l) command transfer
reset(lll) execute non-local goto
greek(VIIl) graphics for extended ascii type-box
plot(l) make a graph
greek(VIl) graphics for extended ascii type-box
grep(l) search a file for a pattern
getgid(ll) get group identification
setgid(ll) set process group ID
gtty(ll) get typewriter status
moo(VI) guessing game
nohup(l) run a command immune to hangups
hmul(lll) high-order product
wtmp(V) user login history
hmul(lIl) high-order product
wump(VI) hunt the wumpus
hyphen(VI) find hyphenated words
hyphen(VI) find hyphenated words
hypot(lll) calculate hypotenuse
hypot(lll) calculate hypotenuse
getgid(ll) get group identification
getuid(ll) get user identification
setgid(ll) set process group 1D
setuid(ll) set process user 1D
ierror(lll) catch Fortran errors
if(1) conditional command
signal(ll) catch or ignore signals
core(V) format of core image file

Xviii

nohup(l) run a command immune to hangups
uniqg(l) report repeated lines in a file
kill() do in an unwanted process
dump(VIIl) incremental file system dump
restor(VIll) incremental file system restore
ptx(VI) permuted index
indir(Il) indirect system call
indir(Il) indirect system call
utmp(V) user information
init(V1l) process control initialization
init(V1l) process control initialization
clri(vIIl) clear i-node
ino(VIIl) get the i-number of a file
getc(lll) buffered input
20boot(VIIIl) install new 11/20 system
dsw(l) delete interactively
tss(l) interface to MH-TSS
cat(lV) phototypesetter interface
dc(IV) DC-11 communications interface
dn(lV) dn1l1l ACU interface
dp(lV) dpl11 201 data-phone interface
tiu(lV) Spider interface
tm(lV) TM-11/TU-10 magtape interface
vs(IV) voice synthesizer interface
vi(lll) display (vt01) interface
vi(IV) 11/20 (vt01) interface
spline(VI) interpolate smooth curve
fptrap(lll) floating point interpreter
sh(l) shell (command interpreter)
sno(l) Snobol interpreter
sleep(l) suspend execution for an interval
sleep(ll) stop execution for interval
split(l) split a file into pieces
ino(VIIl) get the i-number of a file
bj(VI1) the game of black jack
kill(1) do in an unwanted process
kill(11) send signal to a process
ki(IV) KL-11/TTY-33 console typewriter
kl(IV) KL-11/TTY-33 console typewriter
Id(1) link editor
Idiv(lll) long division
form(l) form letter generator
fed(l) edit associative memory for form letter
ar(V) archive (library) file format
ar(l) archive and library maintainer
opr(l) off line print
comm(l) print lines common to two files
unig(l) report repeated lines in a file
a.out(V) assembler and link editor output
Id(l) link editor
link(ll) link to a file
link(Il) link to a file
In(l) make a link

XiX

Is(l) list contents of directory
cref(l) make cross reference listing
nlist(lll) get entries from name list
nm(l) print name list
In(l) make a link
log(lll) natural logarithm
log(lll) natural logarithm
wtmp(V) user login history
passwd(l) set login password
login(l) sign onto UNIX
Idiv(lll) long division
nice(l) run a command at low priority
Is(l) list contents of directory
m6(VI) general purpose macro processor
m6(VI) general purpose macro processor
tm(lV) TM-11/TU-10 magtape interface
tp(l) manipulate DECtape and magtape
mail(l) send mail to another user
mail(l) send mail to another user
ar(l) archive and library maintainer
mknod(ll) make a directory or a special file
mkdir(I) make a directory
plot(l) make a graph
In() make a link
cref(l) make cross reference listing
man(l) run off section of UNIX manual
tp(l) manipulate DECtape and magtape
man(l) run off section of UNIX manual
ascii(Vll) map of ASCII character set
maze(VI) generate a maze problem
maze(VI) generate a maze problem
mem(lV) core memory
fed(l) edit associative memory for form letter
mem(lV) core memory
merge(l) merge several files
merge(l) merge several files
mesg(l) permit or deny messages
mesg(lll) write message on typewriter
mesg(lll) write message on typewriter
mesg(l) permit or deny messages
perror(lll) system error messages
tss(l) interface to MH-TSS
msh(VII) mini-shell
mkdir(I) make a directory
mkfs(VI1Il) construct a file system
mknod(ll) make a directory or a special file
mknod(VIII) build special file
chmod(ll) change mode of file
stty(ll) set mode of typewriter
chmod(l) change mode
getty(VIl) set typewriter mode
moo(VI) guessing game
mount(ll) mount file system

XX

mount(VIll) mount file system
mount(ll) mount file system
mount(VIIll) mount file system
mv(l) move or rename a file
seek(ll) move read/write pointer
rp(IV) RP-11/RP03 moving-head disk
msh(VII) mini-shell
mv(l) move or rename a file
getpw(lll) get name from UID
nlist(lll) get entries from name list
nm(l) print name list
ttyn(lll) return name of current typewriter
setfil(ll) specify Fortran file name
tty(l) get typewriter name
nargs(lll) argument count
log(lll) natural logarithm
20boot(VII) install new 11/20 system
creat(ll) create a new file
fork(ll) spawn new process
nice(l) run a command at low priority
nice(ll) set program priority
nlist(ll) get entries from name list
nm(l) print name list
nohup(l) run a command immune to hangups
reset(lll) execute non-local goto
nroff(l) format text
rand(lll) random number generator
factor(VI) discover prime factors of a number
size(l) size of an object file
reloc(VIII) relocate object files
sky(VI) obtain ephemerides
azel(Vl) obtain satellite predictions
od(l) octal dump
od(l) octal dump
opr(l) off line print
man(l) run off section of UNIX manual
login(l) sign onto UNIX
dup(ll) duplicate an open file descriptor
fstat(ll) get status of open file
open(ll) open for reading or writing
open(ll) open for reading or writing
opr(l) off line print
stty(l) set teletype options
rk(IV) RK-11/RK03 (or RKO05) disk
ecvt(lll) output conversion
a.out(V) assembler and link editor output
putc(lll) buffered output
gerts(lll) Gerts communication over 201
ov(VI) overlay pages
ov(VI) overlay pages
chown(l) change owner
chown(ll) change owner
ov(VI) overlay pages

XXi

pc(lV) PC-11 paper tape reader/punch
passwd(l) set login password
passwd(V) password file
crypt(lll) password encoding
passwd(V) password file
passwd(l) set login password
grep(l) search a file for a pattern
pc(lV) PC-11 paper tape reader/punch
pc(lV) PC-11 paper tape reader/punch
update(VIll) periodically update the super block
mesg(l) permit or deny messages
ptx(VI) permuted index
perror(lll) system error messages
pfe(l) print floating exception
dpd(VII) spawn data phone daemon
cat(lV) phototypesetter interface
catsim(l) phototypesetter simulator
split(l) split a file into pieces
pipe(ll) create a pipe
pipe(ll) create a pipe
plot(l) make a graph
fptrap(lll) floating point interpreter
seek(ll) move read/write pointer
typo(l) find possible typos
pow(lll) floating exponentiation
azel(VI) obtain satellite predictions
pr(l) print file
factor(VI) discover prime factors of a number
date(l) print and set the date
cal(VI) print calendar
pr(l) print file
pfe(l) print floating exception
comm(l) print lines common to two files
nm(l) print name list
cat(l) concatenate and print
printf(111) formatted print
opr(l) off line print
printf(lll) formatted print
nice(l) run a command at low priority
nice(ll) set program priority
su(VIll) become privileged user
maze(VI) generate a maze problem
boot procedures(VIII) UNIX startup
init(VI1l) process control initialization
setgid(ll) set process group ID
ps(l) process status
times(ll) get process times
wait(ll) wait for process to die
setuid(ll) set process user ID
exit(ll) terminate process
fork(ll) spawn new process
kill(l) do in an unwanted process
kill(11) send signal to a process

XXii

m6(VI) general purpose macro processor
wait(l) await completion of process
hmul(lIl) high-order product
break(ll) set program break
nice(ll) set program priority
proof(l) compare two text files
ps(l) process status
ptx(VI) permuted index
m6(VI) general purpose macro processor
putchar(lll) write character
putc(lll) buffered output
compar(lll) default comparison routine for qsort
gsort(lll) quicker sort
gsort(lll) quicker sort
rand(lll) random number generator
rand(lll) random number generator
getchar(lll) read character
csw(ll) read console switches
read(ll) read from file
pc(lV) PC-11 paper tape reader/punch
read(ll) read from file
open(ll) open for reading or writing
seek(ll) move read/write pointer
cref(l) make cross reference listing
reloc(VIII) relocate object files
strip(l) remove symbols and relocation bits
reloc(VIIl) relocate object files
unlink(ll) remove directory entry
rmdir(l) remove directory
strip(l) remove symbols and relocation bits
rm(l) remove (unlink) files
mv(l) move or rename a file
uniq(l) report repeated lines in a file
unig(l) report repeated lines in a file
reset(lll) execute non-local goto
da(lV) voice response unit
restor(VIIl) incremental file system restore
restor(VIIl) incremental file system restore
ttyn(lll) return name of current typewriter
rew(l) rewind tape
rew(l) rewind tape
rf(IV) RF11/RS11 fixed-head disk file
rf(1IV) RF11/RS11 fixed-head disk file
rk(1V) RK-11/RK03 (or RKO05) disk
rk(lV) RK-11/RKO03 (or RK05) disk
rk(1V) RK-11/RK03 (or RKO05) disk
rmdir(l) remove directory
rm(1) remove (unlink) files
roff(l) format text
sqrt(lll) square root function
compar(lll) default comparison routine for gsort
rp(lV) RP-11/RP03 moving-head disk
rp(1V) RP-11/RP03 moving-head disk

Xxiii

nice(l) run a command at low priority
nohup(l) run a command immune to hangups
man(l) run off section of UNIX manual
azel(VI) obtain satellite predictions
sfs(VI) structured file scanner
grep(l) search a file for a pattern
man(l) run off section of UNIX manual
seek(ll) move read/write pointer
mail(l) send mail to another user
kill(Il) send signal to a process
passwd(l) setlogin password
stty(ll) set mode of typewriter
setgid(ll) set process group ID
setuid(ll) set process user ID
break(ll) set program break
nice(ll) set program priority
tabs(VIl) set tab stops
stty(l) set teletype options
date(l) print and set the date
stime(ll) set time
getty(VIl) set typewriter mode
ascii(VIl) map of ASCII character set
setfil(lll) specify Fortran file name
setgid(ll) set process group ID
setuid(ll) set process user ID
merge(l) merge several files
sfs(VI) structured file scanner
tmheader(VIl) TM cover sheet
shift(l) adjust Shell arguments
sh(l) shell (command interpreter)
sh(l) shell (command interpreter)
shift(l) adjust Shell arguments
login(l) sign onto UNIX
kill(Il) send signal to a process
signal(ll) catch or ignore signals
signal(ll) catch or ignore signals
catsim(l) phototypesetter simulator
sin(lll) sine, cosine
sin(lll) sine, cosine
size(l) size of an object file
size(l) size of an object file
sky(VI) obtain ephemerides
sleep(l) suspend execution for an interval
sleep(ll) stop execution for interval
spline(V1) interpolate smooth curve
sno(l) Snobol interpreter
sno(l) Snobol interpreter
sort(l) sort afile
sort(l) sort a file
gsort(lll) quicker sort
dpd(VIl) spawn data phone daemon
fork(ll) spawn new process
speak(l) word to voice translator

XXIV

mknod(ll) make a directory or a special file
mknod(VIII) build special file
setfil(lll) specify Fortran file name
tiu(lV) Spider interface
spline(VI) interpolate smooth curve
split(l) split a file into pieces
split(l) split a file into pieces
sqrt(lll) square root function
sqrt(lll) square root function
boot procedures(VIII) UNIX startup
stat(ll) get file status
fstat(ll) get status of open file
otty(ll) get typewriter status
ps(l) process status
stat(ll) get file status
stime(ll) set time
sleep(ll) stop execution for interval
tabs(VIl) set tab stops
strip(l) remove symbols and relocation bits
sfs(VI) structured file scanner
stty(l) set teletype options
stty(ll) set mode of typewriter
sum(l) sum file
sum(l) sum file
du(l) summarize disk usage
sync(VIIl) update the super block
update(VIll) periodically update the super block
sync(ll) update super-block
sleep(l) suspend execution for an interval
su(VIll) become privileged user
switch(lll) switch on value
csw(ll) read console switches
switch(lll) switch on value
strip(l) remove symbols and relocation bits
sync(ll) update super-block
sync(VIIl) update the super block
vs(VIl) voice synthesizer code
vs(IV) voice synthesizer interface
indir(Il) indirect system call
check(VIIl) file system consistency check
dump(VIII) incremental file system dump
perror(lll) system error messages
restor(VIIl) incremental file system restore
fs(V) format of file system volume
20boot(VIIl) install new 11/20 system
mkfs(VIIl) construct a file system
mount(ll) mount file system
mount(VIIl) mount file system
umount(ll) dismount file system
umount(V1ll) dismount file system
who(l) who is on the system
tabs(VIl) set tab stops
tabs(VIl) set tab stops

XXV

atan(lll) arc tangent function
tp(V) DEC/mag tape formats
pc(lV) PC-11 paper tape reader/punch
rew(l) rewind tape
tc(lV) TC-11/TU56 DECtape
tc(IV) TC-11/TU56 DECtape
stty(l) set teletype options
exit(l) terminate command file
exit(ll) terminate process
proof(l) compare two text files
nroff(l) format text
roff(l) format text
troff(l) format text
cubic(VI) three dimensional tic-tac-toe
cubic(VI) three dimensional tic-tac-toe
ttt(VI) tic-tac-toe
time(l) time a command
ctime(lll) convert date and time to ASCII
time(l) time a command
time(ll) get date and time
times(ll) get process times
stime(ll) set time
times(ll) get process times
time(ll) get date and time
tiu(lV) Spider interface
tmheader(VIl) TM cover sheet
tm(lV) TM-11/TU-10 magtape interface
tmg(VI) compiler-compiler
tmheader(VIl) TM cover sheet
tm(1V) TM-11/TU-10 magtape interface
tp(l) manipulate DECtape and magtape
tp(V) DEC/mag tape formats
goto(l) command transfer
speak(l) word to voice translator
tr(I) transliterate
tr(l) transliterate
troff(l) format text
tss(l) interface to MH-TSS
ttt(V1) tic-tac-toe
tty(l) get typewriter name
ttyn(lll) return name of current typewriter
cmp(l) compare two files
comm(l) print lines common to two files
proof(l) compare two text files
type(l) type on 2741
greek(VIl) graphics for extended ascii type-box
type(l) type on 2741
getty(VIl) set typewriter mode
tty(l) get typewriter name
gtty(ll) get typewriter status
kl(IV) KL-11/TTY-33 console typewriter
mesg(lll) write message on typewriter
stty(Il) set mode of typewriter

XXVi

ttyn(lll) return name of current typewriter
typo(l) find possible typos
typo(l) find possible typos
getpw(lll) get name from UID
umount(ll) dismount file system
umount(V1l1l) dismount file system
uniqg(l) report repeated lines in a file
da(lV) voice response unit
man(l) run off section of UNIX manual
boot procedures(VIII) UNIX startup
login(l) sign onto UNIX
rm(l) remove (unlink) files
unlink(ll) remove directory entry
kill() do in an unwanted process
sync(ll) update super-block
sync(VIIl) update the super block
update(VIll) periodically update the super block
update(VIll) periodically update the super block
du(l) summarize disk usage
getuid(ll) get user identification
setuid(ll) set process user ID
utmp(V) user information
wtmp(V) user login history
mail(l) send mail to another user
su(VIll) become privileged user
write(l) write to another user
utmp(V) user information
switch(lll) switch on value
da(lV) voice response unit
vs(VIl) voice synthesizer code
vs(lV) voice synthesizer interface
speak(l) word to voice translator
fs(V) format of file system volume
vs(IV) voice synthesizer interface
vs(VII) voice synthesizer code
vi(lll) display (vtOl1) interface
vi(IV) 11/20 (vt01) interface
vt(lll) display (vt01) interface
vt(lV) 11/20 (vt01) interface
wait(ll) wait for process to die
wait(l) await completion of process
wait(ll) wait for process to die
wec(l) get (English) word count
who(l) who is on the system
who(l) who is on the system
wc(l) get (English) word count
speak(l) word to voice translator
hyphen(VI) find hyphenated words
chdir(l) change working directory
chdir(ll) change working directory
putchar(lll) write character
mesg(lll) write message on typewriter
write(Il) write on a file

XXVil

write(l) write to another user
write(l) write to another user
write(Il) write on a file
open(ll) open for reading or writing
wtmp(V) user login history
wump(VI) hunt the wumpus
wump(VI) hunt the wumpus
yacc(VI) yet another compiler-compiler
yacc(VI) yet another compiler-compiler

XXVili

AR(1)

NAME

3/15/72 AR(1)

ar— archive and library maintainer

SYNOPSIS

ar key afile name ...

DESCRIPTION

FILES

Ar maintains groups of files combined into a single archive file. Its main use is to create and up-
date library files as used by the loader. It can be used, though, for any similar purpose.

Keyis one character from the satux, optionally concatenated with Afile is the archive file.
Thenamesre constituent files in the archive file. The meanings okélyeharacters are:

d means delete the named files from the archive file.

r means replace the named files in the archive file. If the archive file does notrewititcreate
it. If the named files are not in the archive file, they are appended.

t prints a table of contents of the archive file. If no names are given, all files in the archive are
tabled. If names are given, only those files are tabled.

u is similar tor except that only those files that have been modified are replaced. If no names
are given, all files in the archive that have been modified will be replaced by the modified ver-
sion.

x will extract the named files. If no names are given, all files in the archive are extracted. In
neither case doesalter the archive file.

v means verbose. Under the verbose optomgives a file-by-file description of the making of a
new archive file from the old archive and the constituent files. The following abbreviations are
used:

c copy
aappend
d delete

r replace
X extract

tmp/vtm? temporary

SEE ALSO

BUGS

Id(l), archive(V)

Optiontv should be implemented as a table with more information.

There should be a way to specify the placement of a new file in an archive. Currently, it is
placed at the end.

Sincear has not been rewritten to deal properly with the new file system modes, extracted files
have mode 666.

AS(1) 1/15/73 AS(1)

NAME
as— assembler
SYNOPSIS
as[-] name ...
DESCRIPTION
As assembles the concatenation of the named files. If the optional first argunienitsed, all
undefined symbols in the assembly are treated as global.
The output of the assembly is left on the fdeout. It is executable if no errors occurred during
the assembly, and if there were no unresolved external references.
FILES
letcl/as2 pass 2 of the assembler
/tmp/atm[1-4]? temporary
a.out object
SEE ALSO
[d(1), nm(l), db(l), a.out(V), ‘UNIX Assembler Manual'.
DIAGNOSTICS
When an input file cannot be read, its name followed by a question mark is typed and assembly
ceases. When syntactic or semantic errors occur, a single-character diagnostic is typed out to-
gether with the line number and the file name in which it occurred. Errors in pass 1 cause can-
cellation of pass 2. The possible errors are:
) Parentheses error
] Parentheses error
< String not terminated properly
* Indirection used illegally
. lllegal assignment ta™
A Error in address
B Branch instruction is odd or too remote
E Error in expression
F Error in local (‘f' or ‘b’) type symbol
G Garbage (unknown) character
| End of file inside an if
M Multiply defined symbol as label
@] Word quantity assembled at odd address
P ‘" different in pass 1 and 2
R Relocation error
U Undefined symbol
X Syntax error
BUGS

Symbol table overflow is not checker.errors can cause incorrect line numbers in following di-
agnostics.

BAS(I)

NAME

1/15/73 BAS (1)

bas- basic

SYNOPSIS

bas] file]

DESCRIPTION

Basis a dialect of Basic. If a file argument is provided, the file is used for input before the con-
sole is read Basaccepts lines of the form:

statement
integer statement

Integer numbered statements (known as internal statements) are stored for later execution. They
are stored in sorted ascending order. Non-numbered statements are immediately executed. The
result of an immediate expression statement (that does not have ‘=" as its highest operator) is
printed.

Statements have the following syntax:

expression
The expression is executed for its side effects (assignment or function call) or for printing
as described above.

done
Return to system level.

draw expression expression expression
A line is drawn on the Tektronix 611 display ‘/dev/vt0’ from the current display position
to the XY co-ordinates specified by the first two expressions. The scale is zero to one in
both X and Y directions. If the third expression is zero, the line is invisible. The current
display position is set to the end point.

display list
The list of expressions and strings is concatenated and displayed (i.e. printed) on the 611
starting at the current display position. The current display position is not changed.

erase
The 611 screen is erased.

for name= expression expression statement
for name= expression expression

next
The for statement repetitively executes a statement (first form) or a group of statements
(second form) under control of a named variable. The variable takes on the value of the
first expression, then is incremented by one on each loop, not to exceed the value of the
second expression.

goto expression
The expression is evaluated, truncated to an integer and execution goes to the correspond-
ing integer numbered statment. If executed from immediate mode, the internal statements
are compiled first.

if expression statement
The statement is executed if the expression evaluates to non-zero.

list [expression [expression]]
is used to print out the stored internal statements. If no arguments are given, all internal
statements are printed. If one argument is given, only that internal statement is listed. If
two arguments are given, all internal statements inclusively between the arguments are
printed.

print list
The list of expressions and strings are concatenated and printed. (A string is delimited by

BAS(I) 1/15/73 BAS (1)

" characters.)

return [expression]
The expression is evaluated and the result is passed back as the value of a function call. If
no expression is given, zero is returned.

run
The internal statements are compiled. The symbol table is re-initialized. The random
number generator is reset. Control is passed to the lowest numbered internal statement.

Expressions have the following syntax:

name
A name is used to specify a variable. Names are composed of a letter followed by letters
and digits. The first four characters of a name are significant.

number
A number is used to represent a constant value. A number is written in Fortran style, and
contains digits, an optional decimal point, and possibly a scale factor consistingeof an
followed by a possibly signed exponent.

(‘expression
Parentheses are used to alter normal order of evaluation.

expression operator expression
Common functions of two arguments are abbreviated by the two arguments separated by
an operator denoting the function. A complete list of operators is given below.

expressior{ [expression | expression] ...]
Functions of an arbitrary number of arguments can be called by an expression followed by
the arguments in parentheses separated by commas. The expression evaluates to the line
number of the entry of the function in the internally stored statements. This causes the in-
ternal statements to be compiled. If the expression evaluates negative, a builtin function is
called. The list of builtin functions appears below.

name| expression [expression] ..]
Each expression is truncated to an integer and used as a specifier for the name. The result
is syntactically identical to a namea[1,2] is the same ag[1][2]. The truncated expres-
sions are restricted to values between 0 and 32767.

The following is the list of operators:

= is the assignment operator. The left operand must be a name or an array element. The
result is the right operand. Assignment binds right to left, all other operators bind left to
right.

& (logical and) has result zero if either of its arguments are zero. It has result one if both
its arguments are non-zer@l(logical or) has result zero if both of its arguments are zero.
It has result one if either of its arguments are non-zero.

< <= > >= == <>
The relational operators (< less than, <= less than or equal, > greater than, >= greater than
or equal, == equal to, <> not equal to) return one if their arguments are in the specified re-
lation. They return zero otherwise. Relational operators at the same level extend as fol-
lows: a>b>c is the same as a>b&b>c.

Add and subtract.
*/
Multiply and divide.

Exponentiation.

BAS(I) 1/15/73 BAS (1)

The following is a list of builtin functions:

arg(i)
is the value of the-th actual parameter on the current level of function call.

exp(x)
is the exponential function af

log(x)
is the natural logarithm of
sin(x)
is the sine ok (radians).
cos(x)
is the cosine of (radians).
atn(x)
is the arctangent of. its value is betweenrv2 andri/2.

rnd()
is a uniformly distributed random number between zero and one.

expr()
is the only form of program input. A line is read from the input and evaluated as an ex-
pression. The resultant value is returned.

int(x)
returnsx truncated to an integer.

FILES
/tmp/btm? temporary

DIAGNOSTICS
Syntax errors cause the incorrect line to be typed with an underscore where the parse failed. All
other diagnostics are self explanatory.

BUGS

Has been known to give core images. Needs a wist 8 program onto a file.

CAT(I) 1/15/73 CAT(I)

NAME
cat— concatenate and print
SYNOPSIS
catfile ...
DESCRIPTION
Catreads each file in sequence and writes it on the standard output. Thus:
cat file
is about the easiest way to print a file. Also:
cat filel file2 >file3
is about the easiest way to concatenate files.
If no input file is givercatreads from the standard input file.
If the argument is encountered;atreads from the standard input file.
SEE ALSO
pr(1), cp(l)
DIAGNOSTICS
none; if a file cannot be found it is ignored.
BUGS

cat x y>x andcat x y>y cause strange results.

CATSIM (1) 11/1/73 CATSIM (1)

NAME
catsim- phototypesetter simulator
SYNOPSIS
catsim
DESCRIPTION
Catsimwill interpret its standard input as codes for the phototypesetter (cat). The outpai:- of
simis output to the display (vt).
About the only use otatsimis to save time and paper on the phototypesetter by the following
command:
troff -t files Ocatsim
FILES
/dev/vtO
SEE ALSO
troff(l), cat(lV), vt(1V)
BUGS

Point sizes are not correct. The vt character set is restricted to one font of ASCII.

cc(l) 3/15/72 cc(l)

NAME
cc— C compiler

SYNOPSIS
cc[—c][-p]fie ...

DESCRIPTION
Ccis the UNIX C compiler. It accepts three types of arguments:
Arguments whose names end with ‘.c’ are assumed to be C source programs; they are compiled,
and the object program is left on the file whose name is that of the source with ‘.0’ substituted
for .c’.
Other arguments (except fec) are assumed to be either loader flag arguments, or C-compatible
object programs, typically produced by an earberrun, or perhaps libraries of C-compatible
routines. These programs, together with the results of any compilations specified, are loaded (in
the order given) to produce an executable program with aaone
The —c argument suppresses the loading phase, as does any syntax error in any of the routines
being compiled.
If the —p flag is used, only the macro prepass is run on all files whose name endsThe ex-
panded source is left on the file whose name is that of the sourcé swilistituted fotc.

FILES
file.c input file
file.o object file
a.out loaded output
tmp/ctm? temporary
/lib/c[01] compiler
/lib/crt0.0 runtime startoff
/lib/libc.a builtin functions, etc.
/lib/liba.a system library

SEE ALSO
‘C reference manual’, cdb(l), Id(l) for other flag arguments.

BUGS

CDB(1) 8/15/73 CDB(I)

NAME
cdb- C debugger
SYNOPSIS
cdb[core [a.out]]
DESCRIPTION
Cdbis a debugging program for use with C programs. It is by no means completed, and this sec-
tion is essentially only a placeholder for the actual description.
Even the presemtdbhas one useful feature: the command
$
will give a stack trace of the core image of a terminated C program. The calls are listed in the
order made; the actual arguments to each routine are given in octal.
SEE ALSO
cc(l), db(l), C Reference Manual
BUGS

It has to be fixed to work with the new system.

CHDIR(1) 3/15/72 CHDIR (1)

NAME
chdir - change working directory
SYNOPSIS
chdir directory
DESCRIPTION
Directory becomes the new working directory. The process must have execute permission on
the directory. The process must have execute (search) permisdigectory.
Because a new process is created to execute each comehdirdyould be ineffective if it were
written as a normal command. It is therefore recognized and executed by the Shell.
SEE ALSO
sh(l)
BUGS

CHMOD (1) 8/20/73 CHMOD (1)

NAME
chmod- change mode
SYNOPSIS
chmod octal file ...
DESCRIPTION
The octal mode replaces the mode of each of the files. The mode is constructed from the OR of
the following modes:
4000 set user ID on execution
2000 set group ID on execution
0400 read by owner
0200 write by owner
0100 execute by owner
0070 read, write, execute by group
0007 read, write, execute by others
Only the owner of a file (or the super-user) may change its mode.
SEE ALSO
Is(1)
BUGS

CHOWN (1) 3/15/72 CHOWN (1)

NAME
chown- change owner

SYNOPSIS
chown owner file ...

DESCRIPTION
Ownerbecomes the new owner of the files. The owner may be either a decimal UID or a login
name found in the password file.
Only the owner of a file (or the super-user) is allowed to change the owner. Unless it is done by
the super-user or the real user ID of the new owner, the set-user-ID permission bit is turned off
as the owner of a file is changed.

FILES
letc/passwd

BUGS

CMP (1) 1/15/73 CMP (1)

NAME
cmp- compare two files
SYNOPSIS
cmp filel file2
DESCRIPTION
The two files are compared for identical contents. Discrepancies are noted by giving the offset
and the differing words, all in octal.
SEE ALSO
proof (1), comm (1)
BUGS

If the shorter of the two files is of odd lengtbmpacts as if a null byte had been appended to it.
Theoffsetis only a single-precision number.

COMM (1) 8/21/73 COMM (1)

NAME
comm- print lines common to two files

SYNOPSIS
comm|[—[123]]filel file2 [file3]

DESCRIPTION
Commreadsfilel andfile2, which should be in sort, and produces a three column output: lines
only infilel; lines only infile2; and lines in both files.
If file3 is given, the output will be placed there; otherwise it will be written on the standard out-
put.
Flags 1, 2, or 3 suppress printing of the corresponding column. @dmen —12 prints only the
lines common to the two filessomm —23 prints only lines in the first file but not in the second;
comm-123is a no-op.

SEE ALSO
uniq(1), proof(1), cmp(1)

BUGS

CP(I) 1/24/73 CP(I)

NAME
cp — copy
SYNOPSIS
cpfilel file2
DESCRIPTION
The first file is copied onto the second. The mode and owner of the target file are preserved if it
already existed; the mode of the source file is used otherwise.
If file2 is a directory, then the target file is a file in that directory with the file-narfike bf
SEE ALSO
cat(l), pr(l), mv(l)
BUGS

Copying a file onto itself destroys its contents.

CREF (1) 2/5/73 CREF (1)

NAME
cref — make cross reference listing
SYNOPSIS
cref [—acilostux123] name ...
DESCRIPTION
Cref makes a cross reference listing of program files in assembler or C format. The files named
as arguments in the command line are searched for symbols in the appropriate syntax.
The output report is in four columns:
wm @ © @ o
symbol file see text as it appears in file
below
Crefuses either aignorefile or anonlyfile. If the —i option is given, it will take the next avail-
able argument to be agnore file name; if the—o option is given, the next available argument
will be taken as amnly file name. Ignore andonly files should be lists of symbols separated by
new lines. If anignorefile is given, all the symbols in that file will be ignored in columns (1)
and (3) of the output. If aonly file is given, only symbols appearing in that file will appear in
column (1). Only one of the options or —o may be used. The default setting-is Assembler
predefined symbols or C keywords are ignored.
The —-s option causes current symbols to be put in column 3. In the assembler, the current sym-
bol is the most recent name symbol; in C, the current function name.-ITbption causes the
line number within the file to be put in column 3.
The-t option causes the next available argument to be used as the name of the intermediate tem-
porary file (instead of /tmp/crt??). The file is created and is not removed at the end of the pro-
cess.
Options:
a assembler format (default)
¢ C format input
i useignorefile (see above)
| put line number in col. 3 (instead of current symbol)
0 useonlyfile (see above)
s current symbol in col. 3 (default)
t user supplied temoprary file
u print only symbols that occur exactly once
X print only C external symbols
1 sort output on column 1 (default)
2 sort output on column 2
3 sort output on column 3
FILES
/tmp/crt?? temporaries
lusr/lib/aign default assemblgmorefile
lusrl/lib/cign default Ggnorefile
/usr/bin/crpost post processor
/usr/binfupost post processor fer option
/bin/sort used to sort temporaries
SEE ALSO
as(l), cc(l), sort(l)
BUGS

DATE (1) 11/1/73 DATE (1)

NAME
date- print and set the date
SYNOPSIS
date [mmddhhmml[yy]]
DESCRIPTION
If no argument is given, the current date is printed to the second. If an argument is given, the
current date is set. The firstmis the month numbedd is the day number in the monthhis
the hour number (24 hour system); the secomdis the minute numbesy is the last 2 digits of
the year number and is optional. For example:
date 10080045
sets the date to Oct 8, 12:45 AM. The current year is the default if no year is mentioned. The
system operates in GMTDatetakes care of the conversion to and from local standard and day-
light time.
BUGS

DB (1) 8/20/73 DB (1)

NAME
db - debug

SYNOPSIS
db [core [namelist]] F]

DESCRIPTION
Unlike many debugging packages (including DEC’s ODT, on wiibhs loosely based)lb is
not loaded as part of the core image which it is used to examine; instead it examines files. Typi-
cally, the file will be either a core image produced after a fault or the binary output of the assem-
bler. Coreis the file being debugged; if omittezbre is assumedNamelistis a file containing a
symbol table. If it is omitted, the symbol table is obtained from the file being debugged, or if not
there froma.out. If no appropriate name list file can be fourtdh can still be used but some of
its symbolic facilities become unavailable.

For the meaning of the optional third argument, see the last paragraph below.

The format for mostb requests is an address followed by a one character command. Addresses
are expressions built up as follows:

1. A name has the value assigned to it when the input file was assembled. It may be relocat-
able or not depending on the use of the name during the assembly.

An octal number is an absolute quantity with the appropriate value.

. A decimal number immediately followed by is an absolute quantity with the appropriate
value.

4. An octal number immediately followed byis a relocatable quantity with the appropriate
value.

5. The symbol indicates the current pointer db. The current pointer is set by manijp re-
guests.

6. A* before an expression forms an expression whose value is the number in the word ad-
dressed by the first expression.* Alone is equivalent td.".

7. Expressions separated byor blank are expressions with value equal to the sum of the
components. At most one of the components may be relocatable.

8. Expressions separated byform an expression with value equal to the difference to the
components. If the right component is relocatable, the left component must be relocatable.

9. Expressions are evaluated left to right.
Names for registers are built in:

r0...r5
Sp

pc

frO ... fr5

These may be examined. Their values are deduced from the contents of the stack in a core image
file. They are meaningless in a file that is not a core image.

If no address is given for a command, the current address (also specified)hy dssumed. In
general, .’ points to the last word or byte printed k.

There aredb commands for examining locations interpreted as numbers, machine instructions,
ASCII characters, and addresses. For numbers and characters, either bytes or words may be ex-
amined. The following commands are used to examine the specified file.

[The addressed word is printed in octal.
\ The addressed byte is printed in octal.
" The addressed word is printed as two ASCII characters.

DB (1)

8/20/73 DB (1)

The addressed byte is printed as an ASCII character.
The addressed word is printed in decimal.

? The addressed word is interpreted as a machine instruction and a symbolic form of the in-
struction, including symbolic addresses, is printed. Often, the result will appear exactly as
it was written in the source program.

& The addressed word is interpreted as a symbolic address and is printed as the name of the
symbol whose value is closest to the addressed word, possibly followed by a signed offset.

<nl>(i. e., the character “new line”) This command advances the current location coutiter “
and prints the resulting location in the mode last specified by one of the above requests.

This character decrements™and prints the resulting location in the mode last selected
one of the above requests. It is a converse to <nl>.

% Exit.

Odd addresses to word-oriented commands are rounded down. The incrementing and decre-
menting of “.” done by the<nl> and” requests is by one or two depending on whether the last
command was word or byte oriented.

The address portion of any of the above commands may be followed by a comma and then by an
expression. In this case that number of sequential words or bytes specified by the expression is

won

printed. “.” is advanced so that it points at the last thing printed.
There are two commands to interpret the value of expressions.

= When preceded by an expression, the value of the expression is typed in octal. When not
preceded by an expression, the value df i indicated. This command does not change
the value of “\".

An attempt is made to print the given expression as a symbolic address. If the expression is
relocatable, that symbol is found whose value is nearest that of the expression, and the sym-
bol is typed, followed by a sign and the appropriate offset. If the value of the expression is
absolute, a symbol with exactly the indicated value is sought and printed if found; if no
matching symbol is discovered, the octal value of the expression is given.

The following command may be used to patch the file being debugged.

I This command must be preceded by an expression. The value of the expression is stored at
the location addressed by the current value ¢f ‘The opcodes do not appear in the sym-
bol table, so the user must assemble them by hand.

The following command is used after a fault has caused a core image file to be produced.

$ causes the fault type and the contents of the general registers and several other registers to
be printed both in octal and symbolic format. The values are as they were at the time of the
fault.

For some purposes, it is important to know how addresses typed by the user correspond with lo-
cations in the file being debugged. The mapping algorithm employedblig non-trivial for

two reasons: First, in aa.out file, there is a 20(8) byte header which will not appear when the

file is loaded into core for execution. Therefore, apparent location 0 should correspond with ac-
tual file offset 20. Second, addresses in core images do not correspond with the addresses used
by the program because in a core image there is a 512-byte header containing the system’s per-
process data for the dumped process, and also because the stack is stored contiguously with the
text and data part of the core image rather than at the highest possible loc®iobeys the
following rules:

If exactly one argument is given, and if it appears to beaayut file, the 20-byte header is
skipped during addressing, i.e., 20 is added to all addresses typed. As a consequence, the header
can be examined beginning at locatii0.

If exactly one argument is given and if the file does not appear to lzeart file, no mapping is
done.

DB (1)

8/20/73 DB (1)

If zero or two arguments are given, the mapping appropriate to a core image file is employed.

This means that locations above the program break and below the stack effectively do not exist
(and are not, in fact, recorded in the core file). Locations above the user’s stack pointer are
mapped, in looking at the core file, to the place where they are really stored. The per-process
data kept by the system, which is stored in the first 512(10) bytes of the core file, cannot cur-

rently be examined (except BY.

If one wants to examine a file which has an associated name list, but is not a core image file, the
last argument “” can be used (actually the only purpose of the last argument is to make the
number of arguments not equal to two). This feature is used most frequently in examining the
memory file /dev/imem.

SEE ALSO

as(l), core(V), a.out(V), od(l)

DIAGNOSTICS

BUGS

“File not found” if the first argument cannot be read; otherwigg."

There should be some way to examine the registers and other per-process data in a core image;
also there should be some way of specifying double-precision addresses. It does not know yet
about shared text segments.

DC(I)

NAME

1/15/73 DC(I)

dc - desk calculator

SYNOPSIS
dc| file]

DESCRIPTION

Dc is an arbitrary precision integer arithmetic package. The overall structudeisfa stacking
(reverse Polish) calculator. The following constructions are recognized by the calculator:

number

+=*%"

X o =+ T o

<X =X >X

z
?
new-line
space

The value of the number is pushed on the stack. A number is an unbroken string of
the digits 0-9. It may be preceded by an undersctwenput a negative number.

The top two values on the stack are added (+), subtracteshgltiplied (*), divided
(/), remaindered (%), or exponentiated (). The two entries are popped off the stack;
the result is pushed on the stack in their place.

The top of the stack is popped and stored into a register nagnetlerex may be
any character.

The value in registex is pushed on the stack. The registas not altered. All reg-
isters start with zero value.

The top value on the stack is pushed on the stack. Thus the top value is duplicated.
The top value on the stack is printed. The top value remains unchanged.

All values on the stack and in registers are printed.

exits the program. If executing a string, the nesting level is popped by two.

treats the top element of the stack as a character string and executes it as a string of
dc commands.

puts the bracketed ascii string onto the top of the stack.

The top two elements of the stack are popped and compared. Regs&xecuted
if they obey the stated relation.

replaces the top element on the stack by its square root.

interprets the rest of the line as a UNIX command.

All values on the stack are popped.

The top value on the stack is popped and used as the number radix for further input.

The top value on the stack is popped and used as the number radix for further out-
put.

The stack level is pushed onto the stack.

A line of input is taken from the input source (usually the console) and executed.
ignored except as the name of a register or to end the respodse to a
ignored except as the name of a register or to terminate a number.

If a file name is given, input is taken from that file until end-of-file, then input is taken from the
console. An example which prints the first ten values of n! is

[lal+dsa*plalO>x]sx
Osal

Ixx

FILES
/etc/msh

to implement ‘I’

DC(I) 1/15/73 DC(I)

DIAGNOSTICS
(x) ? for unrecognized character x.
(x) ? for not enough elements on the stack to do what was asked by command x.
‘Out of space’ when the free list is exhausted (too many digits).
‘Out of headers’ for too many numbers being kept around.
‘Out of pushdown’ for too many items on the stack.
‘Nesting Depth’ for too many levels of nested execution.

BUGS

DSW (1) 3/15/72 DSW (1)

NAME
dsw - delete interactively
SYNOPSIS
dsw| directory]
DESCRIPTION
For each file in the given directory’(if not specified)dswtypes its name. Iy is typed, the file
is deleted; i, dswexits; if new-line, the file is not deleted; if anything eldgywasks again.
SEE ALSO
rm(1)
BUGS

The namealswis a carryover from the ancient past. Its etymology is amusing.

DU (1) 1/20/73 DU(I)

NAME
du - summarize disk usage

SYNOPSIS
du[-s][-a][name ...]

DESCRIPTION
Du gives the number of blocks contained in all files and (recursively) directories within each
specified directory or filmame. If nameis missing, " is used.
The optional arguments causes only the grand total to be given. The optional argumant
causes an entry to be generated for each file. Absence of either causes an entry to be generated
for each directory only.
A file which has two links to it is only counted once.

BUGS

Non-directories given as arguments (not ungeoption) are not listed.

Removable file systems do not work correctly since i-numbers may be repeated while the corre-
sponding files are distinctDu should maintain an i-number list per root directory encountered.

ECHO(I) 3/15/72 ECHO(1)

NAME
echo- echo arguments
SYNOPSIS
echo[arg ...]
DESCRIPTION
Echowrites all its arguments in order as a line on the standard output file. It is mainly useful for
producing diagnostics in command files.
BUGS

Echowith no arguments does not print a blank line.

ED(I) 1/15/73 ED(1)

NAME

ed- editor
SYNOPSIS

ed[—][name]
DESCRIPTION

Edis the standard text editor.

If a nameargument is givened simulates are command (see below) on the named file; that is
to say, the file is read inted’s buffer so that it can be edited. The optioratimulates aros
command (see below) which suppresses the printing of characters couefs,landw com-
mands.

Ed operates on a copy of any file it is editing; changes made in the copy have no effect on the
file until aw (write) command is given. The copy of the text being edited resides in a temporary
file called thebuffer. There is only one buffer.

Commands tedhave a simple and regular structure: zero or naatdressesollowed by a sin-

gle charactecommand,possibly followed by parameters to the command. These addresses
specify one or more lines in the buffer. Every command which requires addresses has default
addresses, so that the addresses can often be omitted.

In general, only one command may appear on a line. Certain commands allow the input of text.
This text is placed in the appropriate place in the buffer. Wdés accepting text, it is said to

be ininput mode.In this mode, no commands are recognized; all input is merely collected. In-
put mode is left by typing a period alone at the beginning of a line.

Ed supports a limited form akgular expressiomotation. A regular expression is an expression
which specifies a set of strings of characters. A member of this set of strings is said to be
matchedby the regular expression. The regular expressions alloweedlare constructed as
follows:

1. An ordinary character (not one of those discussed below) is a regular expression and
matches that character.

2. Acircumflex " at the beginning of a regular expression matches the null character at the
beginning of a line.

3. Acurrency symbol ‘$’ at the end of a regular expression matches the null character at the
end of a line.

4. A period I matches any character but a new-line character.

5. Aregular expression followed by an asterisk *’ matches any number of adjacent occur-
rences (including zero) of the regular expression it follows.

6. A string of characters enclosed in square brackets ‘[]’ matches any character in the string
but no others. If, however, the first character of the string is a circumflex ‘™’ the regular
expression matches any character but new-line and the characters in the string.

7. The concatenation of regular expressions is a regular expression which matches the con-
catenation of the strings matched by the components of the regular expression.

8. The null regular expression standing alone is equivalent to the last regular expression en-
countered.

Regular expressions are used in addresses to specify lines and in one commarizb(sesg to
specify a portion of a line which is to be replaced.

If it is desired to use one of the regular expression metacharacters as an ordinary character, that
character may be preceded by ‘\'. This also applies to the character bounding the regular expres-
sion (often /') and to ‘\ itself.

Addresses are constructed as follows. To understand addressiuljtils necessary to know
that at any time there is eurrent line. Generally speaking, the current line is the last line af-

ED(I) 1/15/73 ED(1)

fected by a command; however, the exact effect on the current line by each command is dis-
cussed under the description of the command.

The character ‘addresses the current line.

The character ' addresses the line immediately before the current line.

The character ‘$’ addresses the last line of the buffer.
A decimal numban addresses theth line of the buffer.

“X addresses the line associated (marked) with the mark name charaehich must
be a printable character. Lines are marked wittkit@mmand described below.

6. A regular expression enclosed in slashes ‘/" addresses the first line found by searching to-
ward the end of the buffer and stopping at the first line containing a string matching the
regular expression. If necessary the search wraps around to the beginning of the buffer.

7. A regular expression enclosed in queries ‘?' addresses the first line found by searching
toward the beginning of the buffer and stopping at the first line found containing a string
matching the regular expression. If necessary the search wraps around to the end of the
buffer.

8. An address followed by a plus sign ‘+’ or a minus sigfidllowed by a decimal number
specifies that address plus (resp. minus) the indicated number of lines. The plus sign
may be omitted.

o~ N

Commands may require zero, one, or two addresses. Commands which require no addresses re-
gard the presence of an address as an error. Commands which accept one or two addresses as-
sume default addresses when insufficient are given. If more addresses are given than such a
command requires, the last one or two (depending on what is accepted) are used.

Addresses are separated from each other typically by a comimBhey may also be separated

by a semicolon;’. In this case the current line’‘is set to the previous address before the next
address is interpreted. This feature can be used to determine the starting line for forward and
backward searches (', ‘?"). The second address of any two-address sequence must correspond
to a line following the line corresponding to the first address.

In the following list of ed commands, the default addresses are shown in parentheses. The
parentheses are not part of the address, but are used to show that the given addresses are the de-
fault.

As mentioned, it is generally illegal for more than one command to appear on a line. However,
any command may be suffixed by ‘p’ (for ‘print’). In that case, the current line is printed after
the command is complete.

(.)a

<text>

The append command reads the given text and appends it after the addressed line.
‘" is left on the last line input, if there were any, otherwise at the addressed line.
Address ‘0" is legal for this command; text is placed at the beginning of the buffer.

(.,.)c

<text>

The change command deletes the addressed lines, then accepts input text which re-
places these lines..’ is left at the last line input; if there were none, it is left at the
first line not changed.

(.,.)d
The delete command deletes the addressed lines from the buffer. The line originally
after the last line deleted becomes the current line; if the lines deleted were origi-
nally at the end, the new last line becomes the current line.

ED(I)

1/15/73 ED(1)

e filename
The edit command causes the entire contents of the buffer to be deleted, and then the
named file to be read in..”is set to the last line of the buffer. The number of char-
acters read is typed. ‘filename’ is remembered for possible use as a default file
name in a subsequendr w command.

f filename
The filename command prints the currently remembered file name. If ‘filename’ is
given, the currently remembered file name is changed to ‘filename’.

(1,%) g/regular expression/command list
In the global command, the first step is to mark every line which matches the given
regular expression. Then for every such line, the given command list is executed
with ‘.’ initially set to that line. A single command or the first of multiple com-
mands appears on the same line with the global command. All lines of a multi-line
list except the last line must be ended with ‘A, i, andc commands and associated
input are permitted; the’'terminating input mode may be omitted if it would be on
the last line of the command list. The (global) commangsndyv, are not permit-
ted in the command list.

()i

<text>

This command inserts the given text before the addressed line. léft at the last
line input; if there were none, at the addressed line. This command differs from the
acommand only in the placement of the text.

(.)kx
The mark command associates or marks the addressed line with the single character
mark namex. The ten most recent mark names are remembered. The current mark
names may be printed with theeommand.

(.,.)ma
The move command will reposition the addressed lines after the line addreszed by
The last of the moved lines becomes the current line.

n
Then command will print the current mark names.

0s

ov
After oscharacter counts printed k& r, andw are suppressedOv turns them back
on.

(.op _ o o
The print command prints the addressed linésis'left at the last line printed. The
p commandnaybe placed on the same line after any command.

q

The quit command causedto exit. No automatic write of a file is done.

($) r filename
The read command reads in the given file after the addressed line. If no file name is
given, the remembered file name, if any, is used @aadf commands). The re-
membered file name is not changed unless ‘filename’ is the very first file name
mentioned. Address ‘0’ is legal farand causes the file to be read at the beginning
of the buffer. If the read is successful, the number of characters read is typed. *
left at the last line read in from the file.

(.,.)s/regular expression/replacement/ or,

(.,.)s/regular expression/replacement/g
The substitute command searches each addressed line for an occurrence of the speci-
fied regular expression. On each line in which a match is found, all matched strings

ED(I)

1/15/73 ED(1)

are replaced by the replacement specified, if the global replacement indicator ‘g’ ap-
pears after the command. If the global indicator does not appear, only the first oc-
currence of the matched string is replaced. It is an error for the substitution to fail
on all addressed lines. Any character other than space or new-line may be used in-
stead of /" to delimit the regular expression and the replacemehis feft at the

last line substituted.

An ampersand ‘&’ appearing in the replacement is replaced by the regular expres-
sion that was matched. The special meaning of ‘&’ in this context may be sup-
pressed by preceding it by ‘\'.

(1,%) viregular expression/command list
This command is the same as the global command except that the command list is
executed with .’ initially set to every lineexceptthose matching the regular expres-
sion.

(1,$) w filename
The write command writes the addressed lines onto the given file. If the file does
not exist, it is created mode 666 (readable and writeable by everyone). The remem-
bered file name isiot changed unless ‘filename’ is the very first file name men-
tioned. If no file name is given, the remembered file name, if any, is usec ek
f commands). ." is unchanged. If the command is successful, the number of char-
acters written is typed.

(%)=
The line number of the addressed line is typeds unchanged by this command.

IUNIX command
The remainder of the line after the ‘' is sent to UNIX to be interpreted as a com-
mand. ‘' is unchanged. The entire shell syntax is not recognized. See msh(VIl) for
the restrictions.

(.+1)<newline>
An address alone on a line causes the addressed line to be printed. A blank line
alone is equivalent to *.+1p’; it is useful for stepping through text.

If an interrupt signal (ASCII DEL) is sergdwill print a ‘?" and return to its command level.

If invoked with the command name”; (see init(VIl)) edwill sign on with the message ‘Edit-
ing system’ and print *’ as the command level prompt character.

Ed has size limitations on the maximum number of lines that can be edited, on the maximum
number of characters in a line, in a global’'s command list, in a remembered file name, and in the
size of the temporary file. The current sizes are: 4000 lines per file, 512 characters per line, 256
characters per global command list, 64 characters per file name, and 64K characters in the tem-
porary file (see BUGS).

FILES

/tmp/etm?, temporary

/etc/msh, to implement the ‘I" command.
DIAGNOSTICS

“?" for errors in commands; ‘TMP’ for temporary file overflow.
BUGS

The temporary file can grow to no more than 64K bytes.

EXIT(1) 3/15/72 EXIT(1)

NAME
exit — terminate command file
SYNOPSIS
exit
DESCRIPTION
Exit performs aseekto the end of its standard input file. Thus, if it is invoked inside a file of
commands, upon return froexit the shell will discover an end-of-file and terminate.
SEE ALSO
if(1), goto(l), sh(l)
BUGS

FC (1) 8/20/73 FC(I)

NAME
fc — fortran compiler

SYNOPSIS
fc [—c] sfilel.f ... ofilel ...

DESCRIPTION
Fcis the UNIX Fortran compiler. It accepts three types of arguments:

Arguments whose names end with *.f' are assumed to be Fortran source program units; they are
compiled, and the object program is left on the file sfilel.o (i.e. the file whose name is that of
the source with ‘.0’ substituted for *.f").

Other arguments (except fec) are assumed to be either loader flags, or object programs, typi-
cally produced by an earlidc run, or perhaps libraries of Fortran-compatible routines. These
programs, together with the results of any compilations specified, are loaded (in the order given)
to produce an executable program with nanoeit.

The —c argument suppresses the loading phase, as does any syntax error in any of the routines
being compiled.

The following is a list of differences betwednand ANSI standard Fortran (also see the BUGS
section):

1. Arbitrary combination of types is allowed in expressions. Not all combinations are ex-
pected to be supported at runtime. All of the normal conversions involving integer, real,
double precision and complex are allowed.

DEC’simplicit statement is recognized. E.guplicit integer /i—-n/

The types doublecomplex, logical*1, integer*1, integer*2 and real*8 (double precision) are
supported.

& as the first character of a line signals a continuation card.
c as the first character of a line signals a comment.

All keywords are recognized in lower case.

The notion of ‘column 7’ is not implemented.

© N o g &~

G-format input is free formleading blanks are ignored, the first blank after the start of the
number terminates the field.

9. A comma in any numeric or logical input field terminates the field.
10. There is no carriage control on output.

11. A sequence af characters in double quotes " is equivalenttd followed by those char-
acters.

12. Indata statements, a hollerith string may initialize an array or a sequence of array elements.

13. The number of storage units requested by a bireag must be identical to the number
contained in the record being read.

In I/O statements, only unit numbers 0-19 are supported. Unit numbefers to file fortin;

(e.g. unit 9 is file ‘fort09’). For input, the file must exist; for output, it will be created. Unit 5 is
permanently associated with the standard input file; unit 6 with the standard output file. Also see
setfil (1) for a way to associate unit numbers with named files.

FILES
file.f input file
a.out loaded output
f.tmp[123] temporary (deleted)
Jusr/fort/fcl compiler proper
/Nlib/fr0.0 runtime startoff
Nlib/filib.a interpreter library

FC (1) 8/20/73 FC(I)

lib/libf.a builtin functions, etc.
llib/liba.a system library
SEE ALSO

ANSI standard, Id(l) for loader flags
Also see the writeups on the precious few non-standard Fortran subroutines, ierror and setfil (1)

DIAGNOSTICS
Compile-time diagnostics are given in English, accompanied if possible with the offending line
number and source line with an underscore where the error occurred. Runtime diagnostics are
given by number as follows:

1 invalid log argument

2 bad arg count to amod

3 bad arg count to atan2

4 excessive argument to cabs
5 exp too large in cexp

6 bad arg count to cmplx

7 bad arg count to dim

8 excessive argument to exp
9 bad arg count to idim

10 bad arg count to isign

11 bad arg count to mod

12 bad arg count to sign

13 illegal argument to sqrt

14 assigned/computed goto out of range
15 subscript out of range

16 real**real overflow

17 (negative real)**real

100 illegal I/O unit number

101 inconsistent use of /O unit

102 cannot create output file

103 cannot open input file

104 EOF on input file

105 illegal character in format

106 format does not begin with (

107 no conversion in format but non-empty list
108 excessive parenthesis depth in format
109 illegal format specification

110 illegal character in input field

111 end of format in hollerith specification

999 unimplemented input conversion

Any of these errors can be caught by the progranmesee (l11).

BUGS
The following is a list of those features not yet implemented:

arithmetic statement functions
scale factors on input

Backspacestatement.

FED(I) 1/15/73 FED(I)

NAME
fed - edit associative memory for form letter
SYNOPSIS
fed
DESCRIPTION
Fed is used to edit a form letter associative memory fflaym.m, which consists of named
strings. Commands consist of single letters followed by a list of string names separated by a sin-
gle space and ending with a new line. The conventions of the Shell with respect to *' and ‘?’
hold for all commands bum. The commands are:
ename ...
Fed writes the string whose name mameonto a temporary file and executed. On exit
from theedthe temporary file is copied back into the associative memory. Each argument is
operated on separately. Be sure to giveednw command (without a filename) to rewrite
fed’stemporary file before quitting out efl.
d[name ...]
deletes a string and its name from the memory. When called with no argutheperates
in a verbose mode typing each string name and deleting onfyi#f typed. Aq response re-
turns tofeds command level. Any other response does nothing.
m namel name?2 ...
(move) changes the name of namel to name2 and removes previous string name?2 if one ex-
ists. Several pairs of arguments may be given. Literal strings are expected for the names.
n[name ...]
(names) lists the string names in the memory. If called with the optional arguments, it just
lists those requested.
p name ...
prints the contents of the strings with names given by the arguments.
q
returns to the system.
c[pllf] o _ _
checks the associative memory file for consistency and reports the number of free headers
and blocks. The optional arguments do the following:
p causes any unaccounted-for string to be printed.
f fixes broken memories by adding unaccounted-for headers to free storage and removing
references to released headers from associative memory.
FILES
ftmp/ftmp? temporary
form.m associative memory
SEE ALSO
form(l), ed(l), sh(l)
WARNING
It is legal but unwise to have string names with blanks, ‘" or “?’ in them.
BUGS

FILE (1) 11/1/73 FILE (1)

NAME
file — determine format of file
SYNOPSIS
file files
DESCRIPTION
File will examine each of its arguments and give a guess as to the contents of the file. It is the
only program that will give device numbers of special files.
BUGS

If the file is not instantly recognized, its type is given as ‘unknown’. There should be some
heuristic to recognize source file ‘signatures’ in each of the standard languages.

FORM (1) 6/15/72 FORM (1)

NAME
form — form letter generator

SYNOPSIS
form proto arg ...

DESCRIPTION
Form generates a form letter from a prototype letter, an associative memory, arguments and in a
special case, the current date.
If formis invoked with theproto argumentx, the associative memory is searched for an entry
with namex and the contents filed under that name are used as the prototype. If the search fails,
the messageX:’ is typed on the console and whatever text is typed in from the console, termi-
nated by two new lines, is used as the prototype. If the prototype argument is missing, ‘{letter}
is assumed.
Basically,formis a copy process from the prototype to the output file. If an element of the form
[n] (wheren is a digit from 1 to 9) is encountered, theth argument is inserted in its place, and
that argument is then rescanned. If [0] is encountered, the current date is inserted. If the desired
argument has not been given, a message of the fain i$ typed. The response typed in then
is used for that argument.
If an element of the forrnpmé@ or {namé@ is encountered, theameis looked up in the associa-
tive memory. If it is found, the contents of the memory under ti@mereplaces the original el-
ement (again rescanned). If thameis not found, a message of the forrmgmé:’ is typed.
The response typed in is used for that element. The response is entered in the memory under the
name if the name is enclosed in []. The response is not entered in the memory but is remem-
bered for the duration of the letter if the name is enclosed in {}.
In both of the above cases, the response is typed in by entering arbitrary text terminated by two
new lines. Only the first of the two new lines is passed with the text.
If one of the special characters [{]}\ is preceded by a \, it loses its special character.
If a file named ‘forma’ already exists in the user’s directory, ‘formb’ is used as the output file
and so forth to ‘formz’.
The file ‘form.m’ is created if none exists. Because form.m is operated on by the disc allocator,
it should only be changed by usifegl,the form letter editor, diorm.

FILES
form.m associative memory
form? output file (read only)

SEE ALSO
fed(l), type(l), roff(l)

BUGS

An unbalanced] or } acts as an end of file but may add a few strange entries to the associative
memory.

GOTO(I) 3/15/72 GOTO(I)

NAME
goto — command transfer

SYNOPSIS
goto label

DESCRIPTION
Gotois only allowed when the Shell is taking commands from a file. The file is searched from
the beginning for a line beginning with *;’ followed by one or more spaces followed bialbied
If such a line is found, thgoto command returns. Since the read pointer in the command file
points to the line after the label, the effect is to cause the Shell to transfer to the labelled line.
‘.’ is a do-nothing command that is ignored by the Shell and only serves to place a label.

SEE ALSO
sh(l)

BUGS

GREP (1) 3/3/73 GREP (1)

NAME
grep— search a file for a pattern

SYNOPSIS
grep[v][-l][—n] expression [input] [output]

DESCRIPTION
Grep will search the input file (standard input default) for each line containing the regular ex-
pression. Normally, each line found is printed on the output file (standard output default). If the
-v flag is used, all lines but those matching are printed. IHhigag is used, each line printed is
preceded by its line number. If then flag is used, no lines are printed, but the number of lines
that would normally have been printed is reported. If interrupt is hit, the number of lines
searched is printed.
For a complete description of the regular expression, see ed(l). Care should be taken when using
the characters $ * [[0() and \ in the regular expression as they are also meaningful to the shell.
(Precede them by \)

SEE ALSO
ed(l), sh(l)

BUGS

Lines are limited to 512 characters; longer lines are truncated.

IF(1) 3/15/72 IF(I)
NAME
if — conditional command
SYNOPSIS
if expr command [arg ...]
DESCRIPTION

If evaluates the expressi@xpr,and if its value is true, executes the giveemmandwith the
given arguments.

The following primitives are used to construct éxgr:

- file true if the file exists and is readable.

-w file true if the file exists and is writable

sl=s2 true if the stringslands2are equal.

sll=s2 true if the stringslands2are not equal.

These primaries may be combined with the following operators:
! unary negation operator

-a binaryandoperator

-0 binaryor operator

(expr) parentheses for grouping.

—a has higher precedence thao. Notice that all the operators and flags are separate arguments
to if and hence must be surrounded by spaces. Notice also that parentheses are meaningful to the
Shell and must be escaped.

SEE ALSO

BUGS

sh(l)

KILL (1) 8/18/73 KILL (1)

NAME
kill —do in an unwanted process
SYNOPSIS
kill processid ...
DESCRIPTION
Kills the specified processes. The processid of each asynchronous process started with ‘&’ is re-
ported by the shell. Processid’s can also be found by psifiy
The killed process must have been started from the same typewriter as the current user, unless he
is the superuser.
SEE ALSO
ps(l), sh(l)
BUGS

Clearly people should only be allowed to kill processes owned by them, and having the same
typewriter is neither necessary nor sufficient.

LD (1) 8/16/73 LD (1)

NAME
Id — link editor

SYNOPSIS
Id [—sulxrnd] name ...

DESCRIPTION
Ld combines several object programs into one; resolves external references; and searches li-
braries. In the simplest case the names of several object programs are givehc@mines
them, producing an object module which can be either executed or become the input for a further
Id run. (In the latter case, the option must be given to preserve the relocation bits.) The out-
put ofld is left ona.out. This file is executable only if no errors occurred during the load.

The argument routines are concatenated in the order specified. The entry point of the output is
the beginning of the first routine.

If any argument is a library, it is searched exactly once at the point it is encountered in the argu-
ment list. Only those routines defining an unresolved external reference are loaded. If a routine
from a library references another routine in the library, the referenced routine must appear after
the referencing routine in the library. Thus the order of programs within libraries is important.

Ld understands several flag arguments which are written preceded-by BXcept for-I, they
should appear before the file names.

—-s ‘squash’ the output, that is, remove the symbol table and relocation bits to save space (but
impair the usefulness of the debugger). This information can also be remosteigh by

—-u take the following argument as a symbol and enter it as undefined in the symbol table. This
is useful for loading wholly from a library, since initially the symbol table is empty and an
unresolved reference is needed to force the loading of the first routine.

—-I This option is an abbreviation for a library namel. alone stands for ‘/lib/liba.a’, which is
the standard system library for assembly language prograthsstands for ‘/lib/libk.a’
wherex is any character. There are libraries for Fortrar §), and C & = ¢). A library is
searched when its name is encountered, so the placemeritisfsignificant.

—x do not preserve local (non-.globl) symbols in the output symbol table; only enter external
symbols. This option saves some space in the output file.

—r generate relocation bits in the output file so that it can be the subject of atwbther This
flag also prevents final definitions from being given to common symbols.

—d force definition of common storage even if theflag is present (used for reloc (V1II)).

-n Arrange that when the output file is executed, the text portion will be read-only and shared
among all users executing the file. This involves moving the data areas up the the first pos-
sible 4K word boundary following the end of the text.

FILES
/lib/lib?.a libraries
a.out output file

SEE ALSO
as(l), ar(l)

BUGS

LN (1) 3/15/72 LN (1)

NAME
In — make a link
SYNOPSIS
In namel [name2]
DESCRIPTION
A link is a directory entry referring to a file; the same file (together with its size, all its protection
information, etc) may have several links to it. There is no way to distinguish a link to a file from
its original directory entry; any changes in the file are effective independently of the name by
which the file is known.
Ln creates a link to an existing filramel. If name2is given, the link has that name; otherwise
it is placed in the current directory and its name is the last componearnefL.
It is forbidden to link to a directory or to link across file systems.
SEE ALSO
rm(1)
BUGS

There is nothing particularly wrong with, buttp doesn’t understand about links and makes one
copy for each name by which a file is known; thus if the tape is extracted several copies are re-
stored and the information that links were involved is lost.

LOGIN(I) 3/15/72 LOGIN(1)

NAME
login — sign onto UNIX

SYNOPSIS
login [username]

DESCRIPTION
Thelogin command is used when a user initially signs onto UNIX, or it may be used at any time
to change from one user to another. The latter case is the one summarized above and described
here. See ‘How to Get Started’ for how to dial up initially.

If login is invoked without an argument, it will ask for a user name, and, if appropriate, a pass-
word. Echoing is turned off (if possible) during the typing of the password, so it will not appear
on the written record of the session.

After a successful login, accounting files are updated and the user is informed of the existence of
mailboxand message-of-the-day files.

Login is recognized by the Shell and executed directly (without forking).

FILES
/tmp/utmp accounting
tmp/wtmp accounting
mailbox mail
/etc/motd message-of-the-day
/etc/passwd password file

SEE ALSO
init(V11), getty(VIl), mail(l)

DIAGNOSTICS
‘login incorrect,’ if the name or the password is bad. ‘No Shell,’, ‘cannot open password file,’
‘no directory’: consult a UNIX programming councilor.

BUGS
If the first login is unsuccessful, it tends to go into a state where it won't accept a correct login.
Hit EOT and try again.

LS (1) 8/20/73 LS (1)

NAME
Is — list contents of directory
SYNOPSIS
Is[—ltasdru] name ...
DESCRIPTION
For each directory argumers lists the contents of the directory; for each file arguménte-
peats its name and any other information requested. The output is sorted alphabetically by de-
fault. When no argument is given, the current directory is listed. When several arguments are
given, the arguments are first sorted appropriately, but file arguments appear before directories
and their contents. There are several options:
-1 list in long format, giving mode, number of links, owner, size in bytes, and time of last
modification for each file. (See below.)
-t sort by time modified (latest first) instead of by name, as is normal
—a list all entries; usually those beginning withdre suppressed
—-s give size in blocks for each entry
—d if argument is a directory, list only its name, not its contents (mostly used-with get sta-
tus on directory)
—-r reverse the order of sort to get reverse alphabetic or oldest first as appropriate
—-u use time of last access instead of last modification for sorti@(printing €I1)
The mode printed under thd option contains 10 characters which are interpreted as follows:
the first character is
d if the entry is a directory;
b if the entry is a block-type special file;
c if the entry is a character-type special file;
— if the entry is a plain file.
The next 9 characters are interpreted as three sets of three bits each. The first set refers to owner
permissions; the next to permissions to others in the same user-group; and the last to all others.
Within each set the three characters indicate permission respectively to read, to write, or to exe-
cute the file as a program. For a directory, ‘execute’ permission is interpreted to mean permis-
sion to search the directory for a specified file. The permissions are indicated as follows:
r if the file is readable
w if the file is writable
x if the file is executable
- if the indicated permission is not granted
Finally, the group-execute permission character is givesiaithe file has set-group-ID mode;
likewise the user-execute permission character is giveif te file has set-user-ID mode.
FILES
/etc/passwd to get user ID’s fisr-I.
BUGS

MAIL (1) 10/25/72 MAIL (1)

NAME
mail — send mail to another user

SYNOPSIS
mail [—yn]
mail letter person ...
mail person

DESCRIPTION
Mail without an argument searches for a file caltedilbox, prints it if present, and asks if it
should be saved. If the answeryisthe mail is renamecthbox,otherwise it is deletedMail with
a -y or —n argument works the same way, except that the answer to the question is supplied by
the argument.
When followed by the names of a letter and one or more people, the letter is appended to each
person’smailbox. When apersonis specified without detter, the letter is taken from the
sender’s standard input up to an EOT. Each letter is preceded by the sender’'s name and a post-
mark.
A personis either a user name recognizedlbygin, in which case the mail is sent to the default
working directory of that user, or the path name of a directory, in which caskboxin that di-
rectory is used.
When a user logs in he is informed of the presence of mail.

FILES
/etc/passwd to identify sender and locate persons
mailbox input mail
mbox saved malil

SEE ALSO
login(l)

BUGS

The mail should be prepended rather than appended to the mailbox. The old mbox should not be
destroyed when new mail is saved.

MAN (1) 8/20/73 MAN (1)

NAME
man- run off section of UNIX manual

SYNOPSIS
man [section] [title ...]

DESCRIPTION
Man is a shell command file that will locate and run off one or more sections of this manual.
Sectionis the section number of the manual, as an Arabic not Roman numeral, and is optional.
Title is one or more section names; these names bear a generally simple relation to the page cap-
tions in the manual. If theectionis missing,1 is assumed. For example,

man man

would reproduce this page.

FILES
/usr/man/man?/*

BUGS

The manual is supposed to be reproducible either on the phototypesetter or on a typewriter.
However, on a typewriter some information is necessarily lost.

MERGE (1) 11/7/73 MERGE (1)

NAME
merge— merge several files

SYNOPSIS
merge[—anr][-n][+n] [hame ...]

DESCRIPTION
Mergemerges several files together and writes the result on the standard output. If a file is des-
ignated by an unadorned’, the standard input is understood.

The merge is line-by-line in increasing ASCII collating sequence, except that upper-case letters
are considered the same as the corresponding lower-case letters.

Mergeunderstands several flag arguments.

—-a Use strict ASCII collating sequence.

—-n An initial numeric string, possibly preceded by, is sorted by numerical value.
-r Datais in reverse order.

-n The firstn fields in each line are ignored. A field is defined as a string of non-space, non-
tab characters separated by tabs and spaces from its neighbors.

+n The firstn characters are ignored. Fields (with) are skipped before characters.

SEE ALSO
sort(l)

BUGS
Only 8 files can be handled; any further files are ignored.

MESG (1) 3/15/72 MESG (1)

NAME
mesg - permit or deny messages
SYNOPSIS
mesg[n][y]
DESCRIPTION
Mesgwith argumeni forbids messages viarite by revoking non-user write permission on the
user’s typewriter.Mesgwith argumenty reinstates permission. All by itselfjesgreverses the
current permission. In all cases the previous state is reported.
FILES
/devitty?
SEE ALSO
write(l)
DIAGNOSTICS
‘?" if the standard input file is not a typewriter
BUGS

MKDIR (1) 3/15/72 MKDIR (1)

NAME
mkdir — make a directory
SYNOPSIS
mkdir dirname ...
DESCRIPTION
Mkdir creates specified directories in mode 777. The standard entraex' ‘.. are made auto-
matically.
SEE ALSO
rmdir(l)
BUGS

MV (1) 8/20/73 MV (1)

NAME
mv — move or rename a file
SYNOPSIS
mv namel name2
DESCRIPTION
Mv changes the name nmelto name2. If name2s a directorynamelis moved to that direc-
tory with its original file-name. Directories may only be moved within the same parent directory
(just renamed).
If nameZ2already exists, it is removed befor@melis renamed. Ihamezhas a mode which for-
bids writing, mv prints the mode and reads the standard input to obtain a line; if the line begins
with y, the move takes place; if nohvexits.
If name2would lie on a different file system, so that a simple rename is impossibleopies
the file and deletes the original.
BUGS

It should take af flag, like rm, to suppress the question if the target exists and is not writable.

NICE (1) 11/1/73

NAME

nice-run a command at low priority
SYNOPSIS

nicecommand [arguments]
DESCRIPTION

Niceexecutezommandat low priority.
SEE ALSO

nohup(l), nice(ll)
BUGS

NICE (1)

NM (1) 8/20/73 NM (1)

NAME
nm — print name list
SYNOPSIS
nm [—cjnru] [name]
DESCRIPTION
Nm prints the symbol table from the output file of an assembler or loader run. Each symbol
name is preceded by its value (blanks if undefined) and one of the lett@nsdefined)A (abso-
lute) T (text segment symbol]) (data segment symbol (bss segment symbol), @ (com-
mon symbol). Global symbols have their first character underlined. Normally, the output is
sorted alphabetically and symbols consisting of a letter followed by one or more digits are not
printed (that is, symbols which look like C internal symbols).
If no file is given, the symbols ia.out are listed.
Options are:
—c list only C-style external symbols, that is those beginning with underscore *
—j list symbols consisting of a letter followed by digits, which are normally suppressed.
—-n sort by value instead of by name
—r sort in reverse order
—u print only undefined symbols.
FILES
a.out
BUGS

NOHUP (1) 11/1/73 NOHUP (1)

NAME
nohup-run a command immune to hangups
SYNOPSIS
nohup command [arguments]
DESCRIPTION
Nohupexecutezommandvith hangups, quits and interrupts all ignored.
SEE ALSO
nice(l), signal(ll)
BUGS

NROFF (1) 1/15/73 NROFF (1)

NAME
nroff — format text

SYNOPSIS
nroff [+n][-n][-s][-h][—q][—i] files

DESCRIPTION
Nroff formats text according to control lines embedded in the text filff will read the stan-
dard input if no file arguments are given. The non-file option arguments are interpreted as fol-
lows:

+n Output will commence at the first page whose page numbarritarger
-n will cause printing to stop after page

—s Stop prior to each page to permit paper loading. Printing is restarted by typing a ‘newline’
character.

—h Spaces are replaced where possible with tabs to speed up output (or reduce the size of the
output file).

—-q Prompt names for insertions are not printed and the bell character is sent instead; the inser-
tion is not echoed.

—-i Causes the standard input to be read after the files.
Nroffis more completely described in [1]. A condensed Request Summary is included here.

FILES
Jusr/lib/suftab suffix hyphenation tables
tmp/rtm? temporary

SEE ALSO
[1] NROFF User’'s Manual, internal memorandum.

BUGS

NROFF (1)

Request Initial
Form Value

I. Page Control

.pl +N
.bp +N
.pn +N
.po +N
.ne N

TR
oOrPFrd

rzzz<Z

D

1/15/73

REQUEST REFERENCE AND INDEX

If no

Argument

N=66

ignored
N=prev

N=1

Cause
Break Explanation

no

yes
no
no

no

II. Text Filling, Adjusting, and Centering

.br - - yes
fi fill yes
.nf fill - yes
.adc adj,norm adjust no
.na adjust - no
.ceN off N=1 yes
[ll. Line Spacing and Blank Lines

s +N N=1 N=prev no
SpN - N=1 yes
v N - N=1 no
.SV N - N=1 no
.0S - - no
.ns space - no
.Is - - no
Xxh off - no
IV. Line Length and Indenting

AI+N N=65 N=prev no
in +N N=0 N=prev yes
i +N - N=1 yes
V. Macros, Diversion, and Line Traps
.de xx - ignored no
.ds xx - ignored no
.rm xx - - no
.di xx - end no
Wwh-Nxx - - no
.ch xxy - - no
.ch-N-M - - no
chxx-M - - no
.ch-Ny - - no
VI. Number Registers

.nrab +N -M- no

.nra+N-M - no

.ncc \n \n no
.ar arabic - no
.ro arabic - no
.RO arabic - no

Page Length.
Begin Page.
Page Number.
Page Offset.
NEed N lines.

BReak.
Flll output lines.
NoFill.
ADjust mode on.
NoAdjust.
CEnter N input text lines.

Line Spacing.

SPace N lines
LeaVe N lines

SaVe N lines.

Output Saved lines.

No-Space mode on.

Restore Spacing.
EXtra-Half-line mode on.

Line Length.
INdent.
Temporary Indent.

DEfine or redefine a macro.

Define or redefine String.
ReMove macro name.

Dlvert output to macro "xx".

WHen; set a line trap.
CHange trap line.

Number Register.

Number Character.

Arabic numbers.

Roman numbers.
ROMAN numbers.

VII. Input and Output Conventions and Character Translations

faNM,... - none no
dcc space space no
dcc . . no
.Ul'N - N=1 no

PseudoTAbs setting.

Tab replacement Character.
Leader replacement Character.

UNderline input text lines.

NROFF (1)

NROFF (1)

.ccc . . no
.c2¢c ! ! no
.ecc - \ no
IN - N=1 no
Arabed.... - - no

VIIl. Hyphenation.

.nh on - no No Hyphen.

.hy on - no HYphenate.

.hcc none none no Hyphenation indicator Character.
IX. Three Part Titles.

.l "left'centefright’ - no TitLe.

tN N=65 N=prev no Length of Title.

X. Output Line Numbering.

.m+NMS| off no Number Mode on or off, set parameters.
NnpMSI - reset no Number Parameters set or reset.
XI. Conditional Input Line Acceptance

.if IN anything - no IF true accept line of "anything".
if ¢ anything- no "

.if Ic anything - no "

.if N anything - no "

XIl. Environment Switching.

.evN N=0 N=prev no EnVironment switched.

XIll. Insertions from the Standard Input Stream

.rd prompt - bell no ReaD insert.

.ex - - no EXit.

XIV. Input File Switching

.so filename - - no Switch SOurce file (push down).
.nx filename - no NeXt file.

XV. Miscellaneous

Ammesg - - no Typewriter Message

ig - - no IGnore.

Al - - no FLush output buffer.

.ab - - no ABort.

1/15/73

Basic Control Character.
Nobreak control character.
Escape Character.
Accept input lines Lliterally.
TRanslate on output.

oD(1) 1/15/73 oD (1)

NAME
od — octal dump
SYNOPSIS
od[—abcdho] [file] [[+] offset[.][b]]
DESCRIPTION
Od dumpsfile in one or more formats as selected by the first argument. If the first argument is
missing—o is default. The meanings of the format argument characters are:
a interprets words as PDP-11 instructions and dis-assembles the operation code. Unknown op-
eration codes print as ??7.
b interprets bytes in octal.
c interprets bytes in ascii. Unknown ascii characters are printed as \?.
d interprets words in decimal.
h interprets words in hex.
0 interprets words in octal.
Thefile argument specifies which file is to be dumped. If no file argument is specified, the stan-
dard input is used. Thus can be used as a filter.
The offset argument specifies the offset in the file where dumping is to commence. This argu-
ment is normally interpreted as octal bytes. .1fi$ appended, the offset is interpreted in deci-
mal. If ‘b’ is appended, the offset is interpreted in blocks. (A block is 512 bytes.) If the file ar-
gument is omitted, the offset argument must be precedetl.by *
Dumping continues until end-of-file.
SEE ALSO
db(l)
BUGS

OPR(I) 1/15/73 OPR(I)

NAME
opr — off line print

SYNOPSIS
opr[—]1[-1[+1][+TIfile ...

DESCRIPTION
Opr will arrange to have the 201 data phone daemon submit a job to the Honeywell 6070 to print
the file arguments. Normally, the output appears at the GCOS central site. If the first argument
is ——, the output is remoted to station R1, which has an IBM 1403 printer.
Normally, each file is printed in the state it is found when the data phone daemon reads it. If a
particular file argument is preceded by or a preceding argument ef has been encountered,
thenopr will make a copy for the daemon to print. If the file argument is preceded, oy a
preceding argument efhas been encountered, thapr will unlink (remove) the file.
If there are no arguments except for the optional then the standard input is read and off-line
printed. Thuspr may be used as a filter.

FILES
/usr/dpd/* spool area
letc/passwd personal ident cards
/etc/dpd daemon

SEE ALSO
dpd(l), passwd(V)

BUGS

There should be a way to specify a general remote site.

PASSWD (1) 9/1/72 PASSWD (1)

NAME
passwd- set login password
SYNOPSIS
passwdname password
DESCRIPTION
The passwordis placed on the given login name. This can only be done by the person corre-
sponding to the login name or by the super-user. An explicit null argument (") for the password
argument will remove any password from the login name.
FILES
/etc/passwd
SEE ALSO
login(l), passwd(V), crypt(lll)
BUGS

PFE(I) 11/1/73 PFE(I)

NAME
pfe — print floating exception

SYNOPSIS
pfe

DESCRIPTION
Pfe will examine the floating point exception register and print a diagnostic for the last floating
point exception.

SEE ALSO
signal(ll)

BUGS

Since there is but one floating point exception register and it cannot be saved and restored by the
system, the floating exception that is printed is the one that occured system wide. Floating ex-
ceptions are therefore volatile.

PLOT (1) 6/4/73 PLOT (1)

NAME

plot — make a graph

SYNOPSIS

plot [option] ...

DESCRIPTION

FILES

Plot takes pairs of numbers from the standard input as abscissas and ordinates of a graph. The
graph is plotted on the storage scope, /dev/vtO.

The following options are recognized, each as a separate argument.

a Supply abscissas automatically (they are missing from the input); spacing is given by the
next argument, or is assumed to be 1 if next argument is not a number.

Place character string given by next argument at each point.
Omit connections between points. (Disconnect.)

gn Grid style:
n=0, no grid
n=1, axes only
n=2, complete grid (default).

S Save screen, don’t erase before plotting.
X Next 1 (or 2) arguments are lower (and upgdinits.
y Next 1 (or 2) arguments are lower (and upgéinits.

Points are connected by straight line segments in the order they appear in input. If a specified
lower limit exceeds the upper limit, or if the automatic increment is negative, the graph is plotted
upside down. Automatic abscissas begin with the lowlénit, or with 0 if no limit is specified.

Grid lines and automatically determined limits fall on round values, however roundness may be
subverted by giving an inappropriately rounded lower limit. Plotting symbols specifiechby
placed so that a small initial letter, such as + o x, will fall approximately on the plotting point.

/dev/vtO

SEE ALSO

BUGS

spline(VI)

A limit of 1000 points is enforced silently.

PR(I) 1/15/73 PR(1)

NAME
pr — print file

SYNOPSIS
pr[-hname][-n][+n][file...]

DESCRIPTION
Pr produces a printed listing of one or more files. The output is separated into pages headed by a
date, the name of the file or a header (if any), and the page number. If there are no file argu-
ments pr prints the standard input file, and is thus usable as a filter.

Options apply to all following files but may be reset between files:
-n producen-column output

+n begin printing with page.

—h treat the next argument as a header

If there is a header in force, it is printed in place of the file name. Interconsole messages via
write(l) are forbidden during pr.

FILES
/dev/tty? to suspend messages.

SEE ALSO
cat(l), cp(l)

DIAGNOSTICS
none (files not found are ignored)

BUGS
It would be nice to be able to set the number of lines per page.

PROOF (1) 1/15/73 PROOF (1)

NAME
proof — compare two text files
SYNOPSIS
proof oldfile newfile
DESCRIPTION
Prooflists those lines ohewfilethat differ from corresponding lines widfile. The line number
in newfileis given. When changes, insertions or deletions have been made the program attempts
to resynchronize the text in the two files by finding a sequence of lines in both files that again
agree.
SEE ALSO
cmp(l), comm(l)
DIAGNOSTICS
yes, but they are undecipherable, e.g. “?1".
BUGS

This program has a long way to go before even a list of specific bugs is appropriate.

PS (1) 10/15/73 PS(1)

NAME
ps— process status

SYNOPSIS
ps[alx]

DESCRIPTION
Ps prints certain indicia about active processes. @ttag asks for information about all pro-
cesses with teletypes (ordinarily only one’s own processes are displayasks even about pro-
cesses with no typewritek;asks for a long listing. Ordinarily only the typewriter number (if not
one’s own) and the process number are given.

The long listing is columnar and contains
A number encoding the state (last digit) and flags (first 1 or 2 digits) of the process.
The priority of the process; high numbers mean low priority.
A number related in some unknown way to the scheduling heuristic.
The last character of the control typewriter of the process.

The process unique number (as in certain cults it is possible to kill a process if you know
its true name).

The size in blocks of the core image of the process.

The last column if non-blank tells the core address in the system of the event which the
process is waiting for; if blank, the process is running.

Unfortunately if you have forgotten the number of a process you will have to guess which one it
is. Plainpswill tell you only a list of numbers.

FILES
lusr/sys/unix system namelist
/dev/imem resident system

SEE ALSO
Kill 1)

BUGS
The ability to see, even if dimly, the name by which the process was invoked would be welcome.

REW (1) 1/15/73 REW (1)

NAME
rew — rewind tape

SYNOPSIS
rew [[m]digit]

DESCRIPTION
Rewrewinds DECtape or magtape drives. The digit is the logical tape number, and should range
from 0 to 7. if the digit is preceded by, rew applies to magtape rather than DECtape. A miss-
ing digit indicates drive 0.

FILES
/dev/tap?
/dev/imt?

BUGS

RM(I) 1/20/73 RM(1)

NAME
rm —remove (unlink) files

SYNOPSIS
rm[—f][-r]name ...

DESCRIPTION
Rmremoves the entries for one or more files from a directory. If an entry was the last link to the
file, the file is destroyed. Removal of a file requires write permission in its directory, but neither
read nor write permission on the file itself.
If there is no write permission to a file designated to be remoxmdyill print the file name, its
mode and then read a line from the standard input. If the line beginsywilte file is removed,
otherwise it is not. The optional argumeffiprevents this interaction.
If a designated file is a directory, an error comment is printed unless the optional argament
has been used. In that case recursively deletes the entire contents of the specified directory.
To remove directorieger sesee rmdir(l).

FILES
/etc/glob to implement ther flag

SEE ALSO
rmdir(l)

BUGS

Whenrm removes the contents of a directory under-thdlag, full pathnames are not printed in
diagnostics.

RMDIR (1) 3/15/72 RMDIR (1)

NAME
rmdir — remove directory

SYNOPSIS
rmdir dir ...

DESCRIPTION
Rmdirremoves (deletes) directories. The directory must be empty (except for the standard en-
tries .’ and ‘.., which rmdir itself removes). Write permission is required in the directory in
which the directory appears.

BUGS

Needs ar flag. Actually, write permission in the directory’s parendg required.

ROFF (1) 6/12/72 ROFF (1)

NAME
roff — format text

SYNOPSIS
roff [+n] [-n][—s][—h]file ...

DESCRIPTION
Roffformats text according to control lines embedded in the text in the given files. Encountering
a nonexistent file terminates printing. Incoming interconsole messages are turned off during
printing. The optional flag arguments mean:

+n Start printing at the first page with numier
-n Stop printing at the first page numbered higher than

-s Stop before each page (including the first) to allow paper manipulation; resume on receipt
of an interrupt signal.

-h Insert tabs in the output stream to replace spaces whenever appropriate.
A Request Summary is attached.

FILES
lusr/lib/suftabsuffix hyphenation tables
/tmp/rtm?temporary

SEE ALSO
nroff (1), troff (1)

BUGS
Roffis the simplest of the runoff programs, but is virtually undocumented.

ROFF (1)

Request Break
.ad yes
.ar no
.br yes
.bln yes
.bp +n yes
.ccc no
.cen yes
.de xx no
.ds yes
.eft no
.eht no
fi yes
fo no
.hcc no
.he t no
.hx no
.hy n no
ig no
dn +n yes
X +n no
din no
Al +n no
s +n yes
.mln no
.m2n no
.m3n no
.m4n no
.na yes
.nen no
.nn +n no
.nl no
.n2n no
.Ni +n no
.nf yes
.nx filename -
.of t no
.oht no
.pa +n yes
pl+n no
.po +n no
.ro no
.skn no
.spn yes
.SS yes
faNM..

fcc no
ti+n yes
.tr abced.. no
.uln no

Initial
yes
arabic

n=1
c=.

t="

yes

none

no
no
n=0
no

6/12/72 ROFF (1)

REQUEST SUMMARY

Meaning

Begin adjusting right margins.

Arabic page numbers.

Causes a line breatlhe filling of the current line is stopped.
Insert of n blank lines, on new page if necessary.

Begin new page and number it n; no n means ‘+1".

Control character becomes ‘c’.

Center the next n input lines, without filling.

Define macro named ‘xx’ (definition ends on line beginnifg

Double space; same as ‘.Is 2.

Even foot title becomes t.

Even head title becomes t.

Begin filling output lines.
All foot titles are t.

Hyphenation character set to ‘c’.

All head titles are t.

Title lines are suppressed.

Hyphenation is done, if n=1; and is not done, if n=0.

Ignore input lines through a line beginning with *

Indent n spaces from left margin.

Same as “.in’ but without break.
Literal, treat next n lines as text.

Line length including indent is n characters.

Line spacing set to n lines per output line.

Put n blank lines between the top of page and head title.

n blank lines put between head title and beginning of text on
page.

n blank lines put between end of text and foot title.

n blank lines put between the foot title and the bottom of page.
Stop adjusting the right margin.

Begin new page, if n output lines cannot fit on present page.
The next n output lines are not numbered.

Number output lines; start with 1 each page

Number output lines; stop numbering if n=0.

Line numbers are indented n.

Stop filling output lines.

Change to input file ‘filename’.

=
t="""
n=1
n=66
n=0
arabic
yes
C:

Odd foot title becomes t.
Odd head title becomes t.
Same as ‘.bp’.
Total paper length taken to be n lines.
Page offset. All lines are preceded by N spaces.
Roman page numbers.
Produce n blank pages starting next page.
Insert block of n blank lines.
Single space output lines, equivalent to “.Is 1'.
Pseudotab settings. Initial tab settings are columns 9,17,25,...
Tab replacement character becomes ‘c’.
Temporarily indent next output line n space.
Translate a into b, c into d, etc.
Underline the letters and numbers in the next n input lines.

SH(I) 4/18/73 SH(I)

NAME

sh — shell (command interpreter)
SYNOPSIS

sh{name [argl ...[arg9]]]
DESCRIPTION

Shis the standard command interpreter. It is the program which reads and arranges the execu-
tion of the command lines typed by most users. It may itself be called as a command to interpret
files of commands. Before discussing the arguments to the Shell used as a command, the struc-
ture of command lines themselves will be given.

Commands. Each command is a sequence of non-blank command arguments separated by
blanks. The first argument specifies the name of a command to be executed. Except for certain
types of special arguments discussed below, the arguments other than the command name are
passed without interpretation to the invoked command.

If the first argument is the name of an executable file, it is invoked; otherwise the string ‘/bin/’ is
prepended to the argument. (In this way most standard commands, which reside in ‘/bin’, are
found.) If no such command is found, the string ‘/usr’ is further prepended (to give
‘lusr/bin/command’) and another attempt is made to execute the resulting file. (Certain lesser-
used commands live in ‘Jusr/bin’.) If the ‘/usr/bin’ file exists, but is not executable, it is used by
the Shell as a command file. That is to say it is executed as though it were typed from the con-
sole. If all attempts fail, a diagnostic is printed.

Command lines. One or more commands separatedyf ™ constitute apipeline. The stan-

dard output of each command but the last in a pipeline is taken as the standard input of the next
command. Each command is run as a separate process, connected by pipes (see pipe(ll)) to its
neighbors. A command line contained in parentheses ‘()’ may appear in place of a simple com-
mand as an element of a pipeline.

A command lineconsists of one or more pipelines separated, and perhaps terminatgdby *

‘&’. The semicolon designates sequential execution. The ampersand causes the preceding pipe-
line to be executed without waiting for it to finish. The process id of such a pipeline is reported,
so that it may be used if necessary for a subseguanor kill.

Termination Reporting. If a command (not followed by ‘&’) terminates abnormally, a mes-
sage is printed. (All terminations other than exit and interrupt are considered abnormal.) Termi-
nation reports for commands followed by ‘&’ are given upon receipt of the first command subse-
guent to the termination of the command, or whenait is executed. The following is a list of

the abnormal termination messages:

Bus error
Trace/BPT trap
lllegal instruction
IOT trap

EMT trap

Bad system call
Quit

Floating exception
Memory violation
Killed

If a core image is produced; Core dumped’ is appended to the appropriate message.

Redirection of I/O. There are three character sequences that cause the immediately following
string to be interpreted as a special argument to the Shell itself. Such an argument may appear
anywhere among the arguments of a simple command, or before or after a parenthesized com-
mand list, and is associated with that command or command list.

An argument of the form ‘<arg’ causes the file ‘arg’ to be used as the standard input file of the
associated command.

SH(I)

4/18/73 SH(I)

An argument of the form ‘>arg’ causes file ‘arg’ to be used as the standard output file for the as-
sociated command. ‘Arg’ is created if it did not exist, and in any case is truncated at the outset.

An argument of the form ‘>>arg’ causes file ‘arg’ to be used as the standard output for the asso-
ciated command. If ‘arg’ did not exist, it is created; if it did exist, the command output is ap-
pended to the file.

For example, either of the command lines

Is >junk; cat tail >>junk
(Is; cat tail) >junk

creates, on file ‘junk’, a listing of the working directory, followed immediately by the contents
of file ‘tail’.

Either of the constructs ‘>arg’ or ‘>>arg’ associated with any but the last command of a pipeline
is ineffectual, as is ‘<arg’ in any but the first.

Generation of argument lists. If any argument contains any of the characters *?’, *" or [, it is
treated specially as follows. The current directory is searched for files whatbhthe given ar-
gument.

The character *" in an argument matches any string of characters in a file name (including the
null string).

The character *?" matches any single character in a file name.

Square brackets ‘[...]' specify a class of characters which matches any single file-name character
in the class. Within the brackets, each ordinary character is taken to be a member of the class. A
pair of characters separated by places in the class each character lexically greater than or
equal to the first and less than or equal to the second member of the pair.

Other characters match only the same character in the file name.

For example, * matches all file names; ‘?’ matches all one-character file names; ‘[ab]*.s’
matches all file names beginning with ‘a’ or ‘b’ and ending with ‘.s’; “ai]’ matches all two-
character file names ending with ‘z’ or the letters ‘i’ through ‘m’.

If the argument with *’ or ‘?” also contains a /', a slightly different procedure is used: instead
of the current directory, the directory used is the one obtained by taking the argument up to the
last '/’ before a *’ or ‘?’. The matching process matches the remainder of the argument after
this /' against the files in the derived directory. For example: ‘/usr/dmr/a*.s’ matches all files
in directory ‘/usr/dmr’ which begin with ‘a’ and end with *.s’.

In any event, a list of names is obtained which match the argument. This list is sorted into alpha-
betical order, and the resulting sequence of arguments replaces the single argument containing
the *', /T, or *?’. The same process is carried out for each argument (the resulting listsctre
merged) and finally the command is called with the resulting list of arguments.

For example: directory /usr/dmr contains the files al.s, a2.s, ..., a9.s. From any directory, the
command

as /usr/dmr/a?.s
callsaswith arguments /usr/dmr/al.s, /usr/dmr/a2.s, ... /usr/dmr/a9.s in that order.

Quoting. The character '\ causes the immediately following character to lose any special mean-
ing it may have to the Shell; in this way ‘<’, ‘>, and other characters meaningful to the Shell
may be passed as part of arguments. A special case of this feature allows the continuation of
commands onto more than one line: a new-line preceded by ‘\' is translated into a blank.

Sequences of characters enclosed in double (") or single (") quotes are also taken literally. For
example:

Is Opr —h "My directory”

causes a directory listing to be producedd)yand passed on tor to be printed with the heading
‘My directory’. Quotes permit the inclusion of blanks in the heading, which is a single argument

SH(I)

4/18/73 SH(I)

to pr.

Argument passing. When the Shell is invoked as a command, it has additional string process-
ing capabilities. Recall that the form in which the Shell is invoked is

sh[name[argl...[arg9]]]

The nameis the name of a file which will be read and interpreted. If not given, this subinstance
of the Shell will continue to read the standard input file.

In command lines in the file (not in command input), character sequences of the form ‘$n’,
wheren is a digit, are replaced by th#h argument to the invocation of the Shell (argn). ‘$0’ is
replaced byrame.

End of file. An end-of-file in the Shell's input causes it to exit. A side effect of this fact means
that the way to log out from UNIX is to type an EOT.

Special commands.The following commands are treated specially by the Shell.
chdir is done without spawning a new process by execsgrghdir(ll).

login is done by executing /bin/login without creating a new process.

wait is done without spawning a new process by execstagvait(ll).

shiftis done by manipulating the arguments to the Shell.

‘" is simply ignored.

Command file errors; interrupts. Any Shell-detected error, or an interrupt signal, during the
execution of a command file causes the Shell to cease execution of that file.

Process that are created with a ‘&’ ignore interrupts. Also if such a process has not redirected its
input with a ‘<’, its input is automatically redirected to the zero length file /dev/null.

FILES
/etc/glob, which interprets **, ‘?’, and .
/dev/null as a source of end-of-file.
SEE ALSO
‘The UNIX Time-sharing System’, which gives the theory of operation of the Shell.
chdir(l), login(l), wait(l), shift(l)
BUGS

When output is redirected, particularly to make a multicommand pipeline, diagnostics tend to be
sent down the pipe and are sometimes lost altogether. Not all components of a pipeline
swawned with ‘&’ ignore interrupts.

SHIFT (1) 8/21/73 SHIFT (1)

NAME
shift — adjust Shell arguments
SYNOPSIS
shift
DESCRIPTION
Shiftis used in Shell command files to shift the argument list left by 1, so thad2thn now be
referred to by$1 and so forth. Shiftis useful to iterate over several arguments to a command
file. For example, the command file
: loop
if $1x = x exit
pr-3$1
shift
goto loop
prints each of its arguments in 3-column format.
Shiftis executed within the Shell.
SEE ALSO
sh (1)
BUGS

SIZE(I) 9/2/72 SIZE(I)

NAME
size- size of an object file

SYNOPSIS
size[object ...]

DESCRIPTION
The size, in bytes, of the object files are printed. If no file is giveeout is default. The size is
printed in decimal for the text, data, and bss portions of each file. The sum of these is also print-
ed in octal and decimal.

BUGS

SLEEP (1) 11/1/73 SLEEP (1)

NAME
sleep- suspend execution for an interval
SYNOPSIS
sleeptime
DESCRIPTION
Sleepwill suspend execution fotime seconds. It is used to execute a command in a certain
amount of time as in:
(sleep 105; command)&
Or to execute a command every so often as in this shell command file:
: loop
command
sleep 37
goto loop
SEE ALSO
sleep(ll)
BUGS

Timemust be less than 65536 seconds.

SNO(I)

NAME

2/9/73 SNO(1)

sno- Snobol interpreter

SYNOPSIS

sno[file]

DESCRIPTION

Snois a Snobol Il (with slight differences) compiler and interpret&noobtains input from the
concatenation ofile and the standard input. All input through a statement containing the label
‘end’ is considered program and is compiled. The rest is available to ‘syspit’.

Snodiffers from Snobol 11l in the following ways.
There are no unanchored searches. To get the same effect:

a**p unanchored search for b
a*x*b=xc unanchored assignment

There is no back referencing.

X = "abc"
a *x* x is an unanchored search for ‘abc’

Function declaration is different. The function declaration is done at compile time by the use of
the label ‘define’. Thus there is no ability to define functions at run time and the use of the name
‘define’ is preempted. There is also no provision for automatic variables other than the parame-
ters. For example:

definef()

or

define f(a,b,c)

All labels except ‘define’ (even ‘end’) must have a non-empty statement.

If ‘'start’ is a label in the program, program execution will start there. If not, execution begins
with the first executable statement. ‘define’ is not an executable statement.

There are no builtin functions.

Parentheses for arithmetic are not needed. Normal precedence applies. Because of this, the
arithmetic operators ‘/’ and ** must be set off by space.

The right side of assignments must be non-empty.
Either ~ or " may be used for literal quotes.
The pseudo-variable ‘sysppt’ is not available.

SEE ALSO

BUGS

Snobol Il manual. (JACM; Vol. 11 No. 1; Jan 1964; pp 21)

SORT (1) 5/7/73 SORT (1)

NAME
sort—sort a file

SYNOPSIS
sort[—anr][+n][-n][input [output]]

DESCRIPTION
Sortsortsinputand writes the result asutput. If the output file is not given, the standard output
is used. If the input file is missing, the standard input is used. Bousmay be used as a filter.
The input and output file may be the same.

The sort is line-by-line in increasing ASCII collating sequence, except that upper-case letters are
considered the same as the corresponding lower-case letters.

Sortunderstands several flag arguments.

—a Use strict ASCII collating sequence.

—n An initial numeric string is sorted by numerical value.
—-r Output is in reverse order.

-n The firstn fields in each line are ignored. A field is defined as a string of non-space, non-
tab characters separated by tabs and spaces from its neighbors.

+n The firstn characters are ignored in the sort. Fields (withare skipped before characters.
FILES
tmp/stm?

BUGS
The largest file that can be sorted is about 128K bytes.

SPEAK (1) 8/15/73 SPEAK (1)

NAME

speak- word to voice translator
SYNOPSIS

speak[—epsv] [vocabulary [output]]
DESCRIPTION

Speakturns a stream of words into utterances and outputs them to a voice synthesizer, or to a
specified output file. It has facilities for maintaining a vocabulary. It receives, from the standard
input

— working lines: text of words separated by blanks

— phonetic lines: strings of phonemes for one word preceded and separated by commas. The
phonemes may be followed by comma-percent then a ‘replacement parASCI| string
with no spaces. The phonetic code is given in vsp(VII).

- empty lines

- command lines: beginning with The following command lines are recognized:

Ir file replace coded vocabulary from file
Iw file write coded vocabulary on file
p print parsing for working word

Il list vocabulary on standard output with phonetics
Ic word copy phonetics from working word to specified word
Id print phonetics for working word

Each working line replaces its predecessor. lts first word is the ‘working word’. Each phonetic
line replaces the phonetics stored for the working word. In particular, a phonetic line of comma
only deletes the entry for the working word. Each working line, phonetic line or empty line
causes the working line to be uttered. The process terminates at the end of input.

Unknown words are pronounced by rules, and failing that, are spelled. Spelling is done by tak-
ing each character of the word, prefixing it with *, and looking it up. Unspellable words burp.

Speakis initialized with a coded vocabulary stored in file /usr/lib/speak.m. The vocabulary op-
tion substitutes a different file for /usr/lib/speak.m.

A set of single letter options may appear in any order preceded Hyeir meanings are:

—e suppress English steps-®) below
—p suppress pronunciation by rule
—-S suppress spelling

-V suppress voice output

The steps of pronunciation by rule are:

(1) If there were no lower case letters in the working line, fold all upper case letters to lower.

(2) Fold an initial cap to lower case, and try again.

(3) If word has only one letter, or has no lower case vowels, quit.

(4) Ifthere is a finas, strip it.

(5) Replace finatie by-y.

(6) If any changes have been made, try whole word again.

(7) Locate probable long vowels and capitalize them. Mark probable sgent

(8) Put back thestripped in (4), if any.

(9) Place # before and after word.

(10) Prefix word with%, and look up longest initial match in the stored table of words; if none,
quit.

(11) Use phonemes from the stored phonetic string as pronunciation, and replace the matched
stuff by the replacement part of the phonetic string.

(12) If anything remains, go to (10).

Long vowels are located this way in step (7):

SPEAK (1)

FILES

(1)
(2)

3)

(4)
()

(6)

(7)
(8)

(9)

(10)

(11)

SEE ALSO

DIAGNOSTICS

BUGS

8/15/73 SPEAK (1)

A u appearing in context ["aeiou]u["aeiouwxy][aieouy]. (The notation is just a regular ex-
pression a la ed(l).fpustUlous)
One of [aeo] appearing in the context [aeo][aehiouwxy][ie][aou] or in the context
[aeo]["aehiouwxylien is assumed long. The digrémbehaves as a single letter in this
test. (rAdium, facEtious, quOtient, carpAthian)
If the first vowel in the word is followed by one ofaou,it is assumed long(lodine, dI-
ameter, trlumph)
If the only vowel in the word is fina, the vowel is assumed longbE, shE)
If the only vowels in the word appear in the pattern [aeiouy]["aeiouwxy]S, where S is one
of the suffixes

—al —le -re -y
then the first vowel is assumed lon@lObal, tAble, IUcre, IAdy)
If no suffix was found in (5), as many of these suffixes as possible are isolated from right
to left. Stripping stops wher has been stripped, nor &stripped before a suffix begin-
ning with e. Each suffix is marked by insertingljust before the first letter, or just after
in those suffixes that begin with

—able -ably —-e —-ed
—er —-ery —-est —ful
—-ing -less —-ment -ness

(carelful Oy, majlor, finelty, statel] careeT)

If the word, exclusive of suffixes, endsiror y, and contains no earlier vowel, theor y

is assumed long(pY (from pie),crY [ing, lled)

If the first suffix begins with one of [aeio], then the vowel [aeiouy] in an immediately pre-
ceding pattern ["aeo][aeiouy]["aeiouwxy] is assumed long. The digtabtrehaves as a
single letter in this test(cAreful Oy, bAtheCd, mAjCor, pOtlable, port_able)

In these exceptional cases no long letter is assumed in the preceding step:

(i) beforeg, if there are any earlier vowdsostage] stAge] collegel)

(i) eis not long beforé (traveled)

If the first suffix begins with one of [aeio], and the word exclusive of suffixes ends in
[aeiouyAEIOUY]th, then digrarth is capitalized.(breaTHLCing, blITHelly)

An attempt is made to recognize silenn the middle of compound words. Such ais
marked by a following[] and preceding vowels, other thanare assumed long as in step
(8). Silente is marked in the context [bdgmnprst][bdgpt]le[aeiofl$, where S is any
string that contains [aeiouy] but does not contaior the end of the word. Silemtis also
marked in the context ["aeiu][aiou][aeiouwxy]e[aeinoruy]&implelton, fAceguard,
cAvellman, cavernous)

Jusr/lib/speak.m
vs(VII), vs(IV)
‘?" for unknown command with or for unreadable or unwritable vocabulary file

Vocabulary overflow is unchecked. Excessively long words cause dumps. Space is not
reclaimed from deleted entries.

SPLIT (1) 1/15/73 SPLIT(I)

NAME
split - split a file into pieces

SYNOPSIS
split [filel [file2]]

DESCRIPTION
Splitreads filel and writes it in 1000-line pieces, as many as are necessary, onto a set of output
files. The name of the first output file is file2 with an ‘a’ appended, and so on through the alpha-
bet and beyond. If no output name is given, ‘X’ is default.
If no input file is given, or the first argument is,‘then the standard input file is used.

BUGS

Watch out for 14-character file names. The number of lines per file should be an argument.

STRIP (1) 3/15/72 STRIP (1)

NAME
strip — remove symbols and relocation bits
SYNOPSIS
strip name ...
DESCRIPTION
Strip removes the symbol table and relocation bits ordinarily attached to the output of the assem-
bler and loader. This is useful to save space after a program has been debugged.
The effect oftrip is the the same as use of tfepption ofld.
FILES
tmp/stm? temporary file
SEE ALSO
ld(1), as(l)
BUGS

STTY (1)

NAME

6/12/72 STTY (1)

stty — set teletype options

SYNOPSIS

stty option ...

DESCRIPTION

Sttywill set certain 1/0 options on the current output teletype. The option strings are selected
from the following set:

even
—-even
odd
-odd
raw
—raw
—nl

nl
echo
—-echo
Icase
—Icase
—tabs
tabs
delay
—delay
tdelay
—tdelay

SEE ALSO
stty(Il)

BUGS

allow even parity

disallow even parity

allow odd parity

disallow odd parity

raw mode input (no erase, kill, interrupt, quit, EOT; parity bit passed back)
negate raw mode

allow carriage return for new-line, and output CR-LF for carriage return or new-line
accept only new-line to end lines

echo back every character typed

do not echo characters

map upper case to lower case

do not map case

replace tabs by spaces in output

preserve tabs

calculate cr, tab, and form-feed delays

no cr/tab/ff delays

calculate tab delays

no tab delays

There should be ‘package’ options suclexecuport, 33,0r terminet.

SUM(1) 3/15/72 SUM(1)

NAME
sum - sum file

SYNOPSIS
sumname ...

DESCRIPTION
Sumsums the contents of the bytes (mod 2716) of one or more files and prints the answer in oc-
tal. A separate sum is printed for each file specified, along with the number of whole or patrtial
512-byte blocks read.
In practice sumis often used to verify that all of a special file can be read without error.

BUGS

TIME (1) 8/16/73 TIME (1)

NAME
time - time a command

SYNOPSIS
time command

DESCRIPTION
The given command is executed; after it is complétage prints the elapsed time during the
command, the time spent in the system, and the time spent in execution of the command.
The execution time can depend on what kind of memory the program happens to land in; the
user time in MOS is often half what it is in core.

BUGS

Notice thatime x >y puts the timing information intp. One can get around this liyne shfol-

lowed byx >y.

Elapsed time is accurate to the second, while the CPU times are measured to the 60th second.
Thus the sum of the CPU times can be up to a second larger than the elapsed time.

TP (1) 10/15/73 TP(1)

NAME
tp — manipulate DECtape and magtape

SYNOPSIS
tp [key][hame ...]

DESCRIPTION
Tp saves and restores selected portions of the file system hierarchy on DECtape or mag tape. Its
actions are controlled by tHeeyargument. The key is a string of characters containing at most
one function letter and possibly one or more function modifiers. Other arguments to the com-
mand are file or directory names specifying which files are to be dumped, restored, or listed.
The function portion of the key is specified by one of the following letters:

r The indicated files and directories, together with all subdirectories, are dumped onto
the tape. If files with the same names already exist, they are replaced. ‘Same’ is deter-
mined by string comparison, so ‘./abc’ can never be the same as ‘/usr/dmr/abc’ even if
‘lusr/dmr’ is the current directory. If no file argument is givenis'the default.

u updates the tapeu is the same ag but a file is replaced only if its modification date
is later than the date stored on the tape; that is to say, if it has changed since it was
dumped.u is the default command if none is given.

d deletes the named files and directories from the tape. At least one file argument must
be given. This function is not permitted on magtapes.

X extracts the named files from the tape to the file system. The owner, mode, and date-
modified are restored to what they were when the file was dumped. If no file argu-
ment is given, the entire contents of the tape are extracted.

t lists the names of all files stored on the tape which are the same as or are hierarchically
below the file arguments. If no file argument is given, the entire contents of the tape is
listed.

The following characters may be used in addition to the letter which selects the function desired.

m Specifies magtape as opposed to DECtape.

0,...,7 This modifier selects the drive on which the tape is mounted. For DECtape, ‘X’ is
default; for magtape ‘0’ is the default.

% Normally tp does its work silently. The (verbose) option causes it to type the
name of each file it treats preceded by the function letter. Witht thenction, v
gives more information about the tape entries than just the name.

c means a fresh dump is being created; the tape directory will be zeroed before begin-
ning. Usable only withr andu. This option is assumed with magtape since it is im-
possible to selectively overwrite magtape.

f causes new entries on tape to be ‘fake’ in that no data is present for these entries.
Such fake entries cannot be extracted. Usable onlyrvétidu.

i Errors reading and writing the tape are noted, but no action is taken. Normally, er-
rors cause a return to the command level.

w causedp to pause before treating each file, type the indicative letter and the file
name (as with v) and await the user’s response. Respomsans ‘yes’, so the file
is treated. Null response means ‘no’, and the file does not take part in whatever is
being done. Responsemeans ‘exit’; thetp command terminates immediately. In
the x function, files previously asked about have been extracted already. rWith
andd no change has been made to the tape.

FILES
/dev/tap?
/dev/mt?

TP (1) 10/15/73 TP(1)

DIAGNOSTICS
Several; the non-obvious one is ‘Phase error’, which means the file changed after it was selected
for dumping but before it was dumped.

BUGS

TR(1) 9/24/73 TR(I)

NAME
tr — transliterate

SYNOPSIS
tr [—cds] [stringl [string2]]

DESCRIPTION
Tr copies the standard input to the standard output with substitution or deletion of selected char-
acters. Input characters found 8iringl are mapped into the corresponding characters of
string2. If string2is short, it is padded with corresponding characters fstningl. Any combi-
nation of the optionscdsmay be used—c complements the set of charactersiringl with re-
spect to the universe of characters whose ascii codes are 001 through 377dotgletes all
input characters not istringl. —s squeezes all strings of repeated output characters that are in
string2to single characters.

The following abbreviation conventions may be used to introduce ranges of characters or re-
peated characters into the strings:

[a—b] stands for the string of characters whose ascii codes run from charactéaracteb.

[a*n], wheren is an integer or empty, stands fefold repetition of charactex. nis taken to be
octal or decimal according as its first digit is or is not zero. A zero or miseiiggtaken to be
huge; this facility is useful for paddirsgring?2.

The escape character '\’ may be used ashito remove special meaning from any character in a
string. In addition, ‘\' followed by 1, 2 or 3 octal digits stands for the character whose ascii code
is given by those digits.

The following example creates a list of all the words in ‘filel’ one per line in ‘file2’, where a
word is taken to be a maximal string of alphabetics. The strings are quoted to protect the special
characters from interpretation by the Shell; 012 is the ascii code for newline.

tr —cs "[A-Z][a-z]" "[\012*]" <filel >file2
SEE ALSO
sh(l), ed(l), ascii(VII)

BUGS
Won't handle ascii NUL.
Also, Kernighan’s Lemma can really bite you; try looking for strings which have \ and * in them.

TROFF (1) 1/15/73 TROFF (1)

NAME
troff — format text

SYNOPSIS
troff [+n][-n][-t]1[-f1[-w][-i][-a]files

DESCRIPTION
Troff formats text for a Graphic Systems phototypesetter according to control lines embedded in
the text files. Troff is based on nroff(l). The non-file option arguments are interpreted as fol-
lows:

+n Commence typesetting at the first page numbe@darger.
-n Stop after paga.
-t Place output on standard output instead of the phototypesetter.
—f Refrain from feeding out paper and stopping the phototypesetter at the end.
-w Wait until phototypsetter is available, if currently busy.
—-i Read from standard input after the files have been exhausted.
—a Send a printable approximation of the results to the standard output.
A TROFF Guide is available [1] which can be used in conjunction with an NROFF Manual [2].

FILES
lusr/lib/suftabsuffix hyphenation tables
/tmp/rtm?temporary

SEE ALSO
[1] Preliminary TROFF Guide (unpublished).
[2] NROFF User’'s Manual (internal memorandum).
TROFF Made Trivial (unpublished).
nroff(l), roff(l)

BUGS

TSS(1) 3/15/72 TSS(1)

NAME
tss—interface to MH-TSS

SYNOPSIS
tss

DESCRIPTION
Tsswill call the Honeywell 6070 on the 201 data phone. It will then go into direct access with
MH-TSS. Output generated by MH-TSS is typed on the standard output and input requested by
MH-TSS is read from the standard input with UNIX typing conventions.

An interrupt signal is transmitted as a ‘break’ to MH-TSS.

Input lines beginning with ‘" are interpreted as UNIX commands. Input lines beginning with
“ are interpreted as commands to the interface routine.

“<file insert input from named UNIX file
“>file deliver tss output to named UNIX file
p pop the output file

q disconnect from tss (quit)

r file receive from HIS routine csr/daccopy
s file send file to HIS routine csr/daccopy

Ascii files may be most efficiently transmitted using the HIS routine csr/daccopy in this fashion.
Bold face text comes from MH-TSSAftnameis the 6070 file to be dealt wittile is the UNIX
file.

SYSTEM? csr/daccopy (S3fthame
Send Encoded Fil€sfile

SYSTEM? csr/daccopy (raftname
Receive Encoded Filér file

FILES
/dev/dn0, /dev/dp0, /etc/msh

DIAGNOSTICS
Most often, ‘Transmission error on last message.’

BUGS
When problems occur, and they often dsgxits rather abruptly.

TTY (1) 3/15/72 TTY (1)

NAME
tty — get typewriter name
SYNOPSIS
tty
DESCRIPTION
Tty gives the name of the user’s typewriter in the formrittfor n a digit or letter. The actual
path name is then ‘/dev/tiy
DIAGNOSTICS
‘not a tty’ if the standard input file is not a typewriter.
BUGS

TYPE (1) 6/12/72 TYPE(I)

NAME
type- type on 2741

SYNOPSIS
typefile ...

DESCRIPTION
Typecopies its input files to the fixed output pdtyc converting to 2741 EBCDIC output code.
Before each new page (66 lines) and before each newtfipestops and reads the 2741 before
continuing. This allows time for insertion of single sheet paper. To continue, push the ATTN
key on the 2741.

FILES
/devi/ttyc

BUGS

Since it is impossible to second guess a 2741, quite often it is necessary to print a # to put this
device in a state it might already be in.
The value of padding out a page with up to 66 carriage returns is doubtful.

TYPO(I) 1/15/73 TYPO(I)

NAME

typo - find possible typos

SYNOPSIS

typo[—]filel...

DESCRIPTION

FILES

BUGS

Typohunts through a document for unusual words, typographic errorshapak legomenand
prints them on the standard output.

The words used in the document are printed out in decreasing order of peculiarity along with an
index of peculiarity. An index of 10 or more is considered peculiar. Printing of certain very
common English words is suppressed.

The statistics for judging words are taken from the document itself, with some help from known
statistics of English. The-* option suppresses the help from English and should be used if the
document is written in, for example, Urdu.

Roff and nroff control lines are ignored. Upper case is mapped into lower case. Quote marks,
vertical bars, hyphens, and ampersands are stripped from within words. Words hyphenated
across lines are put back together.

ftmp/ttmp??, /ust/lib/salt, /usr/lib/w2006

Because of the mapping into lower case and the stripping of special characters, words may be
hard to locate in the original text.

The expanded escape sequencetifare not correctly recognized.

UNIQ (1) 12/1/72 UNIQ (1)

NAME
uniqg — report repeated lines in a file

SYNOPSIS
unig [—udc[+n][-n]][input [output]]

DESCRIPTION
Uniq reads the input file comparing adjacent lines. In the normal case, the second and succeed-
ing copies of repeated lines are removed; the remainder is written on the output file. Note that
repeated lines must be adjacent in order to be found; see sort(l). Hutllag is used, just the
lines that are not repeated in the original file are output.—theption specifies that one copy of
just the repeated lines is to be written. The normal mode output is the union efithad-d
mode outputs.

The —c option supersedesu and—d and generates an output report in the style-wd but with
each line preceded by a count of the number of times it occurred.

Then arguments specify skipping an initial portion of each line in the comparison:

—-n The firstn fields together with any blanks before each are ignored. A field is defined
as a string of non-space, non-tab characters separated by tabs and spaces from its
neighbors.

+n The firstn characters are ignored. Fields are skipped before characters.

SEE ALSO
sort(l), comm(l)

BUGS

WAIT (1) 4/9/73 WAIT (1)

NAME
wait — await completion of process

SYNOPSIS
wait

DESCRIPTION
Wait until all processes started wghhave completed, and report on abnormal terminations.
Becausesys waitmust be executed in the parent process, the shell itself exesatesvithout
creating a new process

SEE ALSO
sh(l)

BUGS

After executingwait there is no way to interrupt the processes waited on. This is because inter-
rupts were set to be ignored when the process was created. The only out (if the process does not
terminate) is till the process from another terminal or to hangup.

wWC (1) 3/15/72 WC (1)

NAME
wc — get (English) word count

SYNOPSIS
wc files

DESCRIPTION
Wecprovides a count of the words, text lines, and control lines for each argument file. If no files
are providedyc reads the standard input.

A text line is a sequence of characters not beginning wiftl* or *” and ended by a new-line.
A control line is a line beginning with.”, ‘I or ’. A word is a sequence of characters bounded
by the beginning of a line, by the end of a line, or by a blank or a tab.

When there is more than one input file, a grand total is also printed.

DIAGNOSTICS
none; arguments not found are ignored.

BUGS

WHO (1) 3/15/72 WHO (1)

NAME
who — who is on the system

SYNOPSIS
who [who-file]

DESCRIPTION
Who,without an argument, lists the name, typewriter channel, and login time for each current
UNIX user.

Without an argumentwho examines the /tmp/utmp file to obtain its information. If a file is
given, that file is examined. Typically the given file will be /tmp/wtmp, which contains a record
of all the logins since it was created. Thesmo will list logins, logouts, and crashes since the
creation of the wtmp file.

Each login is listed with user name, typewriter name (with ‘/dev/’ suppressed), and date and
time. When an argument is given, logouts produce a similar line without a user name. Reboots
produce a line with ‘X’ in the place of the device name, and a fossil time indicative of when the
system went down.

FILES
/tmp/utmp

SEE ALSO
login(l), init(VII)

BUGS

WRITE (1) 8/5/73 WRITE (1)

NAME
write — write to another user
SYNOPSIS
write user [ttyno]
DESCRIPTION
Write copies lines from your typewriter to that of another user. When first called, it sends the
message
message from yourname...
The recipient of the message should write back at this point. Communication continues until an
end of file is read from the typewriter or an interrupt is sent. At that paiite writes ‘EOT’ on
the other terminal and exits.
If you want to write to a user who is logged in more than once ttyr argument may be used
to indicate the last character of the appropriate typewriter name.
Permission to write may be denied or granted by use oftbegcommand. At the outset writ-
ing is allowed. Certain commands, in particutaff andpr, disallow messages in order to pre-
vent messy output.
If the character ‘!" is found at the beginning of a lingrite calls the mini-shelinshto execute
the rest of the line as a command.
The following protocol is suggested for usimgite: when you first write to another user, wait
for him to write back before starting to send. Each party should end each message with a dis-
tinctive signal ((o) for ‘over’ is conventional) that the other may repl{oo) (for ‘over and out’)
is suggested when conversation is about to be terminated.
FILES
/tmp/utmp to find user
/etc/msh to execute ‘!’
SEE ALSO
mesg(l), who(l)
BUGS

INTRO (II) 11/5/73 INTRO (1)

INTRODUCTION TO SYSTEM CALLS

Section Il of this manual lists all the entries into the system. In most cases two calling sequences are
specified, one of which is usable from assembly language, and the other from C. Most of these calls have
an error return. From assembly language an erroneous call is always indicated by turning on the c-bit of
the condition codes. The presence of an error is most easily tested by the instriesesd bec
(“branch on error set (or clear)”). These are synonyms fobttsandbccinstructions.

From C, an error condition is indicated by an otherwise impossible returned value. Almost always this is
-1, the individual sections specify the detalils.

In both cases an error number is also available. In assembly language, this number is returned in r0 on er-
roneous calls. From C, the external variabienois set to the error numbeiErrno is not cleared on suc-

cesful calls, so it should be tested only after an error has occurred. There is a table of messages associated
with each error, and a routine for printing the message p&eer (l11).

The possible error numbers are not recited with each writeup in section Il, since many errors are possible
for most of the calls. Here is a list of the error numbers, their names inside the system (for the benefit of
system-readers), and the messages available pesiray. A short explanation is also provided.

0 - (unused)

1 EPERM Not owner and not super-user
Typically this error indicates an attempt to modify a file in some way forbidden except to its own-
er. Itis also returned for attempts by ordinary users to do things allowed only to the super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should exist but doesn't, or when one
of the directories in a path name does not exist.

3 ESRCH No such process

The process whose number was givesigoaldoes not exist, or is already dead.
4 - (unused)
5 EIO I/O error

Some physical I/0 error occurred duringesad or write. This error may in some cases occur on a
call following the one to which it actually applies.

6 ENXIO No such device or address
I/0O on a special file refers to a subdevice which does not exist, or beyond the limits of the device.
It may also occur when, for example, a tape drive is not dialled in or no disk pack is loaded on a
drive.

7 E2BIG Arg list too long
An argument list longer than 512 bytes (counting the null at the end of each argument) is pre-
sented texec.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the appropriate permissions, does not
start with one of the magic numbers 407 or 410.

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read (resp. write) request is made to a file which
is open only for writing (resp. reading).

INTRO (II) 11/5/73 INTRO (1)

10 ECHILD No children
Waitand the process has no living or unwaited-for children.

11 EAGAIN No more processes
In afork, the system’s process table is full and no more processes can for the moment be created.

12 ENOMEM Not enough core
During anexecor break,a program asks for more core than the system is able to supply. This is
not a temporary condition; the maximum core size is a system parameter. The error may also oc-
cur if the arrangement of text, data, and stack segments is such as to require more than the existing
8 segmentation registers.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by the protection system.

14 - (unused)

15 ENOTBLK Block device required
A plain file was mentioned where a block device was required, engpunt.

16 EBUSY Mount device busy
An attempt was made to dismount a device on which there is an open file or some process’s cur-
rent directory.

17 EEXIST File exists
In existing file was mentioned in a context in which it should not have]ialg.
18 EXDEV Cross-device link
A link to a file on another device was attempted.
19 ENODEV No such device
An attempt was made to apply an inappropriate system call to a device; e.g. read a write-only de-
vice.

20 ENOTDIR Not a directory
A non-directory was specified where a directory is required, for example in a path name or as an
argument tahdir.

21 EISDIR Is a directory
An attempt to write on a directory.

22 EINVAL Invalid argument
Some invalid argument: currently, dismounting a non-mounted device, mentioning an unknown
signal insignal,and giving an unknown requeststtyto the TIU special file.

23 ENFILE File table overflow
The system’s table of open files is full, and temporarily no rapemscan be accepted.
24 EMFILE Too many open files
Only 10 files can be open per process; this error occurs when the eleventh is opened.
25 ENOTTY Not a typewriter
The file mentioned irstty or gtty is not a typewriter or one of the other devices to which these
calls apply.

26 ETXTBSY Text file busy
An attempt to execute a pure-procedure program which is currently open for writing (or reading!).

INTRO (II) 11/5/73 INTRO (1)

27 EFBIG File too large
An attempt to make a file larger than the maximum of 2048 blocks.

28 ENOSPC No space left on device
During awrite to an ordinary file, there is no free space left on the device.

29 ESPIPE Seek on pipe
A seekwas issued to a pipe. This error should also be issued for other non-seekable devices.

BREAK (I1) 8/5/73 BREAK (I1)

NAME
break- set program break

SYNOPSIS
(break =17.)
sys break; addr
char *sbrk(incr)

DESCRIPTION
Breaksets the system’s idea of the lowest location not used by the prograddtgrounded up
to the next multiple of 64 bytes). Locations not less tlaadr and below the stack pointer are
not in the address space and will thus cause a memory violation if accessed.
From C, the calling sequence is differeimtgr more bytes are added to the program’s data space
and a pointer to the start of the new area is returned.
When a program begins execution @gecthe break is set at the highest location defined by the
program and data storage areas. Ordinarily, therefore, only programs with growing data areas
need to uséreak.

SEE ALSO
exec(ll)

DIAGNOSTICS

The c-bit is set if the program requests more memory than the system limit (currently 20K
words), or if more than 8 segmentation registers would be required to implement the break.
From C,-1 is returned for these errors.

CHDIR (1) 8/5/73 CHDIR (II)

NAME
chdir - change working directory

SYNOPSIS
(chdir =12.)
sys chdir; dirname

chdir(dirname)
char *dirname;

DESCRIPTION
Dirnameis the address of the pathname of a directory, terminated by a null Ktdir causes
this directory to become the current working directory.

SEE ALSO
chdir(l)

DIAGNOSTICS
The error bit (c-bit) is set if the given name is not that of a directory or is not readable. From C,
a-—1 returned value indicates an error, O indicates success.

CHMOD (11) 8/5/73 CHMOD (1I)

NAME
chmod- change mode of file

SYNOPSIS
(chmod =15.)
sys chmod; name; mode

chmod(name, mode)
char *name;

DESCRIPTION
The file whose name is given as the null-terminated string pointed toamgehas its mode
changed tanode. Modes are constructed by ORing together some combination of the following:

4000 set user ID on execution
2000 set group ID on execution
0400 read by owner

0200 write by owner

0100 execute by owner

0070 read, write, execute by group
0007 read, write, execute by others

Only the owner of a file (or the super-user) may change the mode.

SEE ALSO
chmod(l)

DIAGNOSTIC
Error bit (c-bit) set ifnamecannot be found or if current user is neither the owner of the file nor
the super-user. From C4 returned value indicates an error, O indicates success.

CHOWN (11) 8/5/73 CHOWN (1)

NAME
chown- change owner
SYNOPSIS
(chmod =16.)
sys chown; name; owner
chown(name, owner)
char *name;
DESCRIPTION
The file whose name is given by the null-terminated string pointed tmdyehas its owner
changed toowner (a numerical user ID). Only the present owner of a file (or the super-user)
may donate the file to another user. Changing the owner of a file removes the set-user-ID pro-
tection bit unless it is done by the super user or the real user ID is the new owner.
SEE ALSO
chown(l), uids(V)
DIAGNOSTICS

The error bit (c-bit) is set on illegal owner changes. From €laeturned value indicates error,
0 indicates success.

CLOSE (1) 8/5/73 CLOSE (1)

NAME
close — close afile

SYNOPSIS
(close =6.)
(file descriptor in r0)
sys close
close(fildes)

DESCRIPTION
Given a file descriptor such as returned fromagen, creatpr pipecall, closecloses the associ-
ated file. A close of all files is automatic @xit, but since processes are limited to 10 simultane-
ously open filesgloseis necessary for programs which deal with many files.

SEE ALSO
creat(ll), open(ll), pipe(ll)

DIAGNOSTICS

The error bit (c-bit) is set for an unknown file descriptor. From €landicates an error, 0 indi-
cates success.

CREAT(II) 8/5/73 CREAT (1)

NAME
creat— create a new file

SYNOPSIS
(creat =8.)
sys creat; name; mode
(file descriptor in r0)
creat(name, mode)
char *name;

DESCRIPTION
Creatcreates a new file or prepares to rewrite an existing file calkemhe,given as the address
of a null-terminated string. If the file did not exist, it is given madede. See chmod(ll) for the
construction of thenodeargument.
If the file did exist, its mode and owner remain unchanged but it is truncated to O length.
The file is also opened for writing, and its file descriptor is returned (in r0).
The modegiven is arbitrary; it need not allow writing. This feature is used by programs which
deal with temporary files of fixed names. The creation is done with a mode that forbids writing.
Then if a second instance of the program attempteeat, an error is returned and the program
knows that the name is unusable for the moment.

SEE ALSO
write(ll), close(ll), stat(ll)

DIAGNOSTICS

The error bit (c-bit) may be set if: a needed directory is not searchable; the file does not exist and
the directory in which it is to be created is not writable; the file does exist and is unwritable; the
file is a directory; there are already 10 files open.

From C, a-1 return indicates an error.

csw () 8/5/73 csSw(ll)

NAME
csw-read console switches
SYNOPSIS
(csw = 38.; not in assembler)
sys csw
getcsw()
DESCRIPTION

The setting of the console switches is returned (in r0).

DUP (1) 8/5/73 DUP (1)

NAME
dup-— duplicate an open file descriptor

SYNOPSIS
(dup = 41.; not in assembler)
(file descriptor in r0)
sys dup

dup(fildes)
int fildes;

DESCRIPTION
Given a file descriptor returned from apen, pipepr creatcall, dup will allocate another file
descriptor synonymous with the original. The new file descriptor is returned in r0.

Dupis used more to reassign the value of file descriptors than to genuinely duplicate a file de-
scriptor. Since the algorithm to allocate file descriptors returns the lowest available value be-
tween 0 and 9, combinationsaipandclosecan be used to manipulate file descriptors in a gen-
eral way. This is handy for manipulating standard input and/or standard output.

SEE ALSO
creat(ll), open(ll), close(ll), pipe(ll)

DIAGNOSTICS
The error bit (c-bit) is set if: the given file descriptor is invalid; there are already 10 open files.
From C, a1 returned value indicates an error.

EXEC (Il) 8/5/73 EXEC (Il)

NAME
exec — execute a file

SYNOPSIS
(exec = 11.
SYys exec; hame; args

.r;;alme: <.\G>

.a.l.rgs: argl; arg?; ...; 0
argl: <.\0>
arg2: <..\C>

execl(name, argl, arg2, ..., argn, 0)
char *name, *argl, *arg2, ..., *argn;

execv(name, argv)
char *name;
char *argv[|;

DESCRIPTION
Execoverlays the calling process with the named file, then transfers to the beginning of the core
image of the file. There can be no return from the file; the calling core image is lost.

Files remain open acrogxeccalls. Ignored signals remain ignored acresec,but signals that
are caught are reset to their default values.

Each user has eeal user ID and group ID and agffectiveuser ID and group ID (The real ID
identifies the person using the system; the effective ID determines his access privilEges.)
changes the effective user and group ID to the owner of the executed file if the file has the “set-
user-ID” or “set-group-ID” modes. The real user ID is not affected.

The form of this call differs somewhat depending on whether it is called from assembly language
or C; see below for the C version.

The first argument t@xecis a pointer to the name of the file to be executed. The second is the
address of a null-terminated list of pointers to arguments to be passed to the file. Convention-
ally, the first argument is the name of the file. Each pointer addresses a string terminated by a
null byte.

Once the called file starts execution, the arguments are available as follows. The stack pointer
points to a word containing the number of arguments. Just above this number is a list of pointers
to the argument strings. The arguments are placed as high as possible in core.

Sp— nargs
argl

argn
argl: <argl\0>

argn: .éarg n\0>

From C, two intefaces are availablexeclis useful when a known file with known arguments is
being called; the arguments &xeclare the character strings constituting the file and the argu-
ments; as in the basic call, the first argument is conventionally the same as the file name (or its
last component). A 0 argument must end the argument list.

The execwversion is useful when the number of arguments is unknown in advance; the argu-
ments toexecvare the name of the file to be executed and a vector of strings containing the argu-
ments. The last argument string must be followed by a 0 pointer.

EXEC (Il) 8/5/73 EXEC (Il)

When a C program is executed, it is called as follows:

main(argc, argv)

int argc;

char *argv[];
whereargc is the argument count anatgv is an array of character pointers to the arguments
themselves. As indicatedygc is conventionally at least one and the first member of the array
points to a string containing the name of the file.

Argvis not directly usable in anothexecvsinceargvlargc] is -1 and not 0.

SEE ALSO
fork(Il)

DIAGNOSTICS
If the file cannot be found, if it is not executable, if it does not have a valid header (407 or 410
octal as first word), if maximum memory is exceeded, or if the arguments require more than 512
bytes a return fronexecconstitutes the diagnostic; the error bit (c-bit) is set. From C the re-

turned value is-1.

BUGS
Only 512 characters of arguments are allowed.

EXIT(I) 8/5/73 EXIT(I)

NAME
exit — terminate process

SYNOPSIS
(exit=1.)
(status in r0)
Sys exit

exit(status)
int status;

DESCRIPTION
Exit is the normal means of terminating a proceEsit closes all the process’ files and naotifies
the parent process if it is executingnait. The low byte of rO (resp. the argument éait) is
available as status to the parent process.

This call can never return.

SEE ALSO
wait(Il)

DIAGNOSTICS
None.

FORK (I1) 8/5/73 FORK (11)

NAME
fork — spawn new process

SYNOPSIS
(fork = 2))
sys fork
(new process return)
(old process return)
fork()

DESCRIPTION
Fork is the only way new processes are created. The new process’s core image is a copy of that
of the caller offork. The only distinction is the return location and the fact that r0 in the old
(parent) process contains the process ID of the new (child) process. This process ID is used by
wait.
From C, the returned value is 0 in the child process, non-zero in the parent process; however, a
return of-1 indicates inability to create a new process.

SEE ALSO
wait(ll), exec(ll)

DIAGNOSTICS

The error bit (c-bit) is set in the old process if a new process could not be created because of lack
of process space. From C, a retura-df(not just negative) indicates an error.

FSTAT (1) 8/5/73 FSTAT (1)

NAME
fstat — get status of open file

SYNOPSIS
(fstat = 28.)
(file descriptor in r0)
sys fstat; buf

fstat(fildes, buf)
struct inode buf;

DESCRIPTION
This call is identical tostat, except that it operates on open files instead of files given by name.
It is most often used to get the status of the standard input and output files, whose names are un-
known.

SEE ALSO
stat(ll)

DIAGNOSTICS
The error bit (c-bit) is set if the file descriptor is unknown; from €laeturn indicates an error,
0 indicates success.

GETGID(Il) 8/5/73 GETGID(Il)

NAME
getgid — get group identification

SYNOPSIS
(getgid = 47.; not in assembler)
sys getgid
getgid()

DESCRIPTION
Getgidreturns the real group ID of the current process. The real group ID identifies the group of
the person who is logged in, in contradistinction to the effective group ID, which determines his
access permission at the moment. It is thus useful to programs which operate using the “set
group ID” mode, to find out who invoked them.

SEE ALSO
setgid(ll)

DIAGNOSTICS

GETUID (1) 8/5/73 GETUID (1)

NAME
getuid — get user identification

SYNOPSIS
(getuid = 24.)
sys getuid

getuid()

DESCRIPTION
Getuidreturns the real user ID of the current process. The real user ID identifies the person who
is logged in, in contradistinction to the effective user ID, which determines his access permission
at the moment. It is thus useful to programs which operate using the “set user ID” mode, to
find out who invoked them.

SEE ALSO
setuid(Il)

DIAGNOSTICS

GTTY(I) 8/5/73 GTTY(I)

NAME
gtty — get typewriter status

SYNOPSIS
(gtty = 32._) _
(file descriptor in r0)
sys gtty; arg
. arg: .=.+6
otty(fildes, arg)
int arg[3];

DESCRIPTION
Gtty stores in the three words addressedaby the status of the typewriter whose file descriptor
is given in rO (resp. given as the first argument). The format is the same as that pasised by

SEE ALSO
stty(Il)

DIAGNOSTICS
Error bit (c-bit) is set if the file descriptor does not refer to a typewriter. From €1 &alue is
returned for an error, 0, for a successful call.

INDIR (I1) 8/5/73 INDIR (I1)

NAME
indir — indirect system call

SYNOPSIS
(indir = 0.; not in assembler)
sys indir; syscall

DESCRIPTION
The system call at the locatisgscallis executed. Execution resumes afteritiugr call.
The main purpose dhdir is to allow a program to store arguments in system calls and execute
them out of line in the data segment. This preserves the purity of the text segment.
If indir is executed indirectly, it is a no-op.

SEE ALSO

DIAGNOSTICS

KILL (1) 8/5/73 KILL (1)

NAME
kill - send signal to a process

SYNOPSIS
(kill = 37.; not in assembler)
(process number in r0)
sys kill; sig

DESCRIPTION
Kill sends the signalig to the process specified by the process number in r0. See signal(ll) for a
list of signals.

The sending and receiving processes must have the same controlling typewriter, otherwise this
call is restricted to the super-user.

SEE ALSO
signal(ll), kill(l)

DIAGNOSTICS
The error bit (c-bit) is set if the process does not have the same controlling typewriter and the
user is not super-user, or if the process does not exist.

BUGS
Equality between the controlling typewriters of the sending and receiving process is neither a
necessary nor sufficient condition for allowing the sending of a signal. The correct condition is
equality of user IDs.

LINK (1) 8/5/73 LINK (1)

NAME
link — link to a file
SYNOPSIS
(link =9.)
sys link; namel; name?2
link(namel, name2)
char *namel, *name2;
DESCRIPTION
A link to namelis created; the link has the namame2. Either name may be an arbitrary path
name.
SEE ALSO
link(l), unlink(11)
DIAGNOSTICS

The error bit (c-bit) is set whenamelcannot be found; whename2already exists; when the
directory ofname2cannot be written; when an attempt is made to link to a directory by a user
other than the super-user; when an attempt is made to link to a file on another file system. From
C, a-1 return indicates an error, a O return indicates success.

MKNOD (I1) 8/5/73 MKNOD (1)

NAME
mknod— make a directory or a special file

SYNOPSIS
(mknod = 14.; not in assembler)
sys mknod; name; mode; addr

mknod(name, mode, addr)
char *name;

DESCRIPTION
Mknod creates a new file whose name is the null-terminated string pointed twaine. The
mode of the new file (including directory and special file bits) is initialized frm@de. The first
physical address of the file is initialized froeddr. Note that in the case of a directorgddr
should be zero. In the case of a special ditkjr specifies which special file.

Mknodmay be invoked only by the super-user.

SEE ALSO
mkdir(l), mknod(l), fs(V)

DIAGNOSTICS
Error bit (c-bit) is set if the file already exists or if the user is not the super-user. From+C, a
value indicates an error.

MOUNT (1I) 8/5/73 MOUNT (I1)

NAME
mount— mount file system

SYNOPSIS
(mount = 21.)
Sys mount; special; name

DESCRIPTION
Mount announces to the system that a removable file system has been mounted on the block-
structured special filspecial;from now on, references to filkamewill refer to the root file on
the newly mounted file systenSpecialandnameare pointers to null-terminated strings contain-
ing the appropriate path names.

Namemust exist already. Its old contents are inaccessible while the file system is mounted.

SEE ALSO
mount(l), umount(ll)

DIAGNOSTICS
Error bit (c-bit) set if:specialis inaccessible or not an appropriate fitegmedoes not existspe-
cial is already mounted; there are already too many file systems mounted.

NICE (I1) 8/5/73 NICE (I1)

NAME
nice— set program priority

SYNOPSIS
(nice = 34.)
(priority in r0)
Sys nice

nice(priority)

DESCRIPTION
The schedulingpriority of the process is changed to the argument. Positive priorities get less
service than normal; O is default. Only the super-user may specify a negative priority. The valid
range ofpriority is 20 to—220. The value of 16 is recommended to users who wish to execute
long-running programs without flak from the administration.

The effect of this call is passed to a child process byftinke system call. The effect can be can-
celled by another call toicewith apriority of 0.

SEE ALSO
nice(l)

DIAGNOSTICS
The error bit (c-bit) is set if the user requestgriority outside the range of 0 to 20 and is not the
super-user.

OPEN(II) 8/5/73 OPEN(II)

NAME
open- open for reading or writing
SYNOPSIS
(open =5))
Sys open; name; mode
open(name, mode)
char *name;
DESCRIPTION
Openopens the filenamefor reading (ifmodeis 0), writing (if modeis 1) or for both reading
and writing (if modeis 2). Nameis the address of a string of ASCII characters representing a
path name, terminated by a null character.
The returned file descriptor should be saved for subsequent aaidtonrite,andclose.
SEE ALSO
creat(ll), read(ll), write(ll), close(ll)
DIAGNOSTICS

The error bit (c-bit) is set if the file does not exist, if one of the necessary directories does not ex-
ist or is unreadable, if the file is not readable (resp. writable), or if 10 files are open. From C, a
-1 value is returned on an error.

PIPE (Il) 8/5/73 PIPE(Il)

NAME
pipe - create a pipe
SYNOPSIS
(pipe = 42.)
Sys pipe
(read file descriptor in r0)
(write file descriptor in rl)
pipe(fildes)
int fildes[2];
DESCRIPTION
The pipe system call creates an I/O mechanism called a pipe. The file descriptors returned can
be used in read and write operations. When the pipe is written using the descriptor returned in rl
(resp. fildes[1]), up to 4096 bytes of data are buffered before the writing processis suspended. A
read using the descriptor returned in rO (resp. fildes[0]) will pick up the data.
It is assumed that after the pipe has been set up, two (or more) cooperating processes (created by
subsequerfork calls) will pass data through the pipe wigdadandwrite calls.
The shell has a syntax to set up a linear array of processes connected by pipes.
Read calls on an empty pipe (no buffered data) with only one end (all write file descriptors
closed) return an end-of-file. Write calls under similar conditions are ignored.
SEE ALSO
sh(l), read(ll), write(ll), fork(ll)
DIAGNOSTICS

The error bit (c-bit) is set if more than 8 files are already open. From-€, @eturned value in-
dicates an error.

READ (I1) 8/5/73 READ (I1)

NAME
read- read from file

SYNOPSIS
(read = 3.)
(file descriptor in r0)
sys read; buffer; nbytes

read(fildes, buffer, nbytes)
char *buffer,;

DESCRIPTION
A file descriptor is a word returned from a succesg@n, creator pipecall. Bufferis the loca-
tion of nbytescontiguous bytes into which the input will be placed. It is not guaranteed that all
nbytesbytes will be read; for example if the file refers to a typewriter at most one line will be re-
turned. In any event the number of characters read is returned (in r0).

If the returned value is 0, then end-of-file has been reached.

SEE ALSO
open(ll), creat(ll), pipe(ll)

DIAGNOSTICS
As mentioned, 0 is returned when the end of the file has been reached. If the read was otherwise
unsuccessful the error bit (c-bit) is set. Many conditions can generate an error: physical /O er-
rors, bad buffer address, preposterabsgtesfile descriptor not that of an input file. From C, a
-1 return indicates the error.

SEEK (1) 8/5/73 SEEK (1)

NAME
seek— move read/write pointer
SYNOPSIS
(seek =19))
(file descriptor in r0)
sys seek; offset; ptrname
seek(fildes, offset, ptrname)
DESCRIPTION
The file descriptor refers to a file open for reading or writing. The read (resp. write) pointer for
the file is set as follows:
if ptrnameis 0, the pointer is set tuffset.
if ptrnameis 1, the pointer is set to its current location mffset.
if ptrnameis 2, the pointer is set to the size of the file mffset.
if ptrnameis 3, 4 or 5, the meaning is as above for 0, 1 and 2 except that the offset is multi-
plied by 512.
If ptrnameis 0 or 3,offsetis unsigned, otherwise it is signed.
SEE ALSO
open(ll), creat(ll)
DIAGNOSTICS

The error bit (c-bit) is set for an undefined file descriptor. From+1, @eturn indicates an error.

SETGID(Il) 8/5/73 SETGID(II)

NAME
setgid— set process group ID
SYNOPSIS
(setgid = 46.; not in assembler)
(group ID in r0)
sys setgid
setgid(gid)
DESCRIPTION
The group ID of the current process is set to the argument. Both the effective and the real group
ID are set. This call is only permitted to the super-user or if the argument is the real group ID.
SEE ALSO
getgid(ll)
DIAGNOSTICS

Error bit (c-bit) is set as indicated; from G;-hvalue is returned.

SETUID (1) 8/5/73 SETUID (I1)

NAME
setuid- set process user ID
SYNOPSIS
(setuid = 23.)
(user ID in r0)
sys setuid
setuid(uid)
DESCRIPTION
The user ID of the current process is set to the argument. Both the effective and the real user ID
are set. This call is only permitted to the super-user or if the argument is the real user ID.
SEE ALSO
getuid(ll)
DIAGNOSTICS

Error bit (c-bit) is set as indicated; from G;-hvalue is returned.

SIGNAL (1)

8/5/73 SIGNAL (1)

signal- catch or ignore signals

sys signal; sig; value

When the signal defined bgig is sent to the current process, it is to be treated according to
value. The following is the list of signals:

hangup

interrupt

quit

illegal instruction

trace trap

IOT instruction

EMT instruction

floating point exception
kill (cannot be caught or ignored)
bus error

segmentation violation
bad argument to sys call

If valueis 0, the default system action applies to the signal. This is processes termination with
or without a core dump. Walueis odd, the signal is ignored. Any other ewealuespecifies an
address in the process where an interrupt is simulated. An RTI instruction will return from the
interrupt. As a signal is caught, it is reset to 0. Thus if it is desired to catch every such signal,
the catching routine must issue anotsignalcall.

The starred signals in the list above cause core images if not caught and not ignored. In C, if
funcis 0 or 1, the action is as described abovefuifcis even, it is assumed to be the address of

a function entry point. When the signal occurs, the function will be called. A return from the
function will simulate the RTI.

After afork, the child inherits all signals. Thexeccall resets all caught signals to default action.

NAME
SYNOPSIS
(signal = 48.)
signal(sig, func)
int (*func)();
DESCRIPTION
1
2
3*
4*
5*
6*
7*
8*
9
10*
11*
12*
SEE ALSO
kill (1, 11)
DIAGNOSTICS

The error bit (c-bit) is set if the given signal is out of range. In Glandicates an error; 0 indi-
cates success.

SLEEP (Il) 8/5/73 SLEEP (Il)

NAME
sleep- stop execution for interval

SYNOPSIS
(sleep = 35.; not in assembler)
(seconds in r0)
sys sleep

sleep(seconds)

DESCRIPTION
The current process is suspended from execution for the number of seconds specified by the ar-
gument.

SEE ALSO
sleep (1)

DIAGNOSTICS

STAT(I) 8/5/73 STAT(I)

NAME
stat— get file status
SYNOPSIS
(stat =18.)
sys stat; name; buf
stat(name, buf)
char *name;
struct inode *buf;
DESCRIPTION
Namepoints to a null-terminated string naming a filef is the address of a 36(10) byte buffer
into which information is placed concerning the file. It is unnecessary to have any permissions
at all with respect to the file, but all directories leading to the file must be readable. sider
buf has the following structure (starting offset given in bytes):
struct {
char minor; /* +0: minor device of i-node */
char major; /* +1: major device */
int inumber [*+2 *
int flags; [* +4: see below */
char nlinks; /* +6: number of links to file */
char uid; /* +7: user ID of owner */
char gid; /* +8: group ID of owner */
char size0; /* +9: high byte of 24-bit size */
int sizel; /* +10: low word of 24-bit size */
int addr[8]; /* +12: block numbers or device number */
int actime[2]; [* +28: time of last access */
int modtime[2]; [* +32: time of last modification */
h
The flags are as follows:
100000 i-node is allocated
060000 2-hit file type:
000000 plain file
040000 directory
020000 character-type special file
060000 block-type special file.
010000 large file
004000 set user-ID on execution
002000 set group-ID on execution
000400 read (owner)
000200 write (owner)
000100 execute (owner)
000070 read, write, execute (group)
000007 read, write, execute (others)
SEE ALSO
stat(l), fstat(ll), fs(V)
DIAGNOSTICS

Error bit (c-bit) is set if the file cannot be found. From Glaeturn indicates an error.

STIME (1) 8/5/73 STIME (1)

NAME
stime— set time

SYNOPSIS
(stime = 25.) (time in r0-rl)
sys stime

stime(tbuf)
int tbuff2];

DESCRIPTION
Stimesets the system’s idea of the time and date. Time is measured in seconds from 0000 GMT
Jan 1 1970. Only the super-user may use this call.

SEE ALSO
date(l), time(ll), ctime(lll)

DIAGNOSTICS
Error bit (c-bit) set if user is not the super-user.

STTY (1) 8/5/73 STTY (1)

NAME
stty — set mode of typewriter

SYNOPSIS
(stty = 31.)
(file descriptor in r0)
sys stty; arg

é.rg: speed; 0; mode

stty(fildes, arg)
int arg[3];

DESCRIPTION
Stty sets mode bits and character speeds for the typewriter whose file descriptor is passed in r0
(resp. is the first argument to the call). First, the system delays until the typewriter is quiescent.
Then the speed and general handling of the input side of the typewriter is set from the low byte
of the first word of thearg, and the speed of the output side is set from the high byte of the first
word of thearg. The speeds are selected from the following table. This table corresponds to the
speeds supported by the DH-11 interface. The starred entries are those speeds actually supported
by the DC-11 interfaces actually present; if a non-starred speed is selected, it will be ignored and
the present speed left unchanged.

0 (turn off device)

1 50 baud

2 75 baud

3 110 baud
4* 134.5 baud
5% 150 baud
6 200 baud
7* 300 baud
8 600 baud

9* 1200 baud
10 1800 baud
11 2400 baud
12 4800 baud
13 9600 baud
14 External A
15 External B

In the current configuration, only 150 and 300 baud are really supported, in that the code conver-
sion and line control required for 2741’s (134.5 baud) must be implemented by the user’s pro-
gram, and the half-duplex line discipline required for the 202 dataset (1200 baud) is not supplied.

The second word of therg is currently unused and is available for expansion.

The third word of thearg sets themode. It contains several bits which determine the system’s
treatment of the typewriter:

10000no delays after tabs (e.g. TN 300)

200 even parity allowed on input (e. g. for M37s)
100 odd parity allowed on input

040 raw mode: wake up on all characters

020 map CR into LF; echo LF or CR as CR-LF
010 echo (full duplex)

004 map upper case to lower on input (e. g. M33)
002 echo and print tabs as spaces

001 inhibit all function delays (e. g. CRTS)

Characters with the wrong parity, as determined by bits 200 and 100, are ignored.

STTY (1) 8/5/73 STTY (1)

In raw mode, every character is passed back immediately to the program. No erase or Kill pro-
cessing is done; the end-of-file character (EOT), the interrupt character (DELETE) and the quit
character (FS) are not treated specially.

Mode 020 causes input carriage returns to be turned into new-lines; input of either CR or LF
causes LF-CR both to be echoed (used for GE TermiNet 300’s and other terminals without the
newline function).

SEE ALSO
stty(l), gtty(I)

DIAGNOSTICS
The error bit (c-bit) is set if the file descriptor does not refer to a typewriter. From C, a negative

value indicates an error.

SYNC (1) 8/5/73 SYNC (1)

NAME
sync— update super-block
SYNOPSIS
(sync = 36.; not in assembler)
Sys sync
DESCRIPTION
Synccauses all information in core memory that should be on disk to be written out. This in-
cludes modified super blocks, modified i-nodes, and delayed block I/O.
It should be used by programs which examine a file system, for exaomglek, dfetc. It is
mandatory before a boot.
SEE ALSO
sync (VIII), update (VIII)
DIAGNOSTICS

TIME (1) 8/5/73 TIME (1)

NAME
time — get date and time
SYNOPSIS
(time = 13.)
Sys time
time(tvec)
int tvec[2];
DESCRIPTION
Timereturns the time since 00:00:00 GMT, Jan. 1, 1970, measured in seconds.aErtm
high order word is in the rO register and the low order is in r1. From C, the user-supplied vector
is filled in.
SEE ALSO
date(l), stime(ll), ctime(lll)
DIAGNOSTICS

none

TIMES (Il) 8/5/73 TIMES (Il)

NAME
times— get process times
SYNOPSIS
(times = 43.; not in assembler)
sys times; buffer
times(buffer)
struct tbuffer *buffer;
DESCRIPTION
Timesreturns time-accounting information for the current process and for the terminated child
processes of the current process. All times are in 1/60 seconds.
After the call, the buffer will appear as follows:
struct tbuffer {
int proc user time;
int proc systemtime;
int child_user time[2];
int child_systemtime[2];
%
The children times are the sum of the children’s process times and their children’s times.
SEE ALSO
time(l)
DIAGNOSTICS
BUGS

The process times should be 32 bits as well.

UMOUNT (I1) 8/5/73 UMOUNT (11)

NAME
umount- dismount file system
SYNOPSIS
(umount = 22))
Sys umount; special
DESCRIPTION
Umountannounces to the system that special$ppecialis no longer to contain a removable file
system. The file associated with the special file reverts to its ordinary interpretatiom¢aed
).
SEE ALSO
umount(l), mount(ll)
DIAGNOSTICS

Error bit (c-bit) set if no file system was mounted on the special file or if there are still active
files on the mounted file system.

UNLINK (11) 8/5/73 UNLINK (11)

NAME
unlink — remove directory entry

SYNOPSIS
(unlink = 10.)
sys unlink; name

unlink(name)
char *name;

DESCRIPTION
Namepoints to a null-terminated stringUnlink removes the entry for the file pointed to by
namefrom its directory. If this entry was the last link to the file, the contents of the file are freed
and the file is destroyed. If, however, the file was open in any process, the actual destruction is
delayed until it is closed, even though the directory entry has disappeared.

SEE ALSO
rm(l), rmdir(1), link(11)

DIAGNOSTICS
The error bit (c-bit) is set to indicate that the file does not exist or that its directory cannot be
written. Write permission is not required on the file itself. It is also illegal to unlink a directory
(except for the super-user). From C;lareturn indicates an error.

WAIT (1) 8/5/73 WAIT (1)

NAME
wait — wait for process to die

SYNOPSIS
(wait=7.)
sys wait
wait(status)
int *status;

DESCRIPTION
Wait causes its caller to delay until one of its child processes terminates. If any child has died
since the laswait, return is immediate; if there are no children, return is immediate with the er-
ror bit set (resp. with a value ofl returned). In the case of several children sevesmt calls
are needed to learn of all the deaths.
If no error is indicated on return, the r1 high byte (resp. the high byte storestants) contains
the low byte of the child process r0 (resp. the argumendaff) when it terminated. The r1
(resp. status) low byte contains the termination status of the process. See signal(ll) for a list of
termination statuses (signals); O status indicates normal termination. If the 040 bit of the termi-
nation status is set, a core image of the process was produced by the system.

SEE ALSO
exit(ll), fork(Il), signal(ll)

DIAGNOSTICS

The error bit (c-bit) on if no children not previously waited for. From C, a returned valu€é. of
indicates an error.

WRITE (1) 8/5/73 WRITE (1)

NAME
write — write on a file

SYNOPSIS
(write = 4.)
(file descriptor in r0)
sys write; buffer; nbytes

write(fildes, buffer, nbytes)
char *buffer,;

DESCRIPTION
A file descriptor is a word returned from a succesghan, creabr pipecall.

Bufferis the address afbytescontiguous bytes which are written on the output file. The num-
ber of characters actually written is returned (in r0). It should be regarded as an error if this is
not the same as requested.

Writes which are multiples of 512 characters long and begin on a 512-byte boundary are more
efficient than any others.

SEE ALSO
creat(Il), open(ll), pipe(ll)

DIAGNOSTICS
The error bit (c-bit) is set on an error: bad descriptor, buffer address, or count; physical 1/O er-
rors. From C, a returned value-f indicates an error.

ATAN (Ill) 4/30/73 ATAN (Il1)

NAME
atan- arc tangent function

SYNOPSIS
jsr r5,atan[2]

double atan(x)
double x;

double atan2(x, y)
double x, y;

DESCRIPTION
Theatanentry returns the arc tangent of frO in frO; from C, the arc tangemtisfreturned. The
range is-12 to1v/2. Theatan2entry returns the arc tangent of frO/frl in frO; from C, the arc tan-
gent ofx/yis returned. The range t3tto 1t

DIAGNOSTIC
There is no error return.

BUGS

ATOF(Ill) 4/30/73 ATOF (Ill)

NAME
atof — ascii to floating

SYNOPSIS
double atof(nptr)
char *nptr;

DESCRIPTION
Atof converts a string to a floating numbeXptr should point to a string containing the number;
the first unrecognized character ends the number.
The only numbers recognized are: an optional minus sign followed by a string of digits option-
ally containing one decimal point, then followed optionally by the lettésllowed by a signed
integer.

DIAGNOSTICS
There are none; overflow results in a very large number and garbage characters terminate the
scan.

BUGS

The routine should accept initi#) initial blanks, ande for e. Overflow should be signalled.

COMPAR (lIl) 1/15/73 COMPAR (lIl)

NAME
compar— default comparison routine for gsort

SYNOPSIS
jsr pc,compar

DESCRIPTION
Comparis the default comparison routine called ggort and is separated out so that the user
can supply his own comparison.
The routine is called with the width (in bytes) of an element in r3 and it compares byte-by-byte
the element pointed to by rO with the element pointed to by r4.
Return is via the condition codes, which are tested by the instructions “blt” and “bgt”. Thatis,
in the absence of overflow, the condition (r0) < (r4) should leave the Z-bit off and N-bit on while
(r0) > (r4) should leave Z and N off. Still another way of putting it is that for elements of length
1 the instruction

cmpb (r0),(r4)

suffices.
Only r0 is changed by the call.

SEE ALSO
gsort (1)

BUGS

It could be recoded to run faster.

CRYPT (IIl) 4/30/73 CRYPT (lIl)

NAME
crypt— password encoding

SYNOPSIS
mov $key,r0
jsr pc,crypt
char *crypt(key)
char *key;

DESCRIPTION
On entry, r0 should point to a string of characters terminated by an ASCII NULL. The routine
performs an operation on the key which is difficult to invert (i.e. encrypts it) and leaves the re-
sulting eight bytes of ASCII alphanumerics in a global cell called “word”.

From C, thekeyargument is a string and the value returned is a pointer to the eight-character en-
crypted password.

Login uses this result as a password.

SEE ALSO
passwd(l), passwd(V), login(l)

BUGS

CTIME (1) 10/15/73 CTIME (1)

NAME
ctime — convert date and time to ASCII

SYNOPSIS
char *ctime(tvec)
int tvec[2];

[from Fortran]
double precision ctime
... = ctime(dummy)

int *localtime(tvec)
int tvec[2];

int *gmtime(tvec)
int tvec[2];

DESCRIPTION
Ctimeconverts a time in the vectavecsuch as returned by time (ll) into ASCII and returns a
pointer to a character string in the form

Sun Sep 16 01:03:52 1973\n\0
All the fields have constant width.

Once the time has been placed ibtandt+2, this routine is callable from assembly language as
follows:

mov $t—(sp)
jsr pc,_ctime
tst (sp)+

and a pointer to the string is available in r0.

Thelocaltimeandgmtimeentries return integer vectors to the broken-down tiecaltimecor-
rects for the time zone and possible daylight savings tigmtimeconverts directly to GMT,
which is the time UNIX uses. The value is a pointer to an array whose components are

seconds

minutes

hours

day of the month (1-31)

month (0-11)

year- 1900

day of the week (Sunday = 0)

day of the year (0-365)

Daylight Saving Time flag if non-zero

O~NOOUITRWNEO

The external variablémezonecontains the difference, in seconds, between GMT and local stan-
dard time (in EST, is 5*60*60); the external varialolaylightis non-zero iff the standard U.S.A.
Daylight Saving Time conversion should be applied between the last Sundays in April and Octo-
ber. The external variableixonflgif non-zero supersedetaylightand causes daylight time all
year round.

A routine namecttimeis also available from Fortran. Actually it more resemblesttine (11)
system entry in that it returns the number of seconds since the epoch 0000 GMT Jan. 1, 1970 (as
a floating-point number).

SEE ALSO
time(ll)

BUGS

ECVT (IIl) 4/30/73 ECVT ()

NAME
ecvt— output conversion
SYNOPSIS
jsr pc,ecvt
jsr pc,fevt
char *ecvt(value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;
char *fcvt(value, ndigit, decpt, sign)
DESCRIPTION
Ecvtis called with a floating point number in frO.
On exit, the number has been converted into a string of ascii digits in a buffer pointed to by rO.
The number of digits produced is controlled by a global variaidagits
Moreover, the position of the decimal point is contained in r2: r2=0 means the d.p. is at the left
hand end of the string of digits; r2>0 means the d.p. is within or to the right of the string.
The sign of the number is indicated by r1 (0 for +; 1-jor
The low order digit has suffered decimal rounding (i. €. may have been carried into).
From C, thevalueis converted and a pointer to a null-terminated strinqndigit digits is re-
turned. The position of the decimal point is stored indirectly throdgbpt(negative means to
the left of the returned digits). If the sign of the result is negative, the word pointeds@bys
non-zero, otherwise it is zero.
Fcvtis identical toecvt except that the correct digit has had decimal rounding for F-style output
of the number of digits specified bydigits.
SEE ALSO
printf(111)
BUGS

EXP (1ll) 4/30/73 EXP (1ll)

NAME
exp— exponential function
SYNOPSIS
jsr r5,exp
double exp(x)
double x;
DESCRIPTION
The exponential of frO is returned in fr0. From C, the exponentialfeturned.
DIAGNOSTICS
If the result is not representable, the c-bit is set and the largest positive number is returned.
From C, no diagnostic is available.
Zero is returned if the result would underflow.
BUGS

FPTRAP (lll) 11/18/73 FPTRAP (lll)

NAME
fptrap— floating point interpreter
SYNOPSIS
sys signal; 4; fptrap
DESCRIPTION
Fptrapis a simulator of the 11/45 FP11-B floating point unit. It works by intercepting illegal in-
struction faults and examining the offending operation codes for possible floating point.
FILES
found in /lib/libu.a; a fake version is in /lib/liba.a
DIAGNOSTICS
A break point trap is given when a real illegal instruction trap occurs.
SEE ALSO
signal(ll)
BUGS

Rounding mode is not interpreted. Its slow.

GERTS(Ill) 3/15/72 GERTS (Ill)

NAME
gerts— Gerts communication over 201
SYNOPSIS
jsr r5,connect
(error return)
jsr r5,gerts; fc; oc; ibuf; obuf
(error return)
other entry pointsgcset, gout
DESCRIPTION
The GCOS GERTS interface is so painful that a description here is inappropriate. Anyone need-
ing to use this interface should seek divine guidance.
SEE ALSO
dn(lVv), dp(lV), HIS documentation
FILES
found in /lib/libg.a
BUGS

GETARG (IIl) 11/24/73 GETARG (IIl)

NAME
getarg- get command arguments from Fortran

SYNOPSIS
call getarg (i, iarray, [, isize])

... = iargc(dummy)

DESCRIPTION
Thegetargentry fills in iarray (which is considered to biateger)with the Hollerith string rep-
resenting the th argument to the command in which it it is called. Ifiszeargument is speci-

fied, at least one blank is placed after the argument, and the last word affected is blank padded.
The user should make sure that the array is big enough.

If the isizeargument is given, the argument will be followed by blanks to fillisizewords, but
even if the argument is long no more than that many words will be filled in.

The blank-padded array is suitable for use as an argument to setfil (111).

Theiargc entry returns the number of arguments to the command, counting the first (file-name)
argument.

SEE ALSO
exec (II), setfil (111)

BUGS

GETC(IIl) 4/30/72 GETC(Ill)

NAME

getc — buffered input

SYNOPSIS

mov $filename,r0
jsr r5,fopen; iobuf

fopen(filename, iobuf)
char *filename;
struct buf *iobuf;

jsr r5,getc; iobuf
(character in r0)

getc(iobuf)
struct buf *iobuf;

jsr r5,getw; iobuf
(word in r0)

[getw not available in C]

DESCRIPTION

These routines provide a buffered input facilitiobuf is the address of a 518(10) byte buffer
area whose contents are maintained by these routines. Its format is:

ioptr; .=.+2 / file descriptor
=42 / characters left in buffer
=42 / ptr to next character
.=.+512./ the buffer

OrinC,

struct buf {
int fildes;
int nleft;
char *nextp;
char buffer[512];
2
Fopenmay be called initially to open the file. On return, the error bit (c-bit) is set if the open
failed. If fopenis never calledgetwill read from the standard input file. From C, the value is
negative if the open failed.

Getcreturns the next byte from the file in r0. The error bit is set on end of file or a read error.
From C, the character is returned; itison end-of-file or error.

Getwreturns the next word in rOGetcandgetwmay be used alternately; there are no odd/even
problems. Getwis not available from C.

lobuf must be provided by the user; it must be on a word boundary.

To reuse the same buffer for another file, it is sufficient to close the original file andopagh
again.

SEE ALSO

open(ll), read(ll), putc(lll)

DIAGNOSTICS

BUGS

c-bit set on EOF or error;
from C, negative return indicates error or EOF.

GETCHAR (Ill) 417173 GETCHAR (Ill)

NAME
getchar-read character

SYNOPSIS
getchar()

DESCRIPTION
Getcharprovides the simplest means of reading characters from the standard input for C pro-
grams. It returns successive characters until end-of-file, when it returns “\0".

Associated with this routine is an external variable cafiagdwhich is a structure containing a
buffer such as described undetc(lll).

Normally input viagetcharis unbuffered, but if the file-descriptor (first) word 6h is non-zero,
getcharcallsgetcwith fin as argument. This means that

fin = open(...)

makesgetcharreturn (buffered) input from the opened file; also
fin = dup(0);

causes the standard input to be buffered.

Generally speakinggetcharshould be used only for the simplest applicatiogsicis better
when there are multiple input files.

SEE ALSO
getc (111)

DIAGNOSTICS
Null character returned on EOF or error.

BUGS
-1 should be returned on EOF; null is a legitimate character.

GETPW (IIl) 417173 GETPW (II)

NAME
getpw— get name from UID
SYNOPSIS
getpw(uid, buf)
char *buf;
DESCRIPTION
Getpwsearches the password file for the (numericéd) and fills in buf with the corresponding
line; it returns non-zero ifid could not be found. The line is null-terminated.
FILES
/etc/passwd
SEE ALSO
passwd(V)
DIAGNOSTICS
non-zero return on error.
BUGS

It disturbs buffered input vigetchar(lll).

HMUL (1) 417173 HMUL (111)

NAME
hmul - high-order product
SYNOPSIS
hmul(x, y)
DESCRIPTION
Hmul returns the high-order 16 bits of the productxadndy. (The binary multiplication opera-
tor generates the low-order 16 bits of a product.)
BUGS

HYPOT (Ill) 6/12/72 HYPOT (Ill)

NAME
hypot- calculate hypotenuse
SYNOPSIS
jsr r5,hypot
DESCRIPTION
The square root of frO*frO + fr1*frl is returned in frO. The calculation is done in such a way that
overflow will not occur unless the answer is not representable in floating point.
DIAGNOSTICS
The c-bit is set if the result cannot be represented.
BUGS

IERROR (I1) 10/29/73 IERROR (II)

NAME
ierror — catch Fortran errors

SYNOPSIS
if (ierror (errno) .ne. 0) gotdabel

DESCRIPTION
lerror provides a way of detecting errors during the running of a Fortran program. Its argument
is a run-time error number such as enumeratéd(ln
Whenierror is called, it returns a 0 value; thus tigeto statement in the synopsis is not exe-
cuted. However, the routine stores inside itself the call point and invocation level. If and when
the indicated error occurs,raturn is simulated fromerror with a non-zero value; thus tlgeoto
(or other statement) is executed. It is a ghastly error toieaibr from a subroutine which has
already returned when the error occurs.
This routine is essentially tailored to catching end-of-file situations. Typically it is called just
before the start of the loop which reads the input file, andgibte jumps to a graceful termina-
tion of the program.
There is a limit of 5 on the number of different error numbers which can be caught.

SEE ALSO
fc (1)

BUGS

There is no way to ignore errors.

LDIV (1I1) 5/7/73 LDIV (1ll)

NAME
Idiv — long division

SYNOPSIS
Idiv(hidividend, lodividend, divisor)
Irem(hidividend, lodividend, divisor)

DESCRIPTION
The concatenation of the signed 16-hitlividendand the unsigned 16-blibdividendis divided
by divisor. The 16-bit signed quotient is returned lov and the 16-bit signed remainder is re-
turned bylrem. Divide check and erroneous results will occur unless the magnitude of the divi-
sor is greater than that of the high-order dividend.

An integer division of an unsigned dividend by a signed divisor may be accomplished by
quo = Idiv(0, dividend, divisor);
and similarly for the remainder operation.

Often both the quotient and the remainder are wanted. Therkefiorkeaves a remainder in the
external celldivr.

BUGS
No divide check check.

LOG (Ill) 4/30/72 LOG (Ill)

NAME
log — natural logarithm
SYNOPSIS
jsr r5,log
double log(x)
double x;
DESCRIPTION
The natural logarithm of frO is returned in fr0. From C, the natural logarithnisofeturned.
DIAGNOSTICS
The error bit (c-bit) is set if the input argument is less than or equal to zero and the result is a
negative number very large in magnitude. From C, there is no error indication.
BUGS

MESG (1Il) 3/15/72 MESG (1Il)

NAME
mesg - write message on typewriter
SYNOPSIS
jsr r5,mesg; <Now is the time\(>; .even
DESCRIPTION
Mesgwrites the string immediately following its call onto the standard output file. The string
must be terminated by an ASCII NULL byte.
BUGS

NARGS (1Il) 5/10/73 NARGS (1Il)

NAME
nargs— argument count

SYNOPSIS
nargs()

DESCRIPTION
Nargsreturns the number of actual parameters supplied by the caller of the routine which calls
nargs
The argument count is accurate only when none of the actual paraméteas @ double Such
parameters count as four arguments instead of one.

BUGS

As indicated.

NLIST (1) 6/12/72

NAME

nlist — get entries from name list

SYNOPSIS

jsrr5,nlist; file; list

file: <file name\0>; .even
list: <namelxxx; typel; valuel
<name2xxx>; type2; value2

nlist(filename, nl)

char *filename;

struct {
char namej8];
int type;
int value;

poill;

DESCRIPTION

Nlist examines the name list in the given executable output file and selectively extracts a list of
values. The name list consists of a list of 8-character names (null padded) each followed by two
words. The list is terminated with a null name. Each name is looked up in the name list of the
file. If the name is found, the type and value of the name are placed in the two words following

the name. If the name is not found, the type entry is set.to

NLIST (111)

This subroutine is useful for examining the system name list kept in théusiésys/unix In

this way programs can obtain system addresses that are up to date.

SEE ALSO

a.out(V)

DIAGNOSTICS
All type entries are set tal if the file cannot be found or if it is not a valid namelist.

BUGS

PERROR (lIl) 11/5/73 PERROR (II1)

NAME
perror— system error messages

SYNOPSIS
perror(s)
char *s;
int sys nerr;
char *sys errlist[];
int errno;

DESCRIPTION
Perror produces a short error message describing the last error encountered during a call to the
system from a C program. First the argument stsng) printed, then a colon, then the message
and a new-line. Most usefully, the argument string is the name of the program which incurred
the error. The error number is taken from the external variabieo, which is set when errors
occur but not cleared when non-erroneous calls are made.
To simplify variant formatting of messages, the vector of message ssysgsrlist is provided;
errno can be used as an index in this table to get the message string without the newline.
Sysnerr is the largest message number provided for in the table; it should be checked because
new error codes may be added to the system before they are added to the table.

SEE ALSO
Introduction to System Calls

BUGS

POW (I11) 4/30/73

POW (Ill)

Powreturns the value of (in fr0). Pow(0, y)is O for anyy. Powfx, y)returns a result only if

The carry bit is set on return in case of overflopgw(0, 0),or pow(-X, y) for non-integraly.

NAME

pow — floating exponentiation
SYNOPSIS

movf x,fr0

movf y,frl

jsr pc,pow

double pow(x,y)

double x, y;
DESCRIPTION

is an integer.
SEE ALSO

exp(l), log(lll)
DIAGNOSTICS

From C there is no diagnostic.
BUGS

PRINTF (111) 9/17/73 PRINTF (Ill)

NAME
printf — formatted print

SYNOPSIS
printf(format, arg ,, ...);
char *format;

DESCRIPTION
Printf converts, formats, and prints its arguments after the first under control of the first argu-
ment. The first argument is a character string which contains two types of objects: plain charac-
ters, which are simply copied to the output stream, and conversion specifications, each of which
causes conversion and printing of the next successive argunpeimitto
Each conversion specification is introduced by the char¥ctdrollowing the%, there may be

— an optional minus sign=" which specifiesleft adjustmentf the converted argument in
the indicated field;

— an optional digit string specifying &eld width; if the converted argument has fewer
characters than the field width it will be blank-padded on the left (or right, if the left-
adjustment indicator has been given) to make up the field width;

— an optional period " which serves to separate the field width from the next digit string;

— an optional digit stringprecision)which specifies the number of digits to appear after
the decimal point, for e- and f-conversion, or the maximum number of characters to be
printed from a string;

— a character which indicates the type of conversion to be applied.

The conversion characters and their meanings are

d The argument is converted to decimal notation.

0 The argument is converted to octal notation. “0” will always appear as the first digit.

f The argument is converted to decimal notation in the stytgdfd.ddd” where the num-
ber of d’s after the decimal point is equal to the precision specification for the argument.
If the precision is missing, 6 digits are given; if the precision is explicitly 0, no digits and
no decimal point are printed. The argument shoulfidas or double.

e The argument is converted in the style-]§.dddetdd” where there is one digit before
the decimal point and the number after is equal to the precision specification for the argu-
ment; when the precision is missing, 6 digits are produced. The argument should be a
float or doublequantity.

¢ The argument character or character-pair is printed if non-null.

s The argument is taken to be a string (character pointer) and characters from the string are
printed until a null character or until the number of characters indicated by the precision
specification is reached; however if the precision is 0 or missing all characters up to a
null are printed.

| The argument is taken to be an unsigned integer which is converted to decimal and print-
ed (the result will be in the range 0 to 65535).

If no recognizable character appears aftefthé¢hat character is printed; th@s may be printed
by use of the strin§6% . In no case does a non-existent or small field width cause truncation of
a field; padding takes place only if the specified field width exceeds the actual width. Characters
generated byrintf are printed by callingutchar.

SEE ALSO

putchar (111)

PRINTF (111) 9/17/73 PRINTF (Ill)

BUGS
Very wide fields (>128 characters) fail.

PUTC (Ill) 6/12/72 PUTC (Ill)

NAME

putc — buffered output

SYNOPSIS

mov $filename,r0
jsr r5,fcreat; iobuf

fcreat(file, iobuf)
char *file;
struct buf *iobuf;

(get byte in r0)
jsr r5,putc; iobuf

putc(c, iobuf)
int c;
struct buf *iobuf;

(get word in r0)
jsr r5,putw; iobuf

[putw not available from C]
jsr r5,flush; iobuf

fflush(iobuf)
struct buf *iobuf;

DESCRIPTION

Fcreatcreates the given file (mode 666) and sets up the budtauf (size 518 bytes)putc and
putw write a byte or word respectively onto the fildysh forces the contents of the buffer to be
written, but does not close the file. The format of the buffer is:

iobuf: .=.+2 / file descriptor

A2 / characters unused in buffer
+2 / ptr to next free character
.+512. / buffer

OrinC,
struct buf {
int fildes;
int nunused;

char *nxtfree;
char buff[512];

%
Fcreatsets the error bit (c-bit) if the file creation failed (from C, returrly; none of the other
routines returns error information.

Before terminating, a program should dalshto force out the last of the outp@ifilushfrom C).
The user must supplgbuf, which should begin on a word boundary.

To write a new file using the same bulffer, it suffices to ¢8flush, close the file, and cafcreat
again.

SEE ALSO

creat(ll), write(ll), getc(lll)

DIAGNOSTICS

BUGS

error bit possible ofcreatcall.

PUTCHAR (I1) 5/10/73 PUTCHAR (lll)

NAME
putchar— write character
SYNOPSIS
putchar(ch)
flush()
DESCRIPTION
Putcharwrites out its argument and returns it unchanged. The low-order byte of the argument is
always written; the high-order byte is written only if it is non-null. Unless other arrangements
have been madputcharwrites in unbuffered fashion on the standard output file.
Associated with this routine is an external variafdat which has the structure of a buffer dis-
cussed under putc (ll1). If the file descriptor part of this structure (first word) is not 1, output via
putcharis buffered. To achieve buffered output one may say, for example,
fout = dup(2); or
fout = fcreat(...);
In such a cas@lush must be called before the program terminates in order to flush out the buf-
fered output.Flushmay be called at any time.
SEE ALSO
putc(lll)
BUGS

Thefoutnotion is kludgy.

QSORT (Ill) 6/12/72 QSORT (Il)

NAME
gsort— quicker sort

SYNOPSIS
(end+1 of data in r2)
(element width in r3)
jsr pc,gsort
gsort(base, nel, width, compar)
char *base;
int (*compar)();

DESCRIPTION
Qsortis an implementation of the quicker-sort algorithm. The assembly-language version is de-
signed to sort equal length elements. Registers rl and r2 delimit the region of core containing
the array of byte strings to be sorted: rl points to the start of the first string, r2 to the first loca-
tion above the last string. Register r3 contains the length of each stringl $sBould be a mul-
tiple of r3. On return, r0, r1, r2, r3 are destroyed.
The routine compar (g.v.) is called to compare elements and may be replaced by the user.
The C version has somewhat different arguments and the user must supply a comparison routine.
The first argument is to the base of the data; the second is the number of elements; the third is
the width of an element in bytes; the last is the name of the comparison routine. It is called with
two arguments which are pointers to the elements being compared. The routine must return a
negative integer if the first element is to be considered less than the second, a positive integer if
the second element is smaller than the first, and 0 if the elements are equal.

SEE ALSO
compar (l11)

BUGS

RAND (1Il) 1/15/73 RAND (1)

NAME
rand- random number generator
SYNOPSIS
(seed in r0)
jsr pc,srand /to initialize
jsr pc,rand /to get a random number
srand(seed)
int seed,;
rand()
DESCRIPTION
Randuses a multiplicative congruential random number generator to return successive pseudo-
random numbers (in r0) in the range from 1%-2.
The generator is reinitialized by callimgandwith 1 as argument (in r0). It can be set to a ran-
dom starting point by callingrand with whatever you like as argument, for example the low-
order word of the time.
WARNING
The author of this routine has been writing random-number generators for many years and has
never been known to write one that worked.
BUGS

The low-order bits are not very random.

RESET (Ill) 5/10/73 RESET (Ill)

NAME

reset- execute non-local goto

SYNOPSIS

setexit()
reset()

DESCRIPTION

BUGS

These routines are useful for dealing with errors discovered in a low-level subroutine of a pro-
gram.

Setexitis typically called just at the start of the main loop of a processing program. It stores cer-
tain parameters such as the call point and the stack level.

Resetis typically called after diagnosing an error in some subprocedure called from the main
loop. Whenresetis called, it pops the stack appropriately and generates a non-local return from
the last call tsetexit.

It is erroneous, and generally disastrous, to madletunlesssetexithas been called in a routine
which is an ancestor oéset.

SETFIL (1) 10/29/73 SETFIL (1)

NAME
setfil - specify Fortran file name

SYNOPSIS
call setfil (unit, hollerith-string)

DESCRIPTION
Setfil provides a primitive way to associate an integer U@t number with a file named by the
hollerith-string. The end of the file name is indicated by a blank. Subsequent I/O on this unit
number will refer to file whose name is specified by the string.
Setfil should be called only before any I/O has been done onutfig or just after doing a
rewind or endfile. It is ineffective for unit numbers 5 and 6.

SEE ALSO
fc ()

BUGS

There is still no way to receive a file name or other argument from the command line. Also, the
exclusion of units 5 and 6 is unwarranted.

SIN (1) 3/15/72 SIN (1)

NAME
sin— sine, cosine

SYNOPSIS
jsr r5,sin (cos)

double sin(x)
double x;

double cos(x)
double x;

DESCRIPTION
The sine (cosine) of frO (resp), measured in radians, is returned (in fr0).

The magnitude of the argument should be checked by the caller to make sure the result is mean-
ingful.

BUGS

SQRT(IIl) 3/15/72 SQRT(IIN)

NAME

sqrt- square root function
SYNOPSIS

jsr r5,sqrt

double sqrt(x)

double x;
DESCRIPTION

The square root of frO (resy).is returned (in fr0).
DIAGNOSTICS

The c-bit is set on negative arguments and 0 is returned. There is no error return for C programs.
BUGS

No error return from C.

SWITCH (I1l) 3/15/72 SWITCH (I1l)

NAME
switch— switch on value

SYNOPSIS
(switch value in r0)
jsrr5,switch; swtab
(not-found return)

swtab: vall; labl;
;/.éln;labn
.. 0

DESCRIPTION
Switchcompares the value of r0 against each of the; viah match is found, control is trans-

ferred to the corresponding lafafter popping the stack once). If no match has been found by
the time a null lapoccurs switchreturns.

BUGS

TTYN(III) 1/15/73 TTYN(III)

NAME
ttyn — return name of current typewriter

SYNOPSIS
jsr pc,ttyn

ttyn(file)
DESCRIPTION
Ttyn hunts up the last character of the name of the typewriter which is the standard input (from

a9 or is specified by the argumefite descriptor (from C). linis returned, the typewriter name
is then “/dev/ttyn”.

x is returned if the indicated file does not correspond to a typewriter.

BUGS

agdil) 6/4/73 VT (1)

NAME
vt — display (vt01) interface

SYNOPSIS
openvt()

erase()

label(s)
char s[];

line(x,y)
circle(x,y,r)
arc(x,y,x0,y0,x1,y1)

dot(x,y,dx,n,pattern)
int pattern[J;

move(x,y)
DESCRIPTION

C interface routines to perform similarly named functions described in vt(@fenvtmust be
used before any of the others to open the storage scope for writing.

FILES
/dev/vt0, found in /lib/libp.a

SEE ALSO
vt (IV)

BUGS

CAT(IV) 10/27/73 CAT(IV)

NAME
cat- phototypesetter interface

DESCRIPTION
Cat provides the interface to a Graphic Systems C/A/T phototypesetter. Bytes written on the file
specify font, size, and other control information as well as the characters to be flashed. The cod-
ing will not be described here.
Only one process may have this file open at a time. It is write-only.

FILES
/dev/cat

SEE ALSO
troff (1), Graphic Systems specification (available on request)

BUGS

DA(IV) 10/28/73 DA(IV)

NAME
da- voice response unit
DESCRIPTION
Bytes written on this file control a Cognitronics optical drum voice response unit which can gen-
erate up to 31 fixed half-second utterances. Bytes read correspond to Touch-Tone® signals re-
ceived via a 403 dataset.
The specifics of the interface will not be described. Consult M. E. Lesk for more information.
FILES
/dev/da
BUGS

DC(IV) 8/22/73 DC(IV)

NAME
dc—DC-11 communications interface

DESCRIPTION
The special files /dev/tty0O, /dev/ttyl, ... refer to the DC11 asynchronous communications inter-
faces. At the moment there are 12 of them, but the number is subject to change.

When one of these files is opened, it causes the process to wait until a connection is established.
In practice user’'s programs seldom open these files; they are operieid &iyd become a user’s

input and output file. The very first typewriter file open in a process becomesathieol type-

writer for that process. The control typewriter plays a special role in handling quit or interrupt
signals, as discussed below. The control typewriter is inherited by a child process daoing a

A terminal associated with one of these files ordinarily operates in full-duplex mode. Characters
may be typed at any time, even while output is occurring, and are only lost when the system’s
character input buffers become completely choked, which is rare, or when the user has accumu-
lated the maximum allowed number of input characters which have not yet been read by some
program. Currently this limit is 256 characters. When the input limit is reached all the saved
characters are thrown away without notice.

When first opened, the interface mode is 150 baud; either parity accepted; 10 bits/character (one
stop bit); and newline action character. The system delays transmission after sending certain
function characters. Delays for horizontal tab, newline, and form feed are calculated for the
Teletype Model 37; the delay for carriage return is calculated for the GE TermiNet 300. Most of
these operating states can be changed by using the system call stty(ll). In particular the follow-
ing hardware states are program settable independently for input and output (see DC11 manual):
134.5, 150, 300, or 1200 baud; one or two stop bits on output; and 5, 6, 7, or 8 data
bits/character. In addition, the following software modes can be invoked: acceptance of even
parity, odd parity, or both; a raw mode in which all characters may be read one at a time; a car-
riage return (CR) mode in which CR is mapped into newline on input and either CR or line feed
(LF) cause echoing of the sequence LF-CR; mapping of upper case letters into lower case; sup-
pression of echoing; suppression of delays after function characters; and the printing of tabs as
spaces. See getty(VIl) for the way that terminal speed and type are detected.

Normally, typewriter input is processed in units of lines. This means that a program attempting
to read will be suspended until an entire line has been typed. Also, no matter how many
characters are requested in the read call, at most one line will be returned. It is not however nec-
essary to read a whole line at once; any number of characters may be requested in a read, even
one, without losing information.

During input, erase and kill processing is normally done. The character ‘# erases the last
character typed, except that it will not erase beyond the beginning of a line or an EOT. The
character ‘@’ kills the entire line up to the point where it was typed, but not beyond an EOT.
Both these characters operate on a keystroke basis independently of any backspacing or tabbing
that may have been done. Either ‘@’ or ‘#' may be entered literally by preceding it by ‘\'; the
erase or kill character remains, but the ‘\' disappears.

In upper-case mode, all upper-case letters are mapped into the corresponding lower-case letter.
The upper-case letter may be generated by preceding it by ‘\'. In addition, the following escape
sequences are generated on output and accepted on input:

for use
N v
a \!
- v
{ \(
} \)

It is possible to use raw mode in which the program reading is awakened on each character. In
raw mode, no erase or kill processing is done; and the EOT, quit and interrupt characters are not
treated specially.

DC(IV)

8/22/73 DC(IV)

The ASCII EOT character may be used to generate an end of file from a typewriter. When an
EOT is received, all the characters waiting to be read are immediately passed to the program,
without waiting for a new-line. Thus if there are no characters waiting, which is to say the EOT
occurred at the beginning of a line, zero characters will be passed back, and this is the standard
end-of-file signal. The EOT is not passed on except in raw mode.

When the carrier signal from the dataset drops (usually because the user has hung up his termi-
nal) ahangupsignal is sent to all processes with the typewriter as control typewriter. Unless
other arrangements have been made, this signal causes the processes to terminate. If the hangup
signal is ignored, any read returns with an end-of-file indication. Thus programs which read a
typewriter and test for end-of-file on their input can terminate appropriately when hung up on.

Two characters have a special meaning when typed. The ASCII DEL character (sometimes
called ‘rubout’) is not passed to a program but generatastarrupt signal which is sent to all
processes with the associated control typewriter. Normally each such process is forced to termi-
nate, but arrangements may be made either to ignore the signal or to reveive a simulated trap to
an agreed-upon location. See signal (l1).

The ASCII character FS generatesdhé signal. Its treatment is identical to the interrupt signal
except that unless a receiving process has made other arrangements it will not only be terminated
but a core image file will be generated. See signal (I1).

Output is prosaic compared to input. When one or more characters are written, they are actually
transmitted to the terminal as soon as previously-written characters have finished typing. Input
characters are echoed by putting them in the output queue as they arrive. When a process pro-
duces characters more rapidly than they can be typed, it will be suspended when its output queue
exceeds some limit. When the queue has drained down to some threshold the program is re-
sumed. Even-parity is always generated on output. The EOT character is not transmitted (ex-
cept in raw mode) to prevent terminals which respond to it from hanging up.

FILES
/dev/tty[01234567abcd] 113B Dataphones
SEE ALSO
kl (IV), getty (VII), stty (1, 1), gtty (1, 1), signal (II)
BUGS

DN (IV) 8/24/73 DN (IV)

NAME
dn-dnll ACU interface
DESCRIPTION
Thedn? files are write-only. The permissible codes are:
0-9 dial 0-9
. dial*
; dial #
= end-of-number
The entire telephone number must be presented in a sintgesystem call.
It is recommended that an end-of-number code be given even though only one of the ACU’s
(113C) actually requires it.
FILES
/dev/dnOconnected to 801 with dpO
/dev/dnlconnected to 113C with ttyc
/dev/dn2not currently connected
SEE ALSO
dp(1V), dc(1V), write(ll)
BUGS

It needs a delay character to handle second dial tone.

DP (1V) 8/24/73 DP (1V)

NAME
dp-dpll 201 data-phone interface

DESCRIPTION
The dpOfile is a 201 data-phone interfac&eadandwrite calls to dpO are limited to a maxi-
mum of 512 bytes. Each write call is sent as a single record. Seven bits from each byte are writ-
ten along with an eighth odd parity bit. The sync must be user supplied. Each read call returns
characters received from a single record. Seven bits are returned unaltered; the eighth bit is set if
the byte was not received in odd parity. A 10 second time out is set and a zero-byte record is re-
turned if nothing is received in that time.

FILES
/dev/dp0

SEE ALSO
dn(IVv), gerts(lll)

BUGS

KL (1V) 8/24/73 KL (1V)

NAME
kl — KL-11/TTY-33 console typewriter
DESCRIPTION
Tty (as distinct frontty?) refers to the console typewriter hard-wired to the PDP-11 via a KL-
11 interface. The disciplines involved in dealing with are identical to those fdty? and sec-
tion DC(I) should be consulted. The following differences are salient:
The system callstty andgtty apply, and the bits in the mode word have the same meanings, but
the speed-select word is ignored. The quit signal is generated by the key marked ‘alt mode.’
By appropriate console switch settings, it is possible to cause UNIX to come up as a single-user
system with 1/O on this device.
FILES
/devitty
/dev/tty8synonym for /devi/tty
/dev/tty9second console
SEE ALSO
dc(IV), init(VII)
BUGS

MEM (1V) 8/24/73 MEM (1V)

NAME
mem — core memory

DESCRIPTION
Memis a special file that is an image of the core memory of the computer. It may be used, for
example, to examine, and even to patch the system using the debugger.
A memory address is an 18-bit quantity which is used directly as a UNIBUS address. Refer-
ences to non-existent locations cause errors to be returned.
Examining and patching device registers is likely to lead to unexpected results when read-only or
write-only bits are present.

FILES
/dev/mem

BUGS

There should be anotheremfile that looks at core using the system’s address map.

PC(IV) 10/15/73 PC(IV)

NAME
pc — PC-11 paper tape reader/punch

DESCRIPTION
Pptrefers to the PC-11 paper tape reader or punch, depending on whether it is read or written.
Whenpptis opened for writing, a 100-character leader is punched. Thereafter each byte written
is punched on the tape. No editing of the characters is performed. When the file is closed, a
100-character trailer is punched.
Whenpptis opened for reading, the process waits until tape is placed in the reader and the reader
is on-line. Then requests to read cause the characters read to be passed back to the program,
again without any editing. This means that several null leader characters will usually appear at
the beginning of the file. Likewise several nulls are likely to appear at the end. End-of-file is
generated when the tape runs out.
Seek calls for this file are meaningless.

FILES
/dev/ppt

BUGS

RF (V) 10/15/73 RF (V)

NAME
rf — RF11/RS11 fixed-head disk file

DESCRIPTION
This file refers to the concatenation of all RS-11 disks.

Each disk contains 1024 256-word blocks. The length of the combined RF file isx(fA24
nor+1) blocks. That is minor device zero is 1024 blocks long; minor device one is 2048, etc.

FILES
/dev/rf0

BUGS

RK (1V) 10/15/73 RK (1V)

NAME
rk — RK-11/RK03 (or RK05) disk

DESCRIPTION
Rk? refers to an entire RKO3 disk as a single sequentially-addressed file. Its 256-word blocks
are numbered O to 4871.
Drive numbers (minor devices) of eight and greater are treated specially. Drwvis 8tex+1
way interleaving of devices rkO to xk Thus blocks on rk10 are distributed alternately among
rko, rk1, and rk2.

FILES
/dev/rk?

BUGS

Care should be taken in using the interleaved files. First, the same drive should not be accessed
simultaneously using the ordinary name and as part of an interleaved file, because the same
physical blocks have in effect two different names; this fools the system’s buffering strategy.
Second, the combined files cannot be used for swapping.

RP (1V) 10/15/73 RP (1V)

NAME
rp — RP-11/RP03 moving-head disk
DESCRIPTION
The filesrpO ... rp7refer to sections of RP disk drive 0. The fitg8 ... rpl5refer to drive 1 etc.
This is done since the size of a full RP drive is 81200 blocks and internally the system is only ca-
pable of addressing 65536 blocks. Also since the disk is so large, this allows it to be broken up
into more manageable pieces.
The origin and size of the pseudo-disks on each drive are as follows:
disk start length
0 0 40600
1 40600 40600
2 0 3200
3 3200 39000
4 42200 39000
5-7 unassigned
FILES
/dev/rp?
BUGS

TC(IV) 10/15/73 TC(IV)

NAME
tc— TC-11/TU56 DECtape
DESCRIPTION
The filestapO ... tap#efer to the TC-11/TU56 DECtape drives 0 to 7.
The 256-word blocks on a standard DECtape are numbered 0 to 577.
FILES
/dev/tap?
SEE ALSO
tp(l)
BUGS

Since reading is synchronous, only one block is picked up per tape reverse.

TIU(IV) 10/28/73 TIU(IV)

NAME
tiu — Spider interface

DESCRIPTION
Spider is a fast digital switching networKiu is a directory which contains files each referring
to a Spider control or data channel. The file /dev/tiuféfers to data channei, likewise
/devi/tiu/m refers to control channal
The precise nature of the UNIX interface has not been defined yet.

FILES
/devi/tiu/d?, /devitiu/c?

BUGS

TM(IV) 10/15/73 TM(IV)

NAME
tm - TM-11/TU-10 magtape interface
DESCRIPTION
The filesmtO, ..., mt#efer to the DEC TU10/TM11 magtape. When opened for reading or writ-
ing, the magtape is rewound. A tape consists of a series of 512 byte records terminated by an
end-of-file. When the magtape is closed after writing, an end-of-file is written.
The magtape can only be opened once at any instant.
FILES
/dev/imt?
SEE ALSO
tp(l)
BUGS

If you hit the EOF mark or get other non-data errors it refuses to do anything more until closed.
There has to be some reasonable way to deal with multi-file tapes.

VS (IV) 10/28/73 VS (IV)

NAME
vs — voice synthesizer interface

DESCRIPTION
Bytes written orvsdrive a Federal Screw Works Votrax® voice synthesizer. The upper two bits
encode an inflection, the other 6 specify a phoneme. The code is given in section vs (VII).
Touch-Tone® signals sent by a caller will be picked up duringad as the ASCII characters
{0123456789#*}.

FILES
/devlvs

SEE ALSO
speak (1), vs (VII)

BUGS

VT (IV) 10/22/73 VT (IV)

NAME
vt —11/20 (vt01) interface

DESCRIPTION
The filevtO provides the interface to a PDP 11/20 which runs a VTO1A-controlled Tektronix 611
storage display. The inter-computer interface is a pair of DR-11C word interfaces.

Although the display has essentially only two commands, namely “erase screen” and “display
point”, the 11/20 program will draw points, lines, and arcs, and print text on the screen. The
11/20 can also type information on the attached 33 TTY.

This special file operates in two basic modes. If the first byte written of the file cannot be inter-
preted as one of the codes discussed below, the rest of the transmitted information is assumed to
ASCII and written on the screen. The screen has 33 lines (1/2 a standard page). The file simu-
lates a 37 TTY: the control characters NL, CR, BS, and TAB are interpreted correctly. It also in-
terprets the usual escape sequences for forward and reverse half-line motion and for full-line re-
verse. Greek is not available yet. Normally, when the screen is full (i.e. the 34th line is started)
the screen is erased before starting a new page. To allow perusal of the displayed text, it is usual
to assert bit 0 of the console switches. This causes the program to pause before erasing until this
bit is lowered.

If the first byte written is recognizable, the display runs in graphic mode. In this case bytes writ-
ten on the file are interpreted as display commands. Each command consists of a single byte
usually followed by parameter bytes. Often the parameter bytes represent points in the plotting
area. Each point coordinate consists of 2 bytes interpreted as a 2's complement 16-bit number.
The plotting area itself measures (x0379(£03777) (numbers in octal); that is, 12 bits of preci-
sion. Attempts to plot points outside the screen limits are ignored.

The graphic commands follow.

order (1); 1 parameter byte
The parameter indicates a subcommand, possibly followed by subparameter bytes,
as follows:

erase (1)
The screen is erased. The program will wait until bit O of the console
switches is down.

label (3); several subparameter bytes
The following bytes up to a null byte are printed as ASCII text on the screen.
The origin of the text is the last previous point plotted; or the upper left hand
of the screen if there were none.

point (2); 4 parameter bytes
The 4 parameter bytes are taken as a pair of coordinates representing a point to be
plotted.

line (3); 8 parameter bytes
The parameter bytes are taken as 2 pairs of coordinates representing the ends of a
line segment which is plotted. Only the portion lying within the screen is displayed.

frame (4); 1 parameter byte
The parameter byte is taken as a number of sixtieths of a second; an externally-
available lead is asserted for that time. Typically the lead is connected to an auto-
matic camera which advances its film and opens the shutter for the specified time.

circle (5); 6 parameter bytes
The parameter bytes are taken as a coordinate pair representing the origin, and a
word representing the radius of a circle. That portion of the circle which lies within
the screen is plotted.

arc (6); 12 parameter bytes
The first 4 parameter bytes are taken to be a coordinate-pair representing the center
of a circle. The next 4 represent a coordinate-pair specifying a point on this circle.

VT (IV)

FILES

BUGS

10/22/73 VT (IV)

The last 4 should represent another point on the circle. An arc is drawn counter-
clockwise from the first circle point to the second. If the two points are the same,

the whole circle is drawn. For the second point, only the smaller in magnitude of its

two coordinates is significant; the other is used only to find the quadrant of the end
of the arc. In any event only points within the screen limits are plotted.

dot-line (7); at least 6 parameter bytes

The first 4 parameter bytes are taken as a coordinate-pair representing the origin of a
dot-line. The next byte is taken as a signed x-increment. The next byte is an un-
signed word-count, with ‘0’ meaning ‘256’. The indicated number of words is
picked up. For each bit in each word a point is plotted which is visible if the bit is
‘1, invisible if not. High-order bits are plotted first. Each successive point (or
non-point) is offset rightward by the given x-increment.

Asserting bit 3 of the console switches causes the display processor to throw away everything
written on it. This sometimes helps if the display seems to be hung up.

A.OUT (V) 9/9/73 A.OUT (V)

NAME
a.out— assembler and link editor output

DESCRIPTION
A.outis the output file of the assembbsand the link editotd. Both programs maka.outexe-
cutable if there were no errors and no unresolved external references.

This file has four sections: a header, the program and data text, a symbol table, and relocation
bits (in that order). The last two may be empty if the program was loaded with-the dption
of Id or if the symbols and relocation have been removesiriyy.

The header always contains 8 words:

A magic number (407 or 410(8))

The size of the program text segment

The size of the initialized portion of the data segment

The size of the uninitialized (bss) portion of the data segment
The size of the symbol table

The entry location (always 0 at present)

Unused

A flag indicating relocation bits have been suppressed

O~NO O WN B

The sizes of each segment are in bytes but are even. The size of the header is not included in any
of the other sizes.

When a file produced by the assembler or loader is loaded into core for execution, three logical
segments are set up: the text segment, the data segment (with uninitialized data, which starts off
as all 0, following initialized), and a stack. The text segment begins at 0 in the core image; the
header is not loaded. If the magic number (word 0) is 407, it indicates that the text segment is
not to be write-protected and shared, so the data segment is immediately contiguous with the text
segment. If the magic number is 410, the data segment begins at the first 0 mod 8K byte bound-
ary following the text segment, and the text segment is not writable by the program; if other pro-
cesses are executing the same file, they will share the text segment.

The stack will occupy the highest possible locations in the core image: from 177776(8) and
growing downwards. The stack is automatically extended as required. The data segment is only
extended as requested by breaksystem call.

The start of the text segment in the file is 20(8); the start of the data segment {{@+S$ze of
the text) the start of the relocation information is 20HS; the start of the symbol table is
20+2(S+S)) if the relocation information is present, 204§, if not.

The symbol table consists of 6-word entries. The first four words contain the ASCII name of the
symbol, null-padded. The next word is a flag indicating the type of symbol. The following val-
ues are possible:

00 undefined symbol

01 absolute symbol

02 text segment symbol

03 data segment symbol

37 file name symbol (produced by Id)
04 bss segment symbol

40 undefined external (.globl) symbol
41 absolute external symbol

42 text segment external symbol

43 data segment external symbol

44 bss segment external symbol

Values other than those given above may occur if the user has defined some of his own instruc-
tions.

The last word of a symbol table entry contains the value of the symbol.

A.OUT (V) 9/9/73 A.OUT (V)

If the symbol’s type is undefined external, and the value field is non-zero, the symbol is inter-
preted by the loaddd as the name of a common region whose size is indicated by the value of
the symbol.

The value of a word in the text or data portions which is not a reference to an undefined external
symbol is exactly that value which will appear in core when the file is executed. If a word in the
text or data portion involves a reference to an undefined external symbol, as indicated by the re-
location bits for that word, then the value of the word as stored in the file is an offset from the as-
sociated external symbol. When the file is processed by the link editor and the external symbol
becomes defined, the value of the symbol will be added into the word in the file.

If relocation information is present, it amounts to one word per word of program text or initial-
ized data. There is no relocation information if the “suppress relocation” flag in the header is
on.

Bits 3-1 of a relocation word indicate the segment referred to by the text or data word associated
with the relocation word:

00 indicates the reference is absolute

02 indicates the reference is to the text segment

04 indicates the reference is to initialized data

06 indicates the reference is to bss (uninitialized data)

10 indicates the reference is to an undefined external symbol.

Bit 0 of the relocation word indicatesahthat the reference is relative to the pc (e.g. “clr x”); if
off, that the reference is to the actual symbol (e.g., “clr *$x”).

The remainder of the relocation word (bits 15-4) contains a symbol number in the case of exter-
nal references, and is unused otherwise. The first symbol is numbered 0, the second 1, etc.

SEE ALSO
as(l), Id(1), strip(l), nm(l)

ARCHIVE (V) 9/10/73 ARCHIVE (V)

NAME
ar— archive (library) file format
DESCRIPTION
The archive commandr is used to combine several files into one. Archives are used mainly as
libraries to be searched by the link-editbr
A file produced byar has a magic humber at the start, followed by the constituent files, each pre-
ceded by a file header. The magic number is 177555(8) (it was chosen to be unlikely to occur
anywhere else). The header of each file is 16 bytes long:
0-7 file name, null padded on the right
8-11 modification time of the file
12 user ID of file owner
13 file mode
14-15 file size
If the file is an odd number of bytes long, it is padded with a null byte, but the size in the header
is correct.
Notice there is no provision for empty areas in an archive file.
SEE ALSO
ar (), Id (1)
BUGS

Names are only 8 characters, not 14. More important, there isn’'t enough room to store the prop-
er mode, sar always extracts in mode 666.

CORE (V) 9/10/73 CORE (V)

NAME
core— format of core image file

DESCRIPTION
UNIX writes out a core image of a terminated process when any of various errors occur. See
signal (Il) for the list of reasons; the most common are memory violations, illegal instructions,
bus errors, and user-generated quit signals. The core image is called “core” and is written in the
process’s working directory (provided it can be; normal access controls apply).

The first 512 bytes of the core image are a copy of the system’s per-user data for the process, in-
cluding the registers as they were at the time of the fault. The remainder represents the actual
contents of the user’s core area when the core image was written. At the moment, if the text seg-
ment is write-protected and shared, it is not dumped; otherwise the entire address space is
dumped.

The actual format of the information in the first 512 bytes is complicated. A guru will have to be
consulted if enlightenment is required. In general the debudbe(l) should be used to deal
with core images.

SEE ALSO
db(1), signal(ll)

DIRECTORY (V) 9/10/73 DIRECTORY (V)

NAME
dir — format of directories

DESCRIPTION
A directory behaves exactly like an ordinary file, save that no user may write into a directory.
The fact that a file is a directory is indicated by a bit in the flag word of its i-node entry. Direc-
tory entries are 16 bytes long. The first word is the i-number of the file represented by the entry,
if non-zero; if zero, the entry is empty.

Bytes 2-15 represent the (14-character) file name, null padded on the right. These bytes are not
cleared for empty slots.

By convention, the first two entries in each directory are for dnd “..”. The first is an entry

for the directory itself. The second is for the parent directory. The meaning.’bfs‘modified

for the root directory of the master file system and for the root directories of removable file sys-
tems. In the first case, there is no parent, and in the second, the system does not permit off-
device references. Therefore in both caséshas the same meaning as’:’

SEE ALSO
file system (V)

FILE SYSTEM (V) 97173 FILE SYSTEM (V)

NAME
fs — format of file system volume

DESCRIPTION
Caution: this information applies only to the latest versions of the UNIX system.

Every file system storage volume (e.g. RF disk, RK disk, RP disk, DECtape reel) has a common
format for certain vital information. Every such volume is divided into a certain number of 256
word (512 byte) blocks. Block 0 is unused and is available to contain a bootstrap program, pack
label, or other information.

Block 1 is thesuper block.Starting from its first word, the format of a super-block is

struct {
int isize;
int fsize;
int nfree;
int free[100];
int ninode;

int inode[100];
char flock;

char ilock;
char fmod;
int time[2];

2

Isizeis the number of blocks devoted to the i-list, which starts just after the super-block, in block
2. Fsizeis the first block not potentially available for allocation to a file. This number is unused
by the system, but is used by programs ldteck (l)to test for bad block numbers. The free list
for each volume is maintained as follows. Tinee array contains, iriree[1], ... , free[nfree-1],

up to 99 numbers of free block$zree[0] is the block number of the head of a chain of blocks
constituting the free list. The first word in each free-chain block is the number (up to 100) of
free-block numbers listed in the next 100 words of this chain member. The first of these 100
blocks is the link to the next member of the chain. To allocate a block: decrerfreetand the

new block isfree[nfree]. If the new block number is 0, there are no blocks left, so give an error.
If nfreebecame 0, read in the block named by the new block number, repfeseby its first
word, and copy the block numbers in the next 100 words intofteearray. To free a block,
check ifnfreeis 100; if so, copynfreeand thefree array into it, write it out, and setfreeto 0.

In any event sdtee[nfree]to the freed block’s number and incremefree.

Ninodeis the number of free i-numbers in tieode array. To allocate an i-node: Hfinodeis
greater than 0, decrement it and retimnde[ninode]. If it was O, read the i-list and place the
numbers of all free inodes (up to 100) into tim@de array, then try again. To free an i-node,
providedninodeis less than 100, place its number imb@de[ninode]and incremenhinode. If
ninodeis already 100, don’t bother to enter the freed i-node into any table. This list of i-nodes is
only to speed up the allocation process; the information as to whether the inode is really free or
not is maintained in the inode itself.

Flock andilock are flags maintained in the core copy of the file system while it is mounted and
their values on disk are immaterial. The valudmbdon disk is likewise immaterial; it is used

as a flag to indicate that the super-block has changed and should be copied to the disk during the
next periodic update of file system information.

Timeis the last time the super-block of the file system was changed, and is a double-precision
representation of the number of seconds that have elapsed since 0000 Jan. 1 1970 (GMT). Dur-
ing a reboot, théime of the super-block for the root file system is used to set the system’s idea
of the time.

I-numbers begin at 1, and the storage for i-nodes begins in block 2. Also, i-nodes are 32 bytes
long, so 16 of them fit into a block. Therefore, i-nodis located in blocki(+ 31) / 16, and be-
gins 32((i + 31) (mod 16) bytes from its start. I-node 1 is reserved for the root directory of the

FILE SYSTEM (V) 97173 FILE SYSTEM (V)

file system, but no other i-number has a built-in meaning. Each i-node represents one file. The
format of an i-node is as follows.

struct {
int flags; /* +0: see below */
char nlinks; [* +2: number of links to file */
char uid; [* +3: user ID of owner */
char gid; [* +4: group ID of owner */
char size0; /* +5: high byte of 24-bit size */
int sizel, [* +6: low word of 24-bit size */
int addr[8]; /* +8: block numbers or device number */
int actime[2]; /* +24: time of last access */
int modtime[2]; /* +28: time of last modification */
2

The flags are as follows:

100000 i-node is allocated
060000 2-hit file type:
000000 plain file
040000 directory
020000 character-type special file
060000 block-type special file.
010000 large file
004000 set user-ID on execution
002000 set group-ID on execution
000400 read (owner)
000200 write (owner)
000100 execute (owner)
000070 read, write, execute (group)
000007 read, write, execute (others)

Special files are recognized by their flags and not by i-number. A block-type special file is basi-
cally one which can potentially be mounted as a file system; a character-type special file cannot,
though it is not necessarily character-oriented. For special files the high byte of the first address
word specifies the type of device; the low byte specifies one of several devices of that type. The
device type numbers of block and character special files overlap.

The address words of ordinary files and directories contain the numbers of the blocks in the file
(if it is small) or the numbers of indirect blocks (if the file is large).

Byte numbenn of a file is accessed as followsl is divided by 512 to find its logical block num-
ber (sayb) in the file. If the file is small (flag 010000 is 0), thdnmust be less than 8, and the
physical block number iaddr[b].

If the file is large,b is divided by 256 to yield, andaddr[i] is the physical block number of the
indirect block. The remainder from the division yields the word in the indirect block which con-
tains the number of the block for the sought-for byte.

For blockb in a file to exist, it is not necessary that all blocks less thaxist. A zero block
number either in the address words of the i-node or in an indirect block indicates that the corre-
sponding block has never been allocated. Such a missing block reads as if it contained all zero
words.

SEE ALSO
check (VIII)

PASSWD (V) 9/10/73 PASSWD (V)

NAME
passwd- password file
DESCRIPTION
Passwdcontains for each user the following information:
name (login name, contains no upper case)
encrypted password
numerical user ID
GCOS job number and box number
initial working directory
program to use as Shell
This is an ASCII file. Each field within each user’s entry is separated from the next by a colon.
The job and box numbers are separated by a comma. Each user is separated from the next by a
new-line. If the password field is null, no password is demanded; if the Shell field is null, the
Shell itself is used.
This file resides in directory /etc. Because of the encrypted passwords, it can and does have gen-
eral read permission and can be used, for example, to map numerical user ID’s to names.
SEE ALSO

login(l), crypt(lll), passwd(l)

TP (V) 9/10/73 TP (V)

NAME
tp — DEC/mag tape formats
DESCRIPTION
The commandp dumps and extracts files to and DECtape and magtape. The formats of these
tapes are the same except that magtapes have larger directories.
Block zero contains a copy of a stand-alone bootstrap program. See boot procedures (VIII).
Blocks 1 through 24 for DECtape (1 through 62 for magtape) contain a directory of the tape.
There are 192 (resp. 496) entries in the directory; 8 entries per block; 64 bytes per entry. Each
entry has the following format:
path name 32 bytes
mode 2 bytes
uid 1 byte
gid 1 byte
unused 1 byte
size 3 bytes
time modified 4 bytes
tape address 2 bytes
unused 16 bytes
check sum 2 bytes
The path name entry is the path name of the file when put on the tape. If the pathname starts
with a zero word, the entry is empty. It is at most 32 bytes long and ends in a null byte. Mode,
uid, gid, size and time modified are the same as described under i-nodes (file system (V)). The
tape address is the tape block number of the start of the contents of the file. Every file starts on a
block boundary. The file occupies (size+511)/512 blocks of continuous tape. The checksum en-
try has a value such that the sum of the 32 words of the directory entry is zero.
Blocks 25 (resp. 63) on are available for file storage.
A fake entry (see tp(l)) has a size of zero.
SEE ALSO

file system(V), tp(l)

UTMP (V) 9/10/73 UTMP (V)

NAME
utmp— user information

DESCRIPTION
This file allows one to discover information about who is currently using UNIX. The file is bi-
nary; each entry is 16(10) bytes long. The first eight bytes contain a user’s login name or are
null if the table slot is unused. The low order byte of the next word contains the last character of
a typewriter name. The next two words contain the user’s login time. The last word is unused.
This file resides in directory /tmp.

SEE ALSO

/etc/init, which maintains the file; who(l), which interprets it.

WTMP (V) 9/10/73 WTMP (V)

NAME
wtmp — user login history

DESCRIPTION
This file records all logins and logouts. Its format is exactly like utmp(V) except that a null user
name indicates a logout on the associated typewriter, and the typewriter name ‘X’ indicates that
UNIX was rebooted at that point.

Wtmp is maintained by login(l) and init(VIl). Neither of these programs creates the file, so if it
is removed record-keeping is turned off.

This file resides in directory /tmp.

SEE ALSO
init(V11), login(l)

AZEL (VI) 9/22/73 AZEL (VI)

NAME

SYNOPSI

azel- obtain satellite predictions

S
azelsatellite ...

DESCRIPTION

FILES

Azelpredicts, in convenient form, the apparent trajectories of Earth satellites whose orbital ele-
ments are given in the argument files. If a given satellite name cannot be read, an attempt is
made to find it in a directory of satellites maintained by the programs’s author.

For each satellite given the program types its full name, the date, and a sequence of lines each
containing a time, an azimuth, an elevation, a distance, and a visual magnitude. Each such line
indicates that: at the indicated time, the satellite may be seen from Murray Hill at the indicated
azimuth and elevation, and that its distance and apparent magnitude are as given. Predictions are
printed only when the sky is dark (sun more than 5 degrees below the horizon) and when the
satellite is not eclipsed by the earth’s shadow. Satellites which have not been seen and verified
will not have had their visual magnitude level set correctly.

All times input and output bgizelare GMT (Universal Time).
The satellites for which elements are maintained are:

sla, ... sl Skylab A through Skylab L. Skylabs A and B are the laboratory and its rocket re-
spectively; the remainder are various other objects attendant upon its launch and
subsequent activities. A, B, and probably K have been sighted and verified.

cop Copernicus I. Never verified.
oao Orbiting Astronomical Observatory. Seen and verified.

pag Pageos |. Seen and verified; fairly dim (typically 2nd-3rd magnitude), but elements
are extremely accurate.

expl9 Explorer 19; seen and verified, but quite dim (4th-5th magnitude) and fast-moving.

¢103b, c156b, c184b, c206b, c220b, c461b, c500b
Various of the USSR Cosmos series; none seen.

7276a Unnamed (satellite # 72-76A); not seen.

The element files used zelcontain five lines. The first line gives a year, month number, day,
hour, and minute at which the program begins its consideration of the satellite, followed by a
number of minutes and an interval in minutes. If the year, month, and day are 0, they are taken
to be the current date (taken to change at 6 A.M. local time). The output report starts at the indi-
cated epoch and prints the position of the satellite for the indicated number of minutes at times
separated by the indicated interval. This line is ended by two numbers which specify options to
the program governing the completeness of the report; they are ordinarily both “1”. The first
option flag suppresses output when the sky is not dark; the second supresses output when the
satellite is eclipsed by the earth’s shadow. The next line of an element file is the full name of the
satellite. The next three are the elements themselves (including certain derivatives of the ele-
ments). The author should be consulted for more information.

lusr/jfo/el/* - orbital element files

SEE ALSO

AUTHOR

BUGS

sky (V1)

J. F. Ossanna

BJ(VI) 3/15/72 BJ(VI)

NAME
bj — the game of black jack
SYNOPSIS
/usr/games/bj
DESCRIPTION
Bj is a serious attempt at simulating the dealer in the game of black jack (or twenty-one) as
might be found in Reno. The following rules apply:
The bet is $2 every hand.
A player ‘natural’ (black jack) pays $3. A dealer natural loses $2. Both dealer and player
naturals is a ‘push’ (no money exchange).
If the dealer has an ace up, the player is allowed to make an ‘insurance’ bet against the
chance of a dealer natural. If this bet is not taken, play resumes as normal. If the bet is
taken, it is a side bet where the player wins $2 if the dealer has a natural and loses $1 if the
dealer does not.
If the player is dealt two cards of the same value, he is allowed to ‘double’. He is allowed
to play two hands, each with one of these cards. (The bet is doubled also; $2 on each
hand.)
If a dealt hand has a total of ten or eleven, the player may ‘double down’. He may double
the bet ($2 to $4) and receive exactly one more card on that hand.
Under normal play, the player may ‘hit’ (draw a card) as long as his total is not over
twenty-one. If the player ‘busts’ (goes over twenty-one), the dealer wins the bet.
When the player ‘stands’ (decides not to hit), the dealer hits until he attains a total of sev-
enteen or more. If the dealer busts, the player wins the bet.
If both player and dealer stand, the one with the largest total wins. A tie is a push.
The machine deals and keeps score. The following questions will be asked at appropriate times.
Each question is answered Yofollowed by a new line for ‘yes’, or just new line for ‘no’.
? (means, “do you want a hit?")
Insurance?
Double down?
Every time the deck is shuffled, the dealer so states and the ‘action’ (total bet) and ‘standing’ (to-
tal won or lost) is printed. To exit, hit the interrupt key (DEL) and the action and standing will
be printed.
BUGS

Be careful of the random number generator.

CAL (VI) 11/1/73 CAL (VI)

NAME
cal - print calendar

SYNOPSIS
cal [month] year

DESCRIPTION
Cal will print a calendar for the specified year. If a month is also specified, a calendar just for
that month is printed.Yearcan be between 1 and 9999. Tim@nthis a number between 1 and
12. The calendar produced is that for England and her colonies.
Try September 1752.

BUGS

The year is always considered to start in January even though this is historically naive.

CHESS (VI) 11/1/73 CHESS (VI)

NAME
chess- the game of chess
SYNOPSIS
/usr/games/chess
DESCRIPTION
Chessis a computer program that plays class D chess. Moves may be given either in standard
(descriptive) notation or in algebraic notation. The symbol ‘+' is used to specify check and is
not required; ‘0-0’ and ‘0-0-0’ specify castling. To play black, type first’; to print the board,
type an empty line.
Each move is echoed in the appropriate notation followed by the program’s reply and the elapsed
time in seconds.
FILES
Jusr/lib/book opening ‘book’
DIAGNOSTICS
The most cryptic diagnostic is ‘eh?’ which means that the input was syntactically incorrect.
WARNING
Over-use of this program has been known to cause it to go away.
AUTHOR
K. Thompson
BUGS

Pawns may be promoted only to queens.

CUBIC (VI) 11/1/73 CUBIC(VI)

NAME
cubic— three dimensional tic-tac-toe
SYNOPSIS
/usr/games/cubic
DESCRIPTION
Cubicplays the game of three dimensionad44 tic-tac-toe. Moves are given by the three dig-
its (each 1-4) specifying the coordinate of the square to be played.
WARNING
Too much playing of the game will cause it to disappear.
BUGS

FACTOR (VI) 1/15/73 FACTOR (VI)

NAME
factor— discover prime factors of a number

SYNOPSIS
factor

DESCRIPTION
Whenfactor is invoked, it types out ‘Enter:’ at you. If you type in a positive number less than
2% (about 7.2<1016) it will repeat the number back at you and then its prime factors each one
printed the proper number of times. Then it says ‘Enter:’ again. To exit, feed it an EOT or a
delete.
Maximum time to factor is proportional t¢/n and occurs when is prime. It takes 1 minute to
factor a prime near

DIAGNOSTICS
‘Ouch.’ for input out of range or for garbage input.

BUGS

HYPHEN (VI) 1/15/73 HYPHEN (VI)

NAME
hyphen- find hyphenated words
SYNOPSIS
hyphenfile ...
DESCRIPTION
It finds all of the words in a document which are hyphenated across lines and prints them back at
you in a convenient format.
If no arguments are given, the standard input is used. fiypemay be used as a filter.
BUGS

Yes, it gets confused, but with no ill effects other than spurious extra output.

M6 (V1) 11/15/72 M6 (VI)

NAME
m6 — general purpose macro processor

SYNOPSIS
m6[-dargl][arg2[arg3]]

DESCRIPTION
M6 takes input from file arg2 (or standard input if arg2 is missing) and places output on file arg3
(or standard output). A working file of definitions, “m.def”, is initialized from file argl if that
is supplied.M6 differs from the standard [1] in these respects:

#trace:, #source: and #end: are not defined.

#meta,argl,arg2: transfers the role of metacharacter argl to character arg2. If two metacharacters
become identical thereby, the outcome of further processing is not guaranteed. For example, to
make []{} play the roles of #:<> type

\#meta,<\#>,[:
[meta,<:>,]:
[meta,[substr,<<>>1,1;{]
[meta,[substr {{>>,2,1;,}]

#del,argl: deletes the definition of macro argl.

#save: and #rest: save and restore the definition table together with the current metacharacters on
file m.def.

#def,argl,arg2,arg3: works as in the standard with the extension that an integer may be supplied
to arg3 to cause the new macro to perform the action of a specified builtin before its replacement

text is evaluated. Thus all builtins except #def: can be retrieved even after deletion. Codes for

arg3 are:

0 - no function

1,2,3,4,5,6- gt,eq,ge,lt,ne,le
7,8-seq,sne
9,10,11,12,13 add,sub,mpy,div,exp
20— if

21,22- def,copy

23-meta

24 - size

25— substr

26,27- go,gobk

28— del

29-dnl

30,31- save,rest

FILES
m.def working file of definitions
/usr/lang/mdir/m6a m6 processor proper (/usr/bin/m6 is only an initializer)
/usr/lang/mdir/m6b default initialization for m.def
/bin/cp used for copying initial value of m.def

SEE ALSO
[1] A. D. Hall, The M6 Macroprocessor, Bell Telephone Laboratories, 1969

DIAGNOSTICS
“err” —abug, an unknown builtin or a bad definition table
“oprd” —can’t open input or initial definitions
“opwr” —can’t open output
“ova” - overflow of nested arguments
“ovc” - overflow of calls
“ovd” - overflow of definitions

M6 (V1) 11/15/72 M6 (VI)

“Try again” — no process available for copying m.def

AUTHOR
M. D. Mcllroy

BUGS
Characters in internal tables are stored one per word. They really should be packed to improve
capacity. For want of space (and because of unpacked formats) no file arguments have been pro-
vided to #save: or #rest:, and no check is made on the actual opening of file m.def. Again to
save space, garbage collection makes calls on #save: and #rest: and so overwrites m.def.

Since the program is written in the defunct language B it is currently unavailable. Expressions
of interest may make a C version appear.

MAZE (V1) 11/1/73 MAZE (VI)

NAME
maze- generate a maze problem
SYNOPSIS
maze
DESCRIPTION
Mazewill ask a few questions and then print out a maze.
BUGS

Some mazes (especially small ones) have no solutions.

MOO (V1) 11/1/73 MOO (VI)

NAME
Mmoo - guessing game

SYNOPSIS
/usr/games/moo

DESCRIPTION
Moo is a guessing game imported from England. The computer picks a number consisting of
four distinct decimal digits. The player guesses four distinct digits being scored on each guess.
A ‘cow’ is a correct digit in an incorrect position. A ‘bull’ is a correct digit in a correct position.
The game continues until the player guesses the number (a score of four bulls).

BUGS

Watch out for the random number generator.

oV (VI) 6/12/72 oV (VI)

NAME
ov — overlay pages
SYNOPSIS
ov|file]
DESCRIPTION
Ovis a postprocessor for producing double column formatted text when using nr@lljter-
ally overlays successive pairs of 66-line pages.
If the file argument is missing, the standard input is used. ®hosy be used as a filter.
SEE ALSO
nroff(l), pr(1)
BUGS

PTX(VI) 10/15/73 PTX(VI)

NAME
ptx — permuted index

SYNOPSIS
ptx [-t] input [output]

DESCRIPTION
Ptx generates a permuted index from fitgut on file output. It has three phases: the first does
the permutation, generating one line for each keyword in an input line. The keyword is rotated
to the front. The permuted file is then sorted. Finally the sorted lines are rotated so the keyword
comes at the middle of the page.
Input should be edited to remove useless lines. The following words are suppressed: ‘a’, ‘an’,
‘and’, ‘as’, ‘is’, ‘for’, ‘of’, ‘on’, ‘or’, ‘the’, ‘to’, ‘up’.
The optional argumentt causeptxto prepare its output for the phototypesetter.
The index for this manual was generated uping

FILES
/bin/sort

SFS (VI) 6/25/73 SFS(VI)

NAME
sfs— structured file scanner

SYNOPSIS
sfsfilename [-]

DESCRIPTION
Sfsprovides an interactive program for scanning and pactching a structured file. If the second ar-
gument is supplied, the file is block addressed.
Some features affsinclude.

1. It provides interactive and preprogramed operation.

2. It provides expression evaluation (32 bit precision) and branching.

3. It provides the ability to assimulate a large set of heirarchical structure definitions.

4. It provides the ability to locate, to dump, and to patch specific instances of structure in the
file. Furthermore, in the dump and patch operations the external form of the structure is
selected by the user.

5. It provides the ability to escape to the UNIX command level to allow the use of other
UNIX debugging aids.

SEE ALSO
“SFS reference manual” (internal memorandum)
BUGS

SKY (V1) 9/22/73 SKY (VI)

NAME

sky — obtain ephemerides

SYNOPSIS

sky

DESCRIPTION

FILES

Skypredicts the apparent locations of the Sun, the Moon, the planets out to Saturn, stars of mag-
nitude at least 2.5, and certain other celestial objects including comet Kohoutek andS¥g1.
reads the standard input to obtain a GMT time typed on one line with blanks separating year,
month number, day, hour, and minute; if the year is missing the current year is used. If a blank
line is typed the current time is used. The program prints the azimuth, elevation, and magnitude
of objects which are above the horizon at the ephemeris location of Murray Hill at the indicated
time.

Placing a “1” input after the minute entry causes the program to print out the Greenwich Side-
real Time at the indicated moment and to print for each body its right ascension and declination
as well as its azimuth and elevation. Also, instead of the magnitude, the geocentric distance of
the body, in units the program considers convenient, is printed. (For planets the unit is essen-
tially A. U.)

The magnitudes of Solar System bodies are not calculated and are given as 0. The effects of at-
mospheric extinction are not included; the mean magnitudes of variable stars are marked with

131

For all bodies, the program takes into account precession and nutation of the equinox, annual
(but not diurnal) aberration, diurnal parallax, and the proper motion of stars (but not annual par-
allax). In no case is refraction included.

The program takes into account perturbations of the Earth due to the Moon, Venus, Mars, and
Jupiter. The expected accuracies are: for the Sun and other stellar bodies a few tenths of seconds
of arc; for the Moon (on which particular care is lavished) likewise a few tenths of seconds. For
the Sun, Moon and stars the accuracy is sufficient to predict the circumstances of eclipses and
occultations to within a few seconds of time. The planets may be off by several minutes of arc.

Information about the program may be obtained from its author.

{usrl/lib/startab, /usr/lib/moontab

SEE ALSO

AUTHOR

azel (VI)
American Ephemeris and Nautical Almandor the appropriate years; also, tl#&planatory
Supplement to the American Ephemeris and Nautical Almanac.

R. Morris

SPLINE (VI) 10/20/73 SPLINE (VI)

NAME
spline— interpolate smooth curve
SYNOPSIS
spline[option] ...
DESCRIPTION
Splinetakes pairs of numbers from the standard input as abcissas and ordinates of a function. It
produces a similar set, which is approximately equally spaced and includes the input set, on the
standard output. The cubic spline output (R. W. HammMginerical Methods for Engineers
and Scientists2nd ed., 349ff) has two continuous derivatives, and sufficiently many points to
look smooth when plotted, for example gt (1).
The following options are recognized, each as a separate argument.
a Supply abscissas automatically (they are missing from the input); spacing is given by the
next argument, or is assumed to be 1 if next argument is not a number.
n Output approximately points, wheren is given by the next argument. (Defaal: 100.)
p Make output periodic, i.e. match derivatives at ends. First and last input values should
normally agree.
X Next 1 (or 2) arguments are lower (and upgdinits.
SEE ALSO
plot(1)
AUTHOR
M. D. Mcllroy
BUGS

A limit of 1000 input points is enforced silently.

TMG (VI) 10/21/72 TMG (VI)

NAME
tmg — compiler-compiler

SYNOPSIS
tmg name

DESCRIPTION
Tmgproduces a translator for the language whose parsing and translation rules are described in
file name.t. The new translator appears in a.out and may be used thus:

a.outinput [output]

Except in rare cases input must be a randomly addressable file. If no output file is specified, the
standard output file is assumed.

FILES
/sys/tmg/tmgl.o the compiler-compiler
/sysitmg[abc] libraries
alloc.d table storage

SEE ALSO
A Manual for the Tmg Compiler-writing Language, internal memorandum.

DIAGNOSTICS
Syntactic errors result in "???" followed by the offending line.
Situations such as space overflow with which the Tmg processor or a Tmg-produced processor
can not cope result in a descriptive comment and a dump.

AUTHOR
M. D. Mcllroy

BUGS
9.2 footnote 1 is not enforced, causing trouble.
Restrictions (7.) against mixing bundling primitives should be lifted.
Certain hidden reserved words exist: gpar, classtab, trans.
Octal digits include 8=10 and 9=11.

TTT(VI) 11/1/73 TTT(VI)

NAME
ttt — tic-tac-toe
SYNOPSIS
/usr/games/ttt
DESCRIPTION
Tttis the X and O game popular in the first grade. This is a learning program that never makes
the same mistake twice.
Although it learns, it learns slowly. It must lose nearly 80 games to completely know the game.
FILES
ttt.k learning file
BUGS

WUMP (VI) 11/25/73 WUMP (VI)

NAME
wump - hunt the wumpus

SYNOPSIS
/usr/games/wump

DESCRIPTION
Wumpplays the game of “Hunt the Wumpus.” A Wumpus is a creature that lives in a cave with
several rooms connected by tunnels. You wander among the rooms, trying to shoot the Wumpus
with an arrow, meanwhile avoiding being eaten by the Wumpus and falling into Bottomless Pits.
There are also Super Bats which are likely to pick you up and drop you in some random room.

The program asks various questions which you answer one per line; it will give a more detailed
description if you want.

This program is based on one describelénple’s Computer Company,2(November 1973).

BUGS
It will never replace Space War.

YACC (VI) 6/6/73 YACC (VI)

NAME
yacc—yet another compiler-compiler
SYNOPSIS
yacc[grammar]
DESCRIPTION
Yaccconverts a context-free grammar into a set of tables for a simple automaton which executes
an LR(1) parsing algorithm.
For complete information, see the author.
SEE ALSO
"LR Parsing”, by A. V. Aho and S. C. Johnson.
AUTHOR
S. C. Johnson
BUGS

ASCII(VII)

NAME

6/12/72

ascii— map of ASCII character set

SYNOPSIS

cat /usr/pub/ascii

DESCRIPTIO

N

ASCII(VII)

Asciiis a map of the ASCII character set, to be printed as needed. It contains:

(HOJ0]¢)
D10
(D20
(D30
(D40
(D50
(D60
070
(100
(110
(120
(130
(140
150
(160
(n7o

FILES

nul0D01
bs M11
dlgn21
carnD31
sp D41
(D51
0 [D61
8 [D71
@mo1
HO11
PMm21
X 31
T [Mm41
h (151
p (1161
x 71

sofiD02 stxXDO03
ht (012 nl D13
dcID22 dc2D23
em[D32 sukhD33

1 [D42
) (D52
1 (D62
9 D72
A 102
| M12
Q22
Y 1132
a 142
i 152
g (162
y 72

found in /usr/pub

" D43
* D53
2 063
: D73
B (1103
J 13
R 123
Z 1133
b 143
j 153
r (163
z 173

etXD04 eotDO5
vt (D14 np D15
dc3D24 dc4D25
es€&D34 fs M35

(044
+ [D54
3 [D64
; 074
C 104
K14
S[24
[(L34
c (144
k (154
s (1164
{ w74

$ D45
, D55
4 [D65
< [D75
D 1105
L 115
T 125
\ 135
d 145
| (155
t (165
ggi7s

endnDO6
cr [D16
nakD26
gs D36
% [046
- [D56
5 [D66
= [D76
E (1106
MOL16
U 1126
] (L36
e [1146
m 156
u 1166
} 176

ackDO7 beld
so[D17 si O
syrnpD27 eth]
rs 037
& D47
. 057
6 (D67
> [D77
F o7
N [L17
vV 27
© 37
f 47
n 57
v 167 w0
T 77 deld

c
]
O

N

SO0 v~~~
OOooOoOOoO0O0O00

o«l

DPD (VII) 3/15/72 DPD (VII)

NAME

dpd- spawn data phone daemon

SYNOPSIS

/etc/dpd

DESCRIPTION

FILES

Dpdis the 201 data phone daemon. It is designed to submit jobs to the Honeywell 6070 com-
puter via the GRTS interface.

Dpd uses the directonjusr/dpd. The file lock in that directory is used to prevent two daemons
from becoming active. After the daemon has successfully set the lock, it forks and the main path
exits, thus spawning the daemon. The directory is scanned for files beginninglfwitach

such file is submitted as a job. Each line of a job file must begin with a key character to specify
what to do with the remainder of the line.

S directsdpdto generate a unique snumb card. This card is generated by incrementing the
first word of the file/usr/dpd/snumtand converting that to three-digit octal concatenated
with the station ID.

specifies that the remainder of the line is to be sent as a literal.
specifies that the rest of the line is a file name. That file is to be sent as binary cards.
is the same a3 except a form feed is prepended to the file.

cC T m -

specifies that the rest of the line is a file name. After the job has been transmitted, the file
is unlinked.

Any error encountered will cause the daemon to drop the call, wait up to 20 minutes and start
over. This means that an improperly construaétile may cause the same job to be submitted
every 20 minutes.

While waiting, the daemon checks to see thatltuk file still exists. If it is gone, the daemon
will exit.

/dev/dn0, /dev/dp0, /usr/dpd/*

SEE ALSO

opr(l)

GETTY (VII) 9/19/73 GETTY (VII)

NAME

getty — set typewriter mode

SYNOPSIS

letc/getty

DESCRIPTION

Gettyis invoked byinit (VII) immediately after a typewriter is opened following a dial-up. The
user’s login name is read and the login(l) command is called with this name as an argument.
While reading this namgettyattempts to adapt the system to the speed and type of terminal be-
ing used.

Gettyinitially sets the speed of the interface to 150 baud, specifies that raw mode is to be used
(break on every character), that echo is to be suppressed, and either parity allowed. It types the
“login:” message (which includes the characters which put the 37 Teletype terminal into full-
duplex and unlock its keyboard). Then the user’s hame is read, a character at a time. If a null
character is received, it is assumed to be the result of the user pushing the “break” (“interrupt”)
key. The speed is then changed to 300 baud and the “login:” is typed again, this time with the
appropriate sequence which puts a GE TermiNet 300 into full-duplex. This sequence is accept-
able to other 300 baud terminals also. If a subsequent null character is received, the speed is
changed back to 150 baud.

The user’s name is terminated by a new-line or carriage-return character. The latter results in the
system being set to to treat carriage returns appropriately (see stty(ll)).

The user’s name is scanned to see if it contains any lower-case alphabetic characters; if not, and
if the name is nonempty, the system is told to map any future upper-case characters into the cor-
responding lower-case characters. Thus UNIX is usable from upper-case-only terminals.

Finally, login is called with the user's name as argument.

SEE ALSO

init(V11), login(l), stty(ll)

GLOB (VII) 9/19/73 GLOB (VII)

NAME
glob - generate command arguments

SYNOPSIS
/etc/globcommand [arguments]

DESCRIPTION
Globis used to expand arguments to the shell containing “*”, “[’, or “?”. It is passed the ar-
gument list containing the metacharactegkyb expands the list and calls the indicated com-
mand. The actions @flob are detailed in the Shell writeup.

SEE
sh(l)

BUGS

Glob gives the “No match” diagnostic only if no arguments at all result. This is never the case
if there is any argument without a metacharacter.

GREEK (VII) 10/31/72 GREEK (VII)

NAME
greek- graphics for extended ascii type-box

SYNOPSIS
cat /usr/pub/greek

DESCRIPTION
Greekgives the mapping from ascii to the “shift out” graphics in effect between SO and Sl on
model 37 Teletypes with a 128-character type-box. It contains:
alpha a A beta B B gamma y \
GAMMA r G delta A D DELTA AW
epsilon € S zeta ¢ Q eta n N
theta 6 T THETA ® O lambda AL
LAMBDA AN E mu (VR Y/ nu v @
Xi & X pi m J Pl n P
rho p K sigma o Y SIGMA > R
tau T | phi ¢ U PHI o F
psi v Vv PSI Y H omega w C
OMEGA Q Z nabla VAN not -
partial o] integral |

SEE ALSO
ascii (VII)

INIT (VI1) 6/15/72 INIT (VII)

NAME

init — process control initialization

SYNOPSIS

letc/init

DESCRIPTION

FILES

Init is invoked inside UNIX as the last step in the boot procedure. Generally its role is to create
a process for each typewriter on which a user may log in.

First, init checks to see if the console switches contain 173030. (This number is likely to vary
between systems.) If so, the console typewritgris opened for reading and writing and the
shell is invoked immediately. This feature is used to bring up a single-user system. When the
system is brought up in this way, tlgetty andlogin routines mentioned below and described
elsewhere are not needed.

Otherwise,init invokes a Shell, with input taken from the filetc/rc. This command file per-
forms housekeeping like removing temporary files, mounting file systems, and starting the data-
phone daemon.

Theninit forks several times to create a process for each typewriter mentioned in an internal
table. Each of these processes opens the appropriate typewriter for reading and writing. These
channels thus receive file descriptors 0 and 1, the standard input and output. Opening the type-
writer will usually involve a delay, since thepenis not completed until someone is dialled up

and carrier established on the channel. Then the process executes the peigfgetty(q.v.).
Gettywill read the user's name and invdkein (g.v.) to log in the user and execute the shell.

Ultimately the shell will terminate because of an end-of-file either typed explicitly or generated
as a result of hanging up. The main pathiwit, which has been waiting for such an event,
wakes up and removes the appropriate entry from theufitgn which records current users, and
makes an entry invtmp which maintains a history of logins and logouts. Then the appropriate
typewriter is reopened angbttyis reinvoked.

/devitty, /devitty?, tmp/utmp, /tmp/wtmp,

SEE ALSO

login(l), getty(VIl), sh(l)

MSH (VII) 6/15/72 MSH (VI1)

NAME
msh— mini-shell
SYNOPSIS
/etc/msh
DESCRIPTION
Mshis a heavily simplified version of the Shell. It reads one line from the standard input file, in-
terprets it as a command, and calls the command.
The mini-shell supports few of the advanced features of the Shell; none of the following charac-
ters is special:
><$\; & O
However, “*”, “[", and “?" are recognized andglobis called. The main use ofishis to pro-
vide a command-executing facility for various interactive sub-systems.
SEE ALSO

sh(l), glob(VII)

TABS (VII) 6/15/72 TABS (VII)

NAME
tabs- set tab stops

SYNOPSIS
cat /usr/pub/tabs

DESCRIPTION
When printed on a suitable terminal, this file will set tab stops every 8 columns. Suitable termi-
nals include the Teletype model 37 and the GE TermiNet 300.

These tab stop settings are desirable because UNIX assumes them in calculating delays.

TMHEADER (VII) 10/20/73 TMHEADER (VII)

NAME
tmheader TM cover sheet
SYNOPSIS
ed /usr/pub/tmheader
DESCRIPTION
/usr/pub/tmheadecontains a prototype for makingteoff(l) formatted cover sheet for a techni-
cal memorandum. Parameters to be filled in by the user are marked by self-explanatory names
beginning with *“---".
BUGS

God help you on two-page abstracts. Try to write less.

VS (VII) 9/4/73 VS (VII)

NAME
VS — voice synthesizer code
DESCRIPTION
The octal codes below are understood by the Votrax® voice synthesizer. Inflection and
phonemes are or-ed together. The mnemonics in the first column are uspeééddl); the up-
per case mnemonics are used by the manufacturer.
0 300 4strong inflection u0 014 UHbut
1 200 3 ul 015 UHZuncle
2 100 2 u2 016 UHZstirrup
3 000 Tweak inflection u3 034 UH3appleable
yu 027 U-use
a0 033 AH-contact iu 010 Uzunite(,yl,iu,...)
al 052 AHZXconnect ju 011 IYnew
aw 002 AWHaw(,l,u2,aw) b 061 B
au 054 AWZHfault d 041 D
ae 021 AEcat f 042 F
ea 020 AE%antenna g 043 G
ai 037 A-name(,nh,ai,y0,m) h 044 H
aj 071 Al-namely k 046 K
e0 004 EHmetenter I 047 L
el 076 EH%seven m 063 M
e2 077 EHZsewn n 062 N
er 005 ERweatler p 032 P
eu 073 OOHGoehe cheeux g 075 Q
eh 067 EHHlecheveux r 024 R
y0 023 EEthree s 040 S
yl 026 Y-sixty t 025 T
y2 035 Yl-yes v 060 V
ay 036 AY-may w022 W
i0 030 I-six z 055 z
il 064 Il-ineptinside sh 056 SHshow ship
i2 065 I2-staic zh 070 ZH-pleasure
iy 066 IY-cry(k,r,a0,iy) j 045 Jedge
ie 003 IEzero ch 057 CHbath
ih 072 IH-staton th 006 THthin
o0 031 Gonlyno dh 007 TH\-then
ol 012 Othello ng 053 NGlongink
02 013 OZnotice -0 017 PAZlong pause
ou 051 OO%good stould -1 001 PAl1
00 050 OGlook -2 074 PAG-short pause
SEE ALSO

speak(l), vs(IV)

20BOOT (VIII) 10/31/73 20BOOT (VIII)

NAME
20boot- install new 11/20 system
SYNOPSIS
20boot
DESCRIPTION
This shell command file copies the current version of the 11/20 program used to run the VT01
display onto the /dev/vtO file. The 11/20 should have been started at its ROM location 773000.
FILES
/dev/vt0, /usr/mdec/20.0 (11/20 program)
SEE ALSO

vt (IV)

BOOT PROCEDURES (VIII) 11/1/73 BOOT PROCEDURES (VIII)

NAME
boot procedures UNIX startup

DESCRIPTION
The advent of the new system has changed the boot procedtinese procedures apply only to
C-language systems.

How to start UNIX. UNIX is started by placing it in core starting at location zero and transfer-
ring to zero. There are various ways to do this. If UNIX is still intact after it has been running,
the most obvious method is simply to transfer to zero.

The tp command places a bootstrap program on the otherwise unused block zero of the tape.
The DECtape version of this program is calldmbot, the magtape versiomboot. If tboot or
mbootis read into location zero and executed there, it will type ‘=" on the console, readpin a
entry name, load that entry into core, and transfer to zero. Thus the next easiest way to run
UNIX is to maintain the UNIX code on a tape usitlg Then when a boot is required, execute
(somehow) a program which reads in and jumps to the first block of the tape. In response to the
‘=" prompt, type the entry name of the system on the tape (we use plain ‘unix’). It is strongly
recommended that a current version of the system be maintained in this way, even if the first or
third methods of booting the system are usually used.

The standard DEC ROM which loads DECtape is sufficient to reaith@ot, but the magtape
ROM loads block one, not zero. If no suitable ROM is available, magtape and DECtape pro-
grams are presented below which may be manually placed in core and executed.

A third method of rebooting the system involves the otherwise unused block zero of each UNIX
file system. The single-block progranbootwill read a UNIX pathname from the console, find

the corresponding file on a device, load that file into core location zero, and transfer to it. The
current version of this boot program reads a single character (gitbek for RP or RK, both

drive 0) to specify which device is to be searchéthootoperates under very severe space con-
straints. It supplies no prompts, except that it echos a carriage return and line feed gfter the

k. No diagnostic is provided if the indicated file cannot be found, nor is there any means of cor-
recting typographical errors in the file name except to start the program dlsot can reside

on any of the standard file systems or may be loaded ftprtape as described above.

The standard DEC disk ROMs will load and exealteotfrom block zero.

The switches. The console switches play an important role in the use and especially the booting
of UNIX. During operation, the console switches are examined 60 times per second, and the
contents of the address specified by the switches are displayed in the display register. (This is
not true on the 11/40 since there is no display register on that machine.) If the switch address is
even, the address is interpreted in kernel (system) space; if odd, the rounded-down address is in-
terpreted in the current user space.

If any diagnostics are produced by the system, they are printed on the console only if the
switches are non-zero. Thus it is wise to have a non-zero value in the switches at all times.

During the startup of the system, ti@t program (VIII) reads the switches and will come up
single-user if the switches are set to 173030.

It is unwise to have a non-existent address in the switches. This causes a bus error in the system
(displayed as 177777) at the rate of 60 times per second. If there is a transfer of more than 16ms
duration on a device with a data rate faster than the bus error timeout (appisxthén a per-
manent disk non-existent-memory error will occur.

ROM programs. Here are some programs which are suitable for installing in read-only memo-
ries, or for manual keying into core if no ROM is present. Each program is position-independent
but should be placed well above location 0 so it will not be overwritten. Each reads a block from
the beginning of a device into core location zero. The octal words constituting the program are
listed on the left.

BOOT PROCEDURES (VIII)

DECtape (drive 0) from endzone:

012700 mov
177346

010040 mov
012710 mov
000003

105710 1: tstb
002376 bge
112710 movb
000005

000777 br

DECtape (drive 0) with search:

012700 1: mov
177346

010040 mov
012740 mov
004003

005710 2: tst
002376 bge
005760 tst
177776

002365 bge
012710 mov
000003

105710 2: tstb
002376 bge
112710 movb
000005

105710 2: tstb
002376 bge
005007 clr

Caution: both of these DECtape
zero.

Magtape from load point:

012700 mov

172526

010040 mov

012740 mov

060003

000777 br
RK (drive 0):

012700 mov

177414

005040 clr

005040 clr

010040 mov

012740 mov

000005

105710 1: tstb

002376 bge

005007 clr
RP (drive 0)

012700 mov

176726

005040 clr

11/1/73

$tcba,ro

r0,-(r0)
$3,(r0)

(r0)
1b
$5,(r0)

$tcba,r0

r0,-(r0)
$4003,-(r0)

(r0)
2b
-2(r0)

1b
$3,(r0)

(r0)
2b
$5,(r0)
(r0)
2b

pc

BOOT PROCEDURES (VIII)

/ use tc addr for wc
/ read bn forward

/ wait for ready
/ read (forward)

/ loop; now halt and start at O

/ use tc addr for wc
/ read bn reverse

[wait for error

/ loop if not end zone
/ read bn forward

/ wait for ready

/ read (forward)

/ wait for ready

/ transfer to zero

programs will (literally) blow a fuse if 2 drives are dialed to

$mtcma,ro

r0,-(r0)

$60003,-(r0)

$rkmr,r0
-(r0)
-(r0)
r0,-(r0)
$5,-(r0)
(r0)

1b

pc
$rpmr,r0

-(r0)

[usr mt addr for wc
/ read 9-track

/ loop; now halt and start at 0

BOOT PROCEDURES (VIII)

005040
005040
010040
012740
000005
105710 1
002376
005007

FILES

clr
clr
mov
mov

tsth
bge
clr

usr/sys/unix- UNIX code
/usr/mdec/mboot tp magtape bootstrap
/usr/mdec/tboot tp DECtape bootstrap
/usr/mdec/uboot file system bootstrap

SEE ALSO
tp(l), init(VI1)

11/1/73

-(r0)
-(r0)
r0,-(r0)
$5,-(r0)
(r0)

1b

pcC

BOOT PROCEDURES (VIII)

CHECK (VIII) 8/31/73 CHECK (VIII)

NAME
check- file system consistency check
SYNOPSIS
check[—Isib [numbers]][filesystem]
DESCRIPTION
Checkexamines a file system, builds a bit map of used blocks, and compares this bit map against
the free list maintained on the file system. It also reads directories and compares the link-count
in each i-node with the number of directory entries by which itis referenced. If the file system is
not specified, a check of a default file system is performed. The normal outgteckincludes
a report of
The number of blocks missing; i.e. not in any file nor in the free list,
The number of special files,
The total number of files,
The number of large files,
The number of directories,
The number of indirect blocks,
The number of blocks used in files,
The highest-numbered block appearing in a file,
The number of free blocks.
The -l flag causegheckto produce as part of its output report a list of the all the path names of
files on the file system. The list is in i-number order; the first name for each file gives the i-
number while subsequent names (i.e. links) have the i-number suppressed. The ehties “
“.." for directories are also suppressed.
The-sflag causegheckto ignore the actual free list and reconstruct a new one by rewriting the
super-block of the file system. The file system should be dismounted while this is done; if this is
not possible (for example if the root file system has to be salvaged) care should be taken that the
system is quiescent and that it is rebooted immediately afterwards so that the old, bad in-core
copy of the super-block will not continue to be used. Notice also that the words in the super-
block which indicate the size of the free list and of the i-list are believed. If the super-block has
been curdled these words will have to be patched. Jd#ag causes the normal output reports
to be suppressed.
The occurrence afntimes in a flag argumentii...i causesheckto store away the next argu-
ments which are taken to be i-numbers. When any of these i-numbers is encountered in a direc-
tory a diagnostic is produced, as described below, which indicates among other things the entry
name.
Likewise, n appearances dj in a flag like —bb...b cause the next arguments to be taken as
block numbers which are remembered; whenever any of the named blocks turns up in a file, a di-
agnostic is produced.
FILES
Currently, /dev/rp0 is the default file system.
SEE ALSO
fs (V)
DIAGNOSTICS
There are some self-evident diagnostics like “can’t open ...”, “can’'t write"” If a read error is

encountered, the block number of the bad block is printed dratkexits. “Bad freeblock”
means that a block number outside the available space was encountered in the freedisps*

in free” means than blocks were found in the free list which duplicate blocks either in some file
or in the earlier part of the free list.

An important class of diagnostics is produced by a routine which is called for each block which
is encountered in an i-node corresponding to an ordinary file or directory. These have the form

CHECK (VIII) 8/31/73 CHECK (VIII)

b# complaint i= i# (class)
Hereb#is the block number being consideredmplaintis the diagnostic itself. It may be

blk if the block number was mentioned as an argument-dfter

bad if the block number has a value not inside the allocatable space on the device, as indi-
cated by the devices'’s super-block;

dup if the block number has already been seen in a file;

din if the block is a member of a directory, and if an entry is found therein whose i-number
is outside the range of the i-list on the device, as indicated by the i-list size specified
by the super-block. Unfortunately this diagnostic does not indicate the offending entry
name, but since the i-number of the directory itself is given (see below) the problem
can be tracked down.

Thei# in the form above is the i-number in which the named block was found. cldssis an
indicator of what type of block was involved in the difficulty:

sdir indicates that the block is a data block in a small file;

Idir indicates that the block is a data block in a large file (the indirect block number is not
available);

idir indicates that the block is an indirect block (pointing to data blocks) in a large file;

free indicates that the block was mentioned afteand is free;

urk indicates a malfunction icheck.

When an i-number specified aftef is encountered while reading a directory, a report in the
form

#ino; i= d# (class) name

wherei# is the requested i-numbed# is the i-number of the directorglassis the class of the
directory block as discussed above (virtually always “sdir”) arameis the entry name. This
diagnostic gives enough information to find a full path name for an i-number without usifg the
option: use-b n to find an entry name and the i-number of the directory containing the reference
to n, then recursively useb on the i-number of the directory to find its name.

Another important class of file system diseases indicatednegkis files for which the number
of directory entries does not agree with the link-count field of the i-node. The diagnostic is hard
to interpret. It has the form

i# delta

Herei# is the i-number affectedDelta is an octal number accumulated in a byte, and thus can
have the value 0 through 377(8). The easiest way (short of rewriting the routine) of explaining
the significance ofleltais to describe how it is computed.

If the associated i-node is allocated (that is, hasatecatedbit on) add 100 tadelta. If its
link-count is non-zero, add another 100 plus the link-count. Each time a directory entry specify-
ing the associated i-number is encountered, subtract 1 dielta. At the end, the i-number and
deltaare printed ifdeltais neither 0 nor 200. The first case indicates that the i-node was unallo-
cated and no entries for it appear; the second that it was allocated and that the link-count and the
number of directory entries agree.

Therefore (to explain the symptoms of the most common difficultied)a = 377 1 in 8-bit,

2's complement octal) means that there is a directory entry for an unallocated i-node. This is
somewhat serious and the entry should be be found and removed forttivgtta = 201 usually
means that a normal, allocated i-node has no directory entry. This difficulty is much less seri-
ous. Whatever blocks there are in the file are unavailable, but no further damage will occur if
nothing is done. Alri followed by acheck-swill restore the lost space at leisure.

In general, values afieltaequal to or somewhat above 0, 100, or 200 are relatively innocuous;
just below these numbers there is danger of spreading infection.

BUGS
Unfortunately check-l on file systems with more than 3000 or so files does not work because it
runs out of core.

CHECK (VIII) 8/31/73 CHECK (VIII)

Sincecheckis inherently two-pass in nature, extraneous diagnostics may be produced if applied
to active file systems.

It believes even preposterous super-blocks and consequently can get core images.

CLRI(VIII) 10/31/73 CLRI(VIIl)

NAME

clri — clear i-node

SYNOPSIS

clri i-number [filesystem]

DESCRIPTION

BUGS

Clri writes zeros on the 32 bytes occupied by the i-node numhemachber. If the file system
argument is given, the i-node resides on the given device, otherwise on a default file system.
The file system argument must be a special file name referring to a device containing a file sys-
tem. Afterclri, any blocks in the affected file will show up as “missing” incoeckof of the

file system.

Read and write permission is required on the specified file system device. The i-node becomes
allocatable.

The primary purpose of this routine is to remove a file which for some reason appears in no di-
rectory. If it is used to zap an i-node which does appear in a directory, care should be taken to
track down the entry and remove it. Otherwise, when the i-node is reallocated to some new file,
the old entry will still point to that file. At that point removing the old entry will destroy the new
file. The new entry will again point to an unallocated i-node, so the whole cycle is likely to be
repeated again and again.

Whatever the default file system is, it is likely to be wrong. Specify the file system explicitly.
If the file is opencglri is likely to be ineffective.

DF (VIII) 1/20/73 DF (VIIl)

NAME
df — disk free

SYNOPSIS
df [filesystem]

DESCRIPTION
Df prints out the number of free blocks available on a file system. If the file system is unspeci-
fied, the free space on all of the normally mounted file systems is printed.

FILES

/dev/rf?, /devirk?, [dev/rp?
SEE ALSO

check(VIII)
BUGS

DUMP (VIII) 11/24/73 DUMP (VIII)

NAME
dump-incremental file system dump
SYNOPSIS
dump [key [arguments] filesystem]
DESCRIPTION
Dumpwill make an incremental file system dump on magtape of all files changed after a certain
date. The argumerkey, specifies the date and other options about the dukgy consists of
characters from the setOhds.
i the dump date is taken from the fiétc/ddate.
u the date just prior to this dump is written égtc/ddateupon successful completion of this
dump.
0 the dump date is taken as the epoch (beginning of time). Thus this option causes an entire
file system dump to be taken.
h the dump date is some number of hours before the current date. The number of hours is
taken from the next argumentanguments.
d the dump date is some number of days before the current date. The number of days is tak-
en from the next argument amguments.
s the size of the dump tape is specified in feet. The number of feet is taken from the next ar-
gument inarguments. It is assumed that there are 9 standard UNIX records per foot.
When the specified size is reached, the dump will wait for reels to be changed. The de-
fault size is 1700 feet.
If no arguments are given, theeyis assumed to bé and the file system is assumed to be
/dev/rpl.
Full dumps should be taken on quiet file systems as follows:
dump Ou /dev/rpl
check -l /dev/rpl
The checkwill come in handy in case it is necessary to resore indiviidual files from this dump.
Incremental dumps should then be taken when desired by:
dump
When the incremental dumps get cumbersome, a new complete dump should be taken. In this
way, a restore requires loading of the complete dump tape and only the latest incremental tape.
FILES
/dev/ImtOmagtape
/dev/rpldefault file system
/etc/ddate
SEE ALSO
restor, check(VIII), dump(V)
BUGS

INO (VIII) 11/1/73 INO (VIII)

NAME
ino — get the i-number of a file
SYNOPSIS
ino file ...
DESCRIPTION
The i-number of each file argument is printed. An i-number of zero is printed if a bad argument
is given.
BUGS

MKFS (VIIl) 11/1/73 MKFS (VIII)

NAME
mkfs — construct a file system

SYNOPSIS
/etc/mkfs special proto

DESCRIPTION
Mkfs constructs a file system by writing on the special lgecialaccording to the directions
found in the prototype filgroto. The prototype file contains tokens separated by spaces or new
lines. The first token is the name of a file to be copied onto block zero as the bootstrap program
(see boot procedures(VIIl)). The second token is a number specifying the size of the created file
system. Typically it will be the number of blocks on the device, perhaps diminished by space for
swapping. The next token is the i-list size in blocks (remember there are 16 i-nodes per block).
The next set of tokens comprise the specification for the root file. File specifications consist of
tokens giving the mode, the user-id, the group id, and the initial contents of the file. The syntax
of the contents field depends on the mode.

The mode token for a file is a 6 character string. The first character specifies the type of the file.
(The charactersbcd specify regular, block special, character special and directory files respec-
tively.) The second character of the type is eithar - to specify set-user-id mode or not. The
third is g or — for the set-group-id mode. The rest of the mode is a three digit octal number giv-
ing the owner, group, and foreigner read, write, execute permissiorchised(l)).

Two decimal number tokens come after the mode; they specify the user and group ID’s of the
owner of the file.

If the file is a regular file, the next token is a pathname whence the contents and size are copied.

If the file is a block or character special file, two decimal number tokens follow which give the
major and minor device numbers.

If the file is a directorymkfsmakes the entriesand.. and then reads a list of names and (recur-
sively) file specifications for the entries in the directory. The scan is terminated with the token

If the prototype file cannot be opened and its name consists of a string of didifspuilds a

file system with a single empty directory on it. The size of the file system is the valpeotd
interpreted as a decimal number. The i-list size is the file system size divided by 50. (This cor-
responds to an average size of three blocks per file.) The boot program is left uninitialized.

A sample prototype specification follows:

Jusr/mdec/uboot
4872 55
d——77731
usr d-77731
sh ——=755 3 1 /bin/sh
ken d-75561
$
b0 b-—6443100
(o{0] c—6443100
$

SEE ALSO
file system(V), directory(V), boot procedures(VIII)

DIAGNOSTICS
There are various diagnostics for syntax errors, inconsistent values, and sizes too small.

BUGS
It is not possible to initialize a file larger than 64K bytes.
The size of the file system is restricted to 64K blocks.

MKFS (VIIl) 11/1/73 MKFS (VIII)

There should be some way to specify links.

MKNOD (VIII) 10/31/73 MKNOD (VIII)

NAME
mknod- build special file
SYNOPSIS
/etc/mknod name [c] [b] major minor
DESCRIPTION
Mknodmakes a directory entry and corresponding i-node for a special file. The first argument is
the nameof the entry. The second Iz if the special file is block-type (disks, tape) oiif it is
character-type (other devices). The last two arguments are numbers specifyimagjtinelevice
type and theninor device (e.g. unit, drive, or line number).
The assignment of major device numbers is specific to each system. For reference, here are the
numbers for the MH 2C-644 machine. Do not believe them too much.
Block devices:
0 RF fixed-head disk
1 RK moving-head disk
2 TC DECtape
3 TM magtape
4 RP moving-head disk
5 Vermont Research moving-head disk
Character devices:
0 KL on-line console
1 DC communications lines
2 PC paper tape
3 DP synchronous interface
4 DN ACU interface
5 core memory
6 VT scope (via 11/20)
7 DA voice response unit
8 CT phototypesetter
9 VS voice synthesizer
10 TIU Spider interface
SEE ALSO
mknod (II)
BUGS

MOUNT (VIII) 10/31/73 MOUNT (VIII)

NAME
mount— mount file system

SYNOPSIS
/etc/mountspecial file

DESCRIPTION
Mountannounces to the system that a removable file system is present on the device correspond-
ing to special filespecial(which must refer to a disk or possibly DECtape). Tie must exist
already; it becomes the name of the root of the newly mounted file system.

SEE ALSO
umount (VIII)

BUGS

Mounting file systems full of garbage can crash the system.

RELOC (VIII) 217173 RELOC (VIII)

NAME
reloc— relocate object files

SYNOPSIS
reloc file octal [—]

DESCRIPTION
Relocmodifies the named object program file so that it will operate correctly at a different core
origin than the one for which it was assembled or loaded.
The new core origin is the old origin increased by the gieetal number (or decreased if the
number has & sign).
If the object file was generated lay the-r and—d options must have been given to preserve the
relocation information and define any common symbols in the file.
If the optional last argument is given, then agstdinstruction at the start of the file will be re-
placed by a no-op.
The purpose of this command is to simplify the preparation of object programs for systems
which have no relocation hardware. It is hard to imagine a situation in which it would be useful
to attempt directly to execute a program treatecelc.

SEE ALSO
as(l), Id(1), a.out(V)

BUGS

RESTOR (VIII) 11/24/73 RESTOR (VIII)

NAME
restor— incremental file system restore
SYNOPSIS
restor key [arguments]
DESCRIPTION
Restoris used to read magtapes dumped with daenpcommand. The&eyargument specifies
what is to be doneKeyis a character from the getw.
t The date that the tape was made and the date that was specifiedduntipeommand are
printed. A list of all of the i-numbers on the tape are also given.
r The tape is read and loaded into the file system specifadjirments.This should not be
done lightly (see below).
x Each file on the tape is individually extracted into a file whose name is the file’s i-number.
If there areargumentsthey are interpreted as i-numbers and only they are extracted.
w In conjunction with thex option, before each file is extracted, its i-number is typed out.
To extract this file, you must respond wjth
Ther option should only be used to restore a complete dump tape onto a clear file system or to
restore an incremental dump tape onto this. Thus
letc/mkfs /dev/rp0O 40600
restor r /dev/rp0
is a typical sequence to restore a complete dump. Angtstor can be done to get an incre-
mental dump in on top of this.
A dumpfollowed by amkfsand arestoris used to change the size of a file system.
FILES
/dev/mtO
SEE ALSO
dump, mkfs, check, clri (VIII)
DIAGNOSTICS
There are various diagnostics involved with reading the tape and writing the disk. There are also
diagnostics if the i-list or the free list of the file system is not large enough to hold the dump.
BUGS

There is redundant information on the tape that could be used in case of tape reading problems.
Unfortunatelyrestor'sapproach is to exit if anything is wrong.

Files that have been deleted are not removed when incremental tapes are loaded. It will be nec-
essary tacheckthe restored file system amdti any files that show up with a 201 delta diagnos-

tic.

The current version afestor does not free space occupied by files that are overwritten. Thus a
checkwill have to be performed to reclain the missing space.

SU(VIIN) 10/31/73 SU(VIIN)

NAME
su — become privileged user

SYNOPSIS
su

DESCRIPTION
Suallows one to become the super-user, who has all sorts of marvelous (and correspondingly
dangerous) powers. In order feuto do its magic, the user must supply a password. If the pass-
word is correctsuwill execute the Shell with the UID set to that of the super-user. To restore
normal UID privileges, type an end-of-file to the super-user Shell.
The password demanded is that of the entry “root” in the system’s password file.
To remind the super-user of his responsibilities, the Shell substitutes ‘#' for its usual prompt
‘%'

SEE ALSO

sh (1)

SYNC (VIII) 11/1/73 SYNC (VIII)

NAME
sync— update the super block
SYNOPSIS
sync
DESCRIPTION
Syncexecutes theyncsystem primitive. If the system is to be stoppsgncmust be called to
insure file system integrity. See sync(ll) for details.
SEE ALSO
sync(ll)
BUGS

UMOUNT (VIII) 10/31/73 UMOUNT (VIII)

NAME
umount- dismount file system
SYNOPSIS
/etc/lumount special
DESCRIPTION
Umountannounces to the system that the removable file system previously mounted on special
file specialis to be removed.
SEE ALSO
mount (VIII)
DIAGNOSTICS
It complains if the special file is not mounted or if it is busy. The file system is busy if there is
an open file on it or if someone has his current directory there.
BUGS

UPDATE (VIII) 11/1/73 UPDATE (VIII)

NAME
update- periodically update the super block

SYNOPSIS
update

DESCRIPTION
Updateis a program that executes thgncprimitive every 30 seconds. This insures that the file
system is fairly up to date in case of a crash. This command should not be executed directly, but
should be executed out of the initialization shell command file. See sync(ll) for details.

SEE ALSO
sync(ll), init(VII)

BUGS

There is a system bug which, it is suspected, may be aggravated by this program. Until further
notice,updateshould not be run.

