
-

AR (I) 3/15/72 AR (I)

NAME
ar − archive and library maintainer

SYNOPSIS
ar key afile name ...

DESCRIPTION
Ar maintains groups of files combined into a single archive file. Its main use is to create and up-
date library files as used by the loader. It can be used, though, for any similar purpose.

Key is one character from the setdrtux, optionally concatenated withv. Afile is the archive file.
Thenamesare constituent files in the archive file. The meanings of thekeycharacters are:

d means delete the named files from the archive file.

r means replace the named files in the archive file. If the archive file does not exist,r will create
it. If the named files are not in the archive file, they are appended.

t prints a table of contents of the archive file. If no names are given, all files in the archive are
tabled. If names are given, only those files are tabled.

u is similar to r except that only those files that have been modified are replaced. If no names
are given, all files in the archive that have been modified will be replaced by the modified ver-
sion.

x will extract the named files. If no names are given, all files in the archive are extracted. In
neither case doesx alter the archive file.

v means verbose. Under the verbose option,ar gives a file-by-file description of the making of a
new archive file from the old archive and the constituent files. The following abbreviations are
used:

c copy
a append
d delete
r replace
x extract

FILES
/tmp/vtm? temporary

SEE ALSO
ld(I), archive(V)

BUGS
Option tv should be implemented as a table with more information.

There should be a way to specify the placement of a new file in an archive. Currently, it is
placed at the end.

Sincear has not been rewritten to deal properly with the new file system modes, extracted files
have mode 666.

- 1 -

-

AS (I) 1/15/73 AS (I)

NAME
as − assembler

SYNOPSIS
as [−] name ...

DESCRIPTION
As assembles the concatenation of the named files. If the optional first argument− is used, all
undefined symbols in the assembly are treated as global.

The output of the assembly is left on the filea.out. It is executable if no errors occurred during
the assembly, and if there were no unresolved external references.

FILES
/etc/as2 pass 2 of the assembler
/tmp/atm[1-4]? temporary
a.out object

SEE ALSO
ld(I), nm(I), db(I), a.out(V), ‘UNIX Assembler Manual’.

DIAGNOSTICS
When an input file cannot be read, its name followed by a question mark is typed and assembly
ceases. When syntactic or semantic errors occur, a single-character diagnostic is typed out to-
gether with the line number and the file name in which it occurred. Errors in pass 1 cause can-
cellation of pass 2. The possible errors are:

) Parentheses error
] Parentheses error
< String not terminated properly
* Indirection used illegally
. Illegal assignment to ‘.’
A Error in address
B Branch instruction is odd or too remote
E Error in expression
F Error in local (‘f’ or ‘b’) type symbol
G Garbage (unknown) character
I End of file inside an if
M Multiply defined symbol as label
O Word quantity assembled at odd address
P ‘.’ different in pass 1 and 2
R Relocation error
U Undefined symbol
X Syntax error

BUGS
Symbol table overflow is not checked.x errors can cause incorrect line numbers in following di-
agnostics.

- 1 -

-

BAS (I) 1/15/73 BAS (I)

NAME
bas − basic

SYNOPSIS
bas [file]

DESCRIPTION
Basis a dialect of Basic. If a file argument is provided, the file is used for input before the con-
sole is read.Basaccepts lines of the form:

statement
integer statement

Integer numbered statements (known as internal statements) are stored for later execution. They
are stored in sorted ascending order. Non-numbered statements are immediately executed. The
result of an immediate expression statement (that does not have ‘=’ as its highest operator) is
printed.

Statements have the following syntax:

expression
The expression is executed for its side effects (assignment or function call) or for printing
as described above.

done
Return to system level.

draw expression expression expression
A line is drawn on the Tektronix 611 display ‘/dev/vt0’ from the current display position
to the XY co-ordinates specified by the first two expressions. The scale is zero to one in
both X and Y directions. If the third expression is zero, the line is invisible. The current
display position is set to the end point.

display list
The list of expressions and strings is concatenated and displayed (i.e. printed) on the 611
starting at the current display position. The current display position is not changed.

erase
The 611 screen is erased.

for name= expression expression statement
for name= expression expression

...
next

The for statement repetitively executes a statement (first form) or a group of statements
(second form) under control of a named variable. The variable takes on the value of the
first expression, then is incremented by one on each loop, not to exceed the value of the
second expression.

gotoexpression
The expression is evaluated, truncated to an integer and execution goes to the correspond-
ing integer numbered statment. If executed from immediate mode, the internal statements
are compiled first.

if expression statement
The statement is executed if the expression evaluates to non-zero.

list [expression [expression]]
is used to print out the stored internal statements. If no arguments are given, all internal
statements are printed. If one argument is given, only that internal statement is listed. If
two arguments are given, all internal statements inclusively between the arguments are
printed.

print list
The list of expressions and strings are concatenated and printed. (A string is delimited by

- 1 -

-

BAS (I) 1/15/73 BAS (I)

" characters.)

return [expression]
The expression is evaluated and the result is passed back as the value of a function call. If
no expression is given, zero is returned.

run
The internal statements are compiled. The symbol table is re-initialized. The random
number generator is reset. Control is passed to the lowest numbered internal statement.

Expressions have the following syntax:

name
A name is used to specify a variable. Names are composed of a letter followed by letters
and digits. The first four characters of a name are significant.

number
A number is used to represent a constant value. A number is written in Fortran style, and
contains digits, an optional decimal point, and possibly a scale factor consisting of ane
followed by a possibly signed exponent.

(expression)
Parentheses are used to alter normal order of evaluation.

expression operator expression
Common functions of two arguments are abbreviated by the two arguments separated by
an operator denoting the function. A complete list of operators is given below.

expression([expression [, expression] ...])
Functions of an arbitrary number of arguments can be called by an expression followed by
the arguments in parentheses separated by commas. The expression evaluates to the line
number of the entry of the function in the internally stored statements. This causes the in-
ternal statements to be compiled. If the expression evaluates negative, a builtin function is
called. The list of builtin functions appears below.

name[expression [, expression] ...]
Each expression is truncated to an integer and used as a specifier for the name. The result
is syntactically identical to a name.a[1,2] is the same asa[1][2]. The truncated expres-
sions are restricted to values between 0 and 32767.

The following is the list of operators:

=
= is the assignment operator. The left operand must be a name or an array element. The
result is the right operand. Assignment binds right to left, all other operators bind left to
right.

& 
& (logical and) has result zero if either of its arguments are zero. It has result one if both
its arguments are non-zero. (logical or) has result zero if both of its arguments are zero.
It has result one if either of its arguments are non-zero.

< <= > >= == <>
The relational operators (< less than, <= less than or equal, > greater than, >= greater than
or equal, == equal to, <> not equal to) return one if their arguments are in the specified re-
lation. They return zero otherwise. Relational operators at the same level extend as fol-
lows: a>b>c is the same as a>b&b>c.

+ −
Add and subtract.

* /
Multiply and divide.

ˆ
Exponentiation.

- 2 -

-

BAS (I) 1/15/73 BAS (I)

The following is a list of builtin functions:

arg(i)
is the value of thei -th actual parameter on the current level of function call.

exp(x)
is the exponential function ofx.

log(x)
is the natural logarithm ofx.

sin(x)
is the sine ofx (radians).

cos(x)
is the cosine ofx (radians).

atn(x)
is the arctangent ofx . its value is between −π/2 and π/2.

rnd()
is a uniformly distributed random number between zero and one.

expr()
is the only form of program input. A line is read from the input and evaluated as an ex-
pression. The resultant value is returned.

int(x)
returnsx truncated to an integer.

FILES
/tmp/btm? temporary

DIAGNOSTICS
Syntax errors cause the incorrect line to be typed with an underscore where the parse failed. All
other diagnostics are self explanatory.

BUGS
Has been known to give core images. Needs a way tolist a program onto a file.

- 3 -

-

CAT (I) 1/15/73 CAT (I)

NAME
cat − concatenate and print

SYNOPSIS
cat file ...

DESCRIPTION
Cat reads each file in sequence and writes it on the standard output. Thus:

cat file

is about the easiest way to print a file. Also:

cat file1 file2 >file3

is about the easiest way to concatenate files.

If no input file is givencat reads from the standard input file.

If the argument− is encountered,cat reads from the standard input file.

SEE ALSO
pr(I), cp(I)

DIAGNOSTICS
none; if a file cannot be found it is ignored.

BUGS
cat x y >x andcat x y >y cause strange results.

- 1 -

-

CATSIM (I) 11/1/73 CATSIM (I)

NAME
catsim − phototypesetter simulator

SYNOPSIS
catsim

DESCRIPTION
Catsimwill interpret its standard input as codes for the phototypesetter (cat). The output ofcat-
sim is output to the display (vt).

About the only use ofcatsimis to save time and paper on the phototypesetter by the following
command:

troff −t files  catsim

FILES
/dev/vt0

SEE ALSO
troff(I), cat(IV), vt(IV)

BUGS
Point sizes are not correct. The vt character set is restricted to one font of ASCII.

- 1 -

-

CC (I) 3/15/72 CC (I)

NAME
cc − C compiler

SYNOPSIS
cc [−c] [−p] file ...

DESCRIPTION
Cc is the UNIX C compiler. It accepts three types of arguments:

Arguments whose names end with ‘.c’ are assumed to be C source programs; they are compiled,
and the object program is left on the file whose name is that of the source with ‘.o’ substituted
for ‘.c’.

Other arguments (except for−c) are assumed to be either loader flag arguments, or C-compatible
object programs, typically produced by an earliercc run, or perhaps libraries of C-compatible
routines. These programs, together with the results of any compilations specified, are loaded (in
the order given) to produce an executable program with namea.out.

The −c argument suppresses the loading phase, as does any syntax error in any of the routines
being compiled.

If the −p flag is used, only the macro prepass is run on all files whose name ends in.c. The ex-
panded source is left on the file whose name is that of the source with.i substituted for.c.

FILES
file.c input file
file.o object file
a.out loaded output
/tmp/ctm? temporary
/lib/c[01] compiler
/lib/crt0.o runtime startoff
/lib/libc.a builtin functions, etc.
/lib/liba.a system library

SEE ALSO
‘C reference manual’, cdb(I), ld(I) for other flag arguments.

BUGS

- 1 -

-

CDB (I) 8/15/73 CDB (I)

NAME
cdb − C debugger

SYNOPSIS
cdb [core [a.out]]

DESCRIPTION
Cdb is a debugging program for use with C programs. It is by no means completed, and this sec-
tion is essentially only a placeholder for the actual description.

Even the presentcdbhas one useful feature: the command

$

will give a stack trace of the core image of a terminated C program. The calls are listed in the
order made; the actual arguments to each routine are given in octal.

SEE ALSO
cc(I), db(I), C Reference Manual

BUGS
It has to be fixed to work with the new system.

- 1 -

-

CHDIR (I) 3/15/72 CHDIR (I)

NAME
chdir − change working directory

SYNOPSIS
chdir directory

DESCRIPTION
Directory becomes the new working directory. The process must have execute permission on
the directory. The process must have execute (search) permission indirectory.

Because a new process is created to execute each command,chdir would be ineffective if it were
written as a normal command. It is therefore recognized and executed by the Shell.

SEE ALSO
sh(I)

BUGS

- 1 -

-

CHMOD (I) 8/20/73 CHMOD (I)

NAME
chmod − change mode

SYNOPSIS
chmodoctal file ...

DESCRIPTION
The octal mode replaces the mode of each of the files. The mode is constructed from the OR of
the following modes:

4000 set user ID on execution
2000 set group ID on execution
0400 read by owner
0200 write by owner
0100 execute by owner
0070 read, write, execute by group
0007 read, write, execute by others

Only the owner of a file (or the super-user) may change its mode.

SEE ALSO
ls(I)

BUGS

- 1 -

-

CHOWN (I) 3/15/72 CHOWN (I)

NAME
chown − change owner

SYNOPSIS
chown owner file ...

DESCRIPTION
Ownerbecomes the new owner of the files. The owner may be either a decimal UID or a login
name found in the password file.

Only the owner of a file (or the super-user) is allowed to change the owner. Unless it is done by
the super-user or the real user ID of the new owner, the set-user-ID permission bit is turned off
as the owner of a file is changed.

FILES
/etc/passwd

BUGS

- 1 -

-

CMP (I) 1/15/73 CMP (I)

NAME
cmp − compare two files

SYNOPSIS
cmp file1 file2

DESCRIPTION
The two files are compared for identical contents. Discrepancies are noted by giving the offset
and the differing words, all in octal.

SEE ALSO
proof (I), comm (I)

BUGS
If the shorter of the two files is of odd length,cmpacts as if a null byte had been appended to it.
Theoffsetis only a single-precision number.

- 1 -

-

COMM (I) 8/21/73 COMM (I)

NAME
comm − print lines common to two files

SYNOPSIS
comm [− [123]] file1 file2 [file3]

DESCRIPTION
Commreadsfile1 and file2, which should be in sort, and produces a three column output: lines
only in file1; lines only infile2; and lines in both files.

If file3 is given, the output will be placed there; otherwise it will be written on the standard out-
put.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thuscomm −12 prints only the
lines common to the two files;comm −23 prints only lines in the first file but not in the second;
comm −123 is a no-op.

SEE ALSO
uniq(I), proof(I), cmp(I)

BUGS

- 1 -

-

CP (I) 1/24/73 CP (I)

NAME
cp − copy

SYNOPSIS
cp file1 file2

DESCRIPTION
The first file is copied onto the second. The mode and owner of the target file are preserved if it
already existed; the mode of the source file is used otherwise.

If file2 is a directory, then the target file is a file in that directory with the file-name offile1.

SEE ALSO
cat(I), pr(I), mv(I)

BUGS
Copying a file onto itself destroys its contents.

- 1 -

-

CREF (I) 2/5/73 CREF (I)

NAME
cref − make cross reference listing

SYNOPSIS
cref [−acilostux123] name ...

DESCRIPTION
Cref makes a cross reference listing of program files in assembler or C format. The files named
as arguments in the command line are searched for symbols in the appropriate syntax.

The output report is in four columns:

(1) (2) (3) (4)
symbol file see text as it appears in file

below

Cref uses either anignore file or anonly file. If the −i option is given, it will take the next avail-
able argument to be anignore file name; if the−o option is given, the next available argument
will be taken as anonly file name. Ignoreandonly files should be lists of symbols separated by
new lines. If anignore file is given, all the symbols in that file will be ignored in columns (1)
and (3) of the output. If anonly file is given, only symbols appearing in that file will appear in
column (1). Only one of the options−i or −o may be used. The default setting is−i. Assembler
predefined symbols or C keywords are ignored.

The−s option causes current symbols to be put in column 3. In the assembler, the current sym-
bol is the most recent name symbol; in C, the current function name. The−l option causes the
line number within the file to be put in column 3.

The−t option causes the next available argument to be used as the name of the intermediate tem-
porary file (instead of /tmp/crt??). The file is created and is not removed at the end of the pro-
cess.

Options:

a assembler format (default)
c C format input
i useignorefile (see above)
l put line number in col. 3 (instead of current symbol)
o useonly file (see above)
s current symbol in col. 3 (default)
t user supplied temoprary file
u print only symbols that occur exactly once
x print only C external symbols
1 sort output on column 1 (default)
2 sort output on column 2
3 sort output on column 3

FILES
/tmp/crt?? temporaries
/usr/lib/aign default assemblerignorefile
/usr/lib/cign default Cignorefile
/usr/bin/crpost post processor
/usr/bin/upost post processor for−u option
/bin/sort used to sort temporaries

SEE ALSO
as(I), cc(I), sort(I)

BUGS

- 1 -

-

DATE (I) 11/1/73 DATE (I)

NAME
date − print and set the date

SYNOPSIS
date [mmddhhmm[yy]]

DESCRIPTION
If no argument is given, the current date is printed to the second. If an argument is given, the
current date is set. The firstmmis the month number;dd is the day number in the month;hh is
the hour number (24 hour system); the secondmmis the minute number;yy is the last 2 digits of
the year number and is optional. For example:

date 10080045

sets the date to Oct 8, 12:45 AM. The current year is the default if no year is mentioned. The
system operates in GMT.Date takes care of the conversion to and from local standard and day-
light time.

BUGS

- 1 -

-

DB (I) 8/20/73 DB (I)

NAME
db − debug

SYNOPSIS
db [core [namelist]] [−]

DESCRIPTION
Unlike many debugging packages (including DEC’s ODT, on whichdb is loosely based),db is
not loaded as part of the core image which it is used to examine; instead it examines files. Typi-
cally, the file will be either a core image produced after a fault or the binary output of the assem-
bler. Core is the file being debugged; if omittedcore is assumed.Namelistis a file containing a
symbol table. If it is omitted, the symbol table is obtained from the file being debugged, or if not
there froma.out. If no appropriate name list file can be found,db can still be used but some of
its symbolic facilities become unavailable.

For the meaning of the optional third argument, see the last paragraph below.

The format for mostdb requests is an address followed by a one character command. Addresses
are expressions built up as follows:

1. A name has the value assigned to it when the input file was assembled. It may be relocat-
able or not depending on the use of the name during the assembly.

2. An octal number is an absolute quantity with the appropriate value.

3. A decimal number immediately followed by ‘.’ is an absolute quantity with the appropriate
value.

4. An octal number immediately followed byr is a relocatable quantity with the appropriate
value.

5. The symbol. indicates the current pointer ofdb. The current pointer is set by manydb re-
quests.

6. A * before an expression forms an expression whose value is the number in the word ad-
dressed by the first expression. A* alone is equivalent to ‘*. ’.

7. Expressions separated by+ or blank are expressions with value equal to the sum of the
components. At most one of the components may be relocatable.

8. Expressions separated by− form an expression with value equal to the difference to the
components. If the right component is relocatable, the left component must be relocatable.

9. Expressions are evaluated left to right.

Names for registers are built in:

r0 ... r5
sp
pc
fr0 ... fr5

These may be examined. Their values are deduced from the contents of the stack in a core image
file. They are meaningless in a file that is not a core image.

If no address is given for a command, the current address (also specified by ‘‘.’’) is assumed. In
general, ‘‘.’’ points to the last word or byte printed bydb.

There aredb commands for examining locations interpreted as numbers, machine instructions,
ASCII characters, and addresses. For numbers and characters, either bytes or words may be ex-
amined. The following commands are used to examine the specified file.

/ The addressed word is printed in octal.

\ The addressed byte is printed in octal.

" The addressed word is printed as two ASCII characters.

- 1 -

-

DB (I) 8/20/73 DB (I)

´ The addressed byte is printed as an ASCII character.

‘ The addressed word is printed in decimal.

? The addressed word is interpreted as a machine instruction and a symbolic form of the in-
struction, including symbolic addresses, is printed. Often, the result will appear exactly as
it was written in the source program.

& The addressed word is interpreted as a symbolic address and is printed as the name of the
symbol whose value is closest to the addressed word, possibly followed by a signed offset.

<nl>(i. e., the character ‘‘new line’’) This command advances the current location counter ‘‘.’’
and prints the resulting location in the mode last specified by one of the above requests.

ˆ This character decrements ‘‘.’’ and prints the resulting location in the mode last selected
one of the above requests. It is a converse to <nl>.

% Exit.

Odd addresses to word-oriented commands are rounded down. The incrementing and decre-
menting of ‘‘.’’ done by the<nl> andˆ requests is by one or two depending on whether the last
command was word or byte oriented.

The address portion of any of the above commands may be followed by a comma and then by an
expression. In this case that number of sequential words or bytes specified by the expression is
printed. ‘‘.’’ is advanced so that it points at the last thing printed.

There are two commands to interpret the value of expressions.

= When preceded by an expression, the value of the expression is typed in octal. When not
preceded by an expression, the value of ‘‘.’’ is indicated. This command does not change
the value of ‘‘.’’.

: An attempt is made to print the given expression as a symbolic address. If the expression is
relocatable, that symbol is found whose value is nearest that of the expression, and the sym-
bol is typed, followed by a sign and the appropriate offset. If the value of the expression is
absolute, a symbol with exactly the indicated value is sought and printed if found; if no
matching symbol is discovered, the octal value of the expression is given.

The following command may be used to patch the file being debugged.

! This command must be preceded by an expression. The value of the expression is stored at
the location addressed by the current value of ‘‘.’’. The opcodes do not appear in the sym-
bol table, so the user must assemble them by hand.

The following command is used after a fault has caused a core image file to be produced.

$ causes the fault type and the contents of the general registers and several other registers to
be printed both in octal and symbolic format. The values are as they were at the time of the
fault.

For some purposes, it is important to know how addresses typed by the user correspond with lo-
cations in the file being debugged. The mapping algorithm employed bydb is non-trivial for
two reasons: First, in ana.out file, there is a 20(8) byte header which will not appear when the
file is loaded into core for execution. Therefore, apparent location 0 should correspond with ac-
tual file offset 20. Second, addresses in core images do not correspond with the addresses used
by the program because in a core image there is a 512-byte header containing the system’s per-
process data for the dumped process, and also because the stack is stored contiguously with the
text and data part of the core image rather than at the highest possible locations.Db obeys the
following rules:

If exactly one argument is given, and if it appears to be ana.out file, the 20-byte header is
skipped during addressing, i.e., 20 is added to all addresses typed. As a consequence, the header
can be examined beginning at location −20.

If exactly one argument is given and if the file does not appear to be ana.out file, no mapping is
done.

- 2 -

-

DB (I) 8/20/73 DB (I)

If zero or two arguments are given, the mapping appropriate to a core image file is employed.
This means that locations above the program break and below the stack effectively do not exist
(and are not, in fact, recorded in the core file). Locations above the user’s stack pointer are
mapped, in looking at the core file, to the place where they are really stored. The per-process
data kept by the system, which is stored in the first 512(10) bytes of the core file, cannot cur-
rently be examined (except by$).

If one wants to examine a file which has an associated name list, but is not a core image file, the
last argument ‘‘−’’ can be used (actually the only purpose of the last argument is to make the
number of arguments not equal to two). This feature is used most frequently in examining the
memory file /dev/mem.

SEE ALSO
as(I), core(V), a.out(V), od(I)

DIAGNOSTICS
‘‘File not found’’ if the first argument cannot be read; otherwise ‘‘?’’.

BUGS
There should be some way to examine the registers and other per-process data in a core image;
also there should be some way of specifying double-precision addresses. It does not know yet
about shared text segments.

- 3 -

-

DC (I) 1/15/73 DC (I)

NAME
dc − desk calculator

SYNOPSIS
dc [file]

DESCRIPTION
Dc is an arbitrary precision integer arithmetic package. The overall structure ofdc is a stacking
(reverse Polish) calculator. The following constructions are recognized by the calculator:

number The value of the number is pushed on the stack. A number is an unbroken string of
the digits 0-9. It may be preceded by an underscore _ to input a negative number.

+ − * / % ˆ The top two values on the stack are added (+), subtracted (−), multiplied (*), divided
(/), remaindered (%), or exponentiated (ˆ). The two entries are popped off the stack;
the result is pushed on the stack in their place.

sx The top of the stack is popped and stored into a register namedx, wherex may be
any character.

lx The value in registerx is pushed on the stack. The registerx is not altered. All reg-
isters start with zero value.

d The top value on the stack is pushed on the stack. Thus the top value is duplicated.

p The top value on the stack is printed. The top value remains unchanged.

f All values on the stack and in registers are printed.

q exits the program. If executing a string, the nesting level is popped by two.

x treats the top element of the stack as a character string and executes it as a string of
dc commands.

[...] puts the bracketed ascii string onto the top of the stack.

<x =x >x The top two elements of the stack are popped and compared. Registerx is executed
if they obey the stated relation.

v replaces the top element on the stack by its square root.

! interprets the rest of the line as a UNIX command.

c All values on the stack are popped.

i The top value on the stack is popped and used as the number radix for further input.

o The top value on the stack is popped and used as the number radix for further out-
put.

z The stack level is pushed onto the stack.

? A line of input is taken from the input source (usually the console) and executed.

new-line ignored except as the name of a register or to end the response to a?.

space ignored except as the name of a register or to terminate a number.

If a file name is given, input is taken from that file until end-of-file, then input is taken from the
console. An example which prints the first ten values of n! is

[la1+dsa*pla10>x]sx
0sa1
lxx

FILES
/etc/msh to implement ‘!’

- 1 -

-

DC (I) 1/15/73 DC (I)

DIAGNOSTICS
(x) ? for unrecognized character x.
(x) ? for not enough elements on the stack to do what was asked by command x.
‘Out of space’ when the free list is exhausted (too many digits).
‘Out of headers’ for too many numbers being kept around.
‘Out of pushdown’ for too many items on the stack.
‘Nesting Depth’ for too many levels of nested execution.

BUGS

- 2 -

-

DSW (I) 3/15/72 DSW (I)

NAME
dsw − delete interactively

SYNOPSIS
dsw [directory]

DESCRIPTION
For each file in the given directory (‘.’ if not specified)dswtypes its name. Ify is typed, the file
is deleted; ifx, dswexits; if new-line, the file is not deleted; if anything else,dswasks again.

SEE ALSO
rm(I)

BUGS
The namedswis a carryover from the ancient past. Its etymology is amusing.

- 1 -

-

DU (I) 1/20/73 DU (I)

NAME
du − summarize disk usage

SYNOPSIS
du [−s] [−a] [name ...]

DESCRIPTION
Du gives the number of blocks contained in all files and (recursively) directories within each
specified directory or filename. If nameis missing, ‘.’ is used.

The optional argument−s causes only the grand total to be given. The optional argument−a
causes an entry to be generated for each file. Absence of either causes an entry to be generated
for each directory only.

A file which has two links to it is only counted once.

BUGS
Non-directories given as arguments (not under−a option) are not listed.

Removable file systems do not work correctly since i-numbers may be repeated while the corre-
sponding files are distinct.Du should maintain an i-number list per root directory encountered.

- 1 -

-

ECHO (I) 3/15/72 ECHO (I)

NAME
echo − echo arguments

SYNOPSIS
echo[arg ...]

DESCRIPTION
Echowrites all its arguments in order as a line on the standard output file. It is mainly useful for
producing diagnostics in command files.

BUGS
Echowith no arguments does not print a blank line.

- 1 -

-

ED (I) 1/15/73 ED (I)

NAME
ed − editor

SYNOPSIS
ed [−] [name]

DESCRIPTION
Ed is the standard text editor.

If a nameargument is given,edsimulates ane command (see below) on the named file; that is
to say, the file is read intoed’s buffer so that it can be edited. The optional− simulates anos
command (see below) which suppresses the printing of characters counts bye, r, andw com-
mands.

Ed operates on a copy of any file it is editing; changes made in the copy have no effect on the
file until a w (write) command is given. The copy of the text being edited resides in a temporary
file called thebuffer. There is only one buffer.

Commands toedhave a simple and regular structure: zero or moreaddressesfollowed by a sin-
gle charactercommand,possibly followed by parameters to the command. These addresses
specify one or more lines in the buffer. Every command which requires addresses has default
addresses, so that the addresses can often be omitted.

In general, only one command may appear on a line. Certain commands allow the input of text.
This text is placed in the appropriate place in the buffer. Whileed is accepting text, it is said to
be in input mode.In this mode, no commands are recognized; all input is merely collected. In-
put mode is left by typing a period ‘.’ alone at the beginning of a line.

Edsupports a limited form ofregular expressionnotation. A regular expression is an expression
which specifies a set of strings of characters. A member of this set of strings is said to be
matchedby the regular expression. The regular expressions allowed byed are constructed as
follows:

1. An ordinary character (not one of those discussed below) is a regular expression and
matches that character.

2. A circumflex ‘ˆ’ at the beginning of a regular expression matches the null character at the
beginning of a line.

3. A currency symbol ‘$’ at the end of a regular expression matches the null character at the
end of a line.

4. A period ‘.’ matches any character but a new-line character.

5. A regular expression followed by an asterisk ‘*’ matches any number of adjacent occur-
rences (including zero) of the regular expression it follows.

6. A string of characters enclosed in square brackets ‘[]’ matches any character in the string
but no others. If, however, the first character of the string is a circumflex ‘ˆ’ the regular
expression matches any character but new-line and the characters in the string.

7. The concatenation of regular expressions is a regular expression which matches the con-
catenation of the strings matched by the components of the regular expression.

8. The null regular expression standing alone is equivalent to the last regular expression en-
countered.

Regular expressions are used in addresses to specify lines and in one command (sees below) to
specify a portion of a line which is to be replaced.

If it is desired to use one of the regular expression metacharacters as an ordinary character, that
character may be preceded by ‘\’. This also applies to the character bounding the regular expres-
sion (often ‘/’) and to ‘\’ itself.

Addresses are constructed as follows. To understand addressing ined it is necessary to know
that at any time there is acurrent line. Generally speaking, the current line is the last line af-

- 1 -

-

ED (I) 1/15/73 ED (I)

fected by a command; however, the exact effect on the current line by each command is dis-
cussed under the description of the command.

1. The character ‘.’ addresses the current line.

2. The character ‘ˆ’ addresses the line immediately before the current line.

3. The character ‘$’ addresses the last line of the buffer.

4. A decimal numbern addresses then-th line of the buffer.

5. ‘´x’ addresses the line associated (marked) with the mark name characterx which must
be a printable character. Lines are marked with thek command described below.

6. A regular expression enclosed in slashes ‘/’ addresses the first line found by searching to-
ward the end of the buffer and stopping at the first line containing a string matching the
regular expression. If necessary the search wraps around to the beginning of the buffer.

7. A regular expression enclosed in queries ‘?’ addresses the first line found by searching
toward the beginning of the buffer and stopping at the first line found containing a string
matching the regular expression. If necessary the search wraps around to the end of the
buffer.

8. An address followed by a plus sign ‘+’ or a minus sign ‘−’ followed by a decimal number
specifies that address plus (resp. minus) the indicated number of lines. The plus sign
may be omitted.

Commands may require zero, one, or two addresses. Commands which require no addresses re-
gard the presence of an address as an error. Commands which accept one or two addresses as-
sume default addresses when insufficient are given. If more addresses are given than such a
command requires, the last one or two (depending on what is accepted) are used.

Addresses are separated from each other typically by a comma ‘,’. They may also be separated
by a semicolon ‘;’. In this case the current line ‘.’ is set to the previous address before the next
address is interpreted. This feature can be used to determine the starting line for forward and
backward searches (‘/’, ‘?’) . The second address of any two-address sequence must correspond
to a line following the line corresponding to the first address.

In the following list of ed commands, the default addresses are shown in parentheses. The
parentheses are not part of the address, but are used to show that the given addresses are the de-
fault.

As mentioned, it is generally illegal for more than one command to appear on a line. However,
any command may be suffixed by ‘p’ (for ‘print’) . In that case, the current line is printed after
the command is complete.

(.) a
<text>
.

The append command reads the given text and appends it after the addressed line.
‘ .’ is left on the last line input, if there were any, otherwise at the addressed line.
Address ‘0’ is legal for this command; text is placed at the beginning of the buffer.

(. , .) c
<text>
.

The change command deletes the addressed lines, then accepts input text which re-
places these lines. ‘.’ is left at the last line input; if there were none, it is left at the
first line not changed.

(. , .) d
The delete command deletes the addressed lines from the buffer. The line originally
after the last line deleted becomes the current line; if the lines deleted were origi-
nally at the end, the new last line becomes the current line.

- 2 -

-

ED (I) 1/15/73 ED (I)

e filename
The edit command causes the entire contents of the buffer to be deleted, and then the
named file to be read in. ‘.’ is set to the last line of the buffer. The number of char-
acters read is typed. ‘filename’ is remembered for possible use as a default file
name in a subsequentr or w command.

f filename
The filename command prints the currently remembered file name. If ‘filename’ is
given, the currently remembered file name is changed to ‘filename’.

(1,$) g/regular expression/command list
In the global command, the first step is to mark every line which matches the given
regular expression. Then for every such line, the given command list is executed
with ‘ .’ initially set to that line. A single command or the first of multiple com-
mands appears on the same line with the global command. All lines of a multi-line
list except the last line must be ended with ‘\’.A, i, andc commands and associated
input are permitted; the ‘.’ terminating input mode may be omitted if it would be on
the last line of the command list. The (global) commands,g, andv, are not permit-
ted in the command list.

(.) i
<text>
.

This command inserts the given text before the addressed line. ‘.’ is left at the last
line input; if there were none, at the addressed line. This command differs from the
a command only in the placement of the text.

(.) kx
The mark command associates or marks the addressed line with the single character
mark namex. The ten most recent mark names are remembered. The current mark
names may be printed with then command.

(. , .) ma
The move command will reposition the addressed lines after the line addressed bya.
The last of the moved lines becomes the current line.

n
Then command will print the current mark names.

os
ov

After oscharacter counts printed bye, r, andw are suppressed.Ov turns them back
on.

(. , .) p
The print command prints the addressed lines. ‘.’ is left at the last line printed. The
p commandmaybe placed on the same line after any command.

q
The quit command causesedto exit. No automatic write of a file is done.

($) r filename
The read command reads in the given file after the addressed line. If no file name is
given, the remembered file name, if any, is used (seee and f commands) . The re-
membered file name is not changed unless ‘filename’ is the very first file name
mentioned. Address ‘0’ is legal forr and causes the file to be read at the beginning
of the buffer. If the read is successful, the number of characters read is typed. ‘.’ is
left at the last line read in from the file.

(. , .) s/regular expression/replacement/ or,
(. , .) s/regular expression/replacement/g

The substitute command searches each addressed line for an occurrence of the speci-
fied regular expression. On each line in which a match is found, all matched strings

- 3 -

-

ED (I) 1/15/73 ED (I)

are replaced by the replacement specified, if the global replacement indicator ‘g’ ap-
pears after the command. If the global indicator does not appear, only the first oc-
currence of the matched string is replaced. It is an error for the substitution to fail
on all addressed lines. Any character other than space or new-line may be used in-
stead of ‘/’ to delimit the regular expression and the replacement. ‘.’ is left at the
last line substituted.

An ampersand ‘&’ appearing in the replacement is replaced by the regular expres-
sion that was matched. The special meaning of ‘&’ in this context may be sup-
pressed by preceding it by ‘\’.

(1,$) v/regular expression/command list
This command is the same as the global command except that the command list is
executed with ‘.’ initially set to every lineexceptthose matching the regular expres-
sion.

(1,$) w filename
The write command writes the addressed lines onto the given file. If the file does
not exist, it is created mode 666 (readable and writeable by everyone) . The remem-
bered file name isnot changed unless ‘filename’ is the very first file name men-
tioned. If no file name is given, the remembered file name, if any, is used (seeeand
f commands) . ‘.’ is unchanged. If the command is successful, the number of char-
acters written is typed.

($) =
The line number of the addressed line is typed. ‘.’ is unchanged by this command.

!UNIX command
The remainder of the line after the ‘!’ is sent to UNIX to be interpreted as a com-
mand. ‘.’ is unchanged. The entire shell syntax is not recognized. See msh(VII) for
the restrictions.

(.+1) <newline>
An address alone on a line causes the addressed line to be printed. A blank line
alone is equivalent to ‘.+1p’; it is useful for stepping through text.

If an interrupt signal (ASCII DEL) is sent,edwill print a ‘?’ and return to its command level.

If invoked with the command name ‘−’, (see init(VII)) edwill sign on with the message ‘Edit-
ing system’ and print ‘*’ as the command level prompt character.

Ed has size limitations on the maximum number of lines that can be edited, on the maximum
number of characters in a line, in a global’s command list, in a remembered file name, and in the
size of the temporary file. The current sizes are: 4000 lines per file, 512 characters per line, 256
characters per global command list, 64 characters per file name, and 64K characters in the tem-
porary file (see BUGS) .

FILES
/tmp/etm?, temporary
/etc/msh, to implement the ‘!’ command.

DIAGNOSTICS
‘?’ for errors in commands; ‘TMP’ for temporary file overflow.

BUGS
The temporary file can grow to no more than 64K bytes.

- 4 -

-

EXIT (I) 3/15/72 EXIT (I)

NAME
exit − terminate command file

SYNOPSIS
exit

DESCRIPTION
Exit performs aseekto the end of its standard input file. Thus, if it is invoked inside a file of
commands, upon return fromexit the shell will discover an end-of-file and terminate.

SEE ALSO
if(I), goto(I), sh(I)

BUGS

- 1 -

-

FC (I) 8/20/73 FC (I)

NAME
fc − fortran compiler

SYNOPSIS
fc [−c] sfile1.f ... ofile1 ...

DESCRIPTION
Fc is the UNIX Fortran compiler. It accepts three types of arguments:

Arguments whose names end with ‘.f’ are assumed to be Fortran source program units; they are
compiled, and the object program is left on the file sfile1.o (i.e. the file whose name is that of
the source with ‘.o’ substituted for ‘.f’).

Other arguments (except for−c) are assumed to be either loader flags, or object programs, typi-
cally produced by an earlierfc run, or perhaps libraries of Fortran-compatible routines. These
programs, together with the results of any compilations specified, are loaded (in the order given)
to produce an executable program with namea.out.

The −c argument suppresses the loading phase, as does any syntax error in any of the routines
being compiled.

The following is a list of differences betweenfc and ANSI standard Fortran (also see the BUGS
section):

1. Arbitrary combination of types is allowed in expressions. Not all combinations are ex-
pected to be supported at runtime. All of the normal conversions involving integer, real,
double precision and complex are allowed.

2. DEC’simplicit statement is recognized. E.g.:implicit integer /i −n/

3. The types doublecomplex, logical*1, integer*1, integer*2 and real*8 (double precision) are
supported.

4. & as the first character of a line signals a continuation card.

5. c as the first character of a line signals a comment.

6. All keywords are recognized in lower case.

7. The notion of ‘column 7’ is not implemented.

8. G-format input is free form− leading blanks are ignored, the first blank after the start of the
number terminates the field.

9. A comma in any numeric or logical input field terminates the field.

10. There is no carriage control on output.

11. A sequence ofn characters in double quotes ‘"’ is equivalent ton h followed by those char-
acters.

12. Indata statements, a hollerith string may initialize an array or a sequence of array elements.

13. The number of storage units requested by a binaryread must be identical to the number
contained in the record being read.

In I/O statements, only unit numbers 0-19 are supported. Unit numbern refers to file fortnn;
(e.g. unit 9 is file ‘fort09’). For input, the file must exist; for output, it will be created. Unit 5 is
permanently associated with the standard input file; unit 6 with the standard output file. Also see
setfil (III) for a way to associate unit numbers with named files.

FILES
file.f input file
a.out loaded output
f.tmp[123] temporary (deleted)
/usr/fort/fc1 compiler proper
/lib/fr0.o runtime startoff
/lib/filib.a interpreter library

- 1 -

-

FC (I) 8/20/73 FC (I)

/lib/libf.a builtin functions, etc.
/lib/liba.a system library

SEE ALSO
ANSI standard, ld(I) for loader flags
Also see the writeups on the precious few non-standard Fortran subroutines, ierror and setfil (III)

DIAGNOSTICS
Compile-time diagnostics are given in English, accompanied if possible with the offending line
number and source line with an underscore where the error occurred. Runtime diagnostics are
given by number as follows:

1 invalid log argument
2 bad arg count to amod
3 bad arg count to atan2
4 excessive argument to cabs
5 exp too large in cexp
6 bad arg count to cmplx
7 bad arg count to dim
8 excessive argument to exp
9 bad arg count to idim
10 bad arg count to isign
11 bad arg count to mod
12 bad arg count to sign
13 illegal argument to sqrt
14 assigned/computed goto out of range
15 subscript out of range
16 real**real overflow
17 (negative real)**real

100 illegal I/O unit number
101 inconsistent use of I/O unit
102 cannot create output file
103 cannot open input file
104 EOF on input file
105 illegal character in format
106 format does not begin with (
107 no conversion in format but non-empty list
108 excessive parenthesis depth in format
109 illegal format specification
110 illegal character in input field
111 end of format in hollerith specification
999 unimplemented input conversion
Any of these errors can be caught by the program; seeierror (III).

BUGS
The following is a list of those features not yet implemented:

arithmetic statement functions
scale factors on input

Backspacestatement.

- 2 -

-

FED (I) 1/15/73 FED (I)

NAME
fed − edit associative memory for form letter

SYNOPSIS
fed

DESCRIPTION
Fed is used to edit a form letter associative memory file,form.m, which consists of named
strings. Commands consist of single letters followed by a list of string names separated by a sin-
gle space and ending with a new line. The conventions of the Shell with respect to ‘*’ and ‘?’
hold for all commands butm. The commands are:

ename ...
Fed writes the string whose name isnameonto a temporary file and executesed. On exit
from theed the temporary file is copied back into the associative memory. Each argument is
operated on separately. Be sure to give aned w command (without a filename) to rewrite
fed’stemporary file before quitting out ofed.

d [name ...]
deletes a string and its name from the memory. When called with no argumentsd operates
in a verbose mode typing each string name and deleting only if ay is typed. Aq response re-
turns tofed’s command level. Any other response does nothing.

m name1 name2 ...
(move) changes the name of name1 to name2 and removes previous string name2 if one ex-
ists. Several pairs of arguments may be given. Literal strings are expected for the names.

n [name ...]
(names) lists the string names in the memory. If called with the optional arguments, it just
lists those requested.

p name ...
prints the contents of the strings with names given by the arguments.

q
returns to the system.

c [p] [f]
checks the associative memory file for consistency and reports the number of free headers
and blocks. The optional arguments do the following:

p causes any unaccounted-for string to be printed.

f fixes broken memories by adding unaccounted-for headers to free storage and removing
references to released headers from associative memory.

FILES
/tmp/ftmp? temporary
form.m associative memory

SEE ALSO
form(I), ed(I), sh(I)

WARNING
It is legal but unwise to have string names with blanks, ‘:’ or ‘?’ in them.

BUGS

- 1 -

-

FILE (I) 11/1/73 FILE (I)

NAME
file − determine format of file

SYNOPSIS
file files

DESCRIPTION
File will examine each of its arguments and give a guess as to the contents of the file. It is the
only program that will give device numbers of special files.

BUGS
If the file is not instantly recognized, its type is given as ‘unknown’. There should be some
heuristic to recognize source file ‘signatures’ in each of the standard languages.

- 1 -

-

FORM (I) 6/15/72 FORM (I)

NAME
form − form letter generator

SYNOPSIS
form proto arg ...

DESCRIPTION
Form generates a form letter from a prototype letter, an associative memory, arguments and in a
special case, the current date.

If form is invoked with theproto argumentx, the associative memory is searched for an entry
with namex and the contents filed under that name are used as the prototype. If the search fails,
the message ‘[x]:’ is typed on the console and whatever text is typed in from the console, termi-
nated by two new lines, is used as the prototype. If the prototype argument is missing, ‘{letter}’
is assumed.

Basically,form is a copy process from the prototype to the output file. If an element of the form
[n] (wheren is a digit from 1 to 9) is encountered, then-th argument is inserted in its place, and
that argument is then rescanned. If [0] is encountered, the current date is inserted. If the desired
argument has not been given, a message of the form ‘[n]:’ is typed. The response typed in then
is used for that argument.

If an element of the form [name] or {name} is encountered, thenameis looked up in the associa-
tive memory. If it is found, the contents of the memory under thisnamereplaces the original el-
ement (again rescanned). If thenameis not found, a message of the form ‘[name]:’ is typed.
The response typed in is used for that element. The response is entered in the memory under the
name if the name is enclosed in []. The response is not entered in the memory but is remem-
bered for the duration of the letter if the name is enclosed in {}.

In both of the above cases, the response is typed in by entering arbitrary text terminated by two
new lines. Only the first of the two new lines is passed with the text.

If one of the special characters [{]}\ is preceded by a \, it loses its special character.

If a file named ‘forma’ already exists in the user’s directory, ‘formb’ is used as the output file
and so forth to ‘formz’.

The file ‘form.m’ is created if none exists. Because form.m is operated on by the disc allocator,
it should only be changed by usingfed,the form letter editor, orform.

FILES
form.m associative memory
form? output file (read only)

SEE ALSO
fed(I), type(I), roff(I)

BUGS
An unbalanced] or } acts as an end of file but may add a few strange entries to the associative
memory.

- 1 -

-

GOTO (I) 3/15/72 GOTO (I)

NAME
goto − command transfer

SYNOPSIS
goto label

DESCRIPTION
Goto is only allowed when the Shell is taking commands from a file. The file is searched from
the beginning for a line beginning with ‘:’ followed by one or more spaces followed by thelabel.
If such a line is found, thegoto command returns. Since the read pointer in the command file
points to the line after the label, the effect is to cause the Shell to transfer to the labelled line.

‘:’ is a do-nothing command that is ignored by the Shell and only serves to place a label.

SEE ALSO
sh(I)

BUGS

- 1 -

-

GREP (I) 3/3/73 GREP (I)

NAME
grep − search a file for a pattern

SYNOPSIS
grep [−v] [−l] [−n] expression [input] [output]

DESCRIPTION
Grep will search the input file (standard input default) for each line containing the regular ex-
pression. Normally, each line found is printed on the output file (standard output default). If the
−v flag is used, all lines but those matching are printed. If the−l flag is used, each line printed is
preceded by its line number. If the−n flag is used, no lines are printed, but the number of lines
that would normally have been printed is reported. If interrupt is hit, the number of lines
searched is printed.

For a complete description of the regular expression, see ed(I). Care should be taken when using
the characters $ * [̂ () and \ in the regular expression as they are also meaningful to the shell.
(Precede them by \)

SEE ALSO
ed(I), sh(I)

BUGS
Lines are limited to 512 characters; longer lines are truncated.

- 1 -

-

IF (I) 3/15/72 IF (I)

NAME
if − conditional command

SYNOPSIS
if expr command [arg ...]

DESCRIPTION
If evaluates the expressionexpr, and if its value is true, executes the givencommandwith the
given arguments.

The following primitives are used to construct theexpr:

−r file true if the file exists and is readable.

−w file true if the file exists and is writable

s1 = s2 true if the stringss1ands2are equal.

s1 != s2 true if the stringss1ands2are not equal.

These primaries may be combined with the following operators:

! unary negation operator

−a binaryandoperator

−o binaryor operator

(expr) parentheses for grouping.

−a has higher precedence than−o. Notice that all the operators and flags are separate arguments
to if and hence must be surrounded by spaces. Notice also that parentheses are meaningful to the
Shell and must be escaped.

SEE ALSO
sh(I)

BUGS

- 1 -

-

KILL (I) 8/18/73 KILL (I)

NAME
kill − do in an unwanted process

SYNOPSIS
kill processid ...

DESCRIPTION
Kills the specified processes. The processid of each asynchronous process started with ‘&’ is re-
ported by the shell. Processid’s can also be found by usingps(I).

The killed process must have been started from the same typewriter as the current user, unless he
is the superuser.

SEE ALSO
ps(I), sh(I)

BUGS
Clearly people should only be allowed to kill processes owned by them, and having the same
typewriter is neither necessary nor sufficient.

- 1 -

-

LD (I) 8/16/73 LD (I)

NAME
ld − link editor

SYNOPSIS
ld [−sulxrnd] name ...

DESCRIPTION
Ld combines several object programs into one; resolves external references; and searches li-
braries. In the simplest case the names of several object programs are given, andd combines
them, producing an object module which can be either executed or become the input for a further
ld run. (In the latter case, the−r option must be given to preserve the relocation bits.) The out-
put of ld is left ona.out. This file is executable only if no errors occurred during the load.

The argument routines are concatenated in the order specified. The entry point of the output is
the beginning of the first routine.

If any argument is a library, it is searched exactly once at the point it is encountered in the argu-
ment list. Only those routines defining an unresolved external reference are loaded. If a routine
from a library references another routine in the library, the referenced routine must appear after
the referencing routine in the library. Thus the order of programs within libraries is important.

Ld understands several flag arguments which are written preceded by a ‘−’. Except for−l, they
should appear before the file names.

−s ‘squash’ the output, that is, remove the symbol table and relocation bits to save space (but
impair the usefulness of the debugger). This information can also be removed bystrip.

−u take the following argument as a symbol and enter it as undefined in the symbol table. This
is useful for loading wholly from a library, since initially the symbol table is empty and an
unresolved reference is needed to force the loading of the first routine.

−l This option is an abbreviation for a library name.−l alone stands for ‘/lib/liba.a’, which is
the standard system library for assembly language programs.−lx stands for ‘/lib/libx.a’
wherex is any character. There are libraries for Fortran (x = f), and C (x = c). A library is
searched when its name is encountered, so the placement of a−l is significant.

−x do not preserve local (non-.globl) symbols in the output symbol table; only enter external
symbols. This option saves some space in the output file.

−r generate relocation bits in the output file so that it can be the subject of anotherld run. This
flag also prevents final definitions from being given to common symbols.

−d force definition of common storage even if the−r flag is present (used for reloc (VIII)).

−n Arrange that when the output file is executed, the text portion will be read-only and shared
among all users executing the file. This involves moving the data areas up the the first pos-
sible 4K word boundary following the end of the text.

FILES
/lib/lib?.a libraries
a.out output file

SEE ALSO
as(I), ar(I)

BUGS

- 1 -

-

LN (I) 3/15/72 LN (I)

NAME
ln − make a link

SYNOPSIS
ln name1 [name2]

DESCRIPTION
A link is a directory entry referring to a file; the same file (together with its size, all its protection
information, etc) may have several links to it. There is no way to distinguish a link to a file from
its original directory entry; any changes in the file are effective independently of the name by
which the file is known.

Ln creates a link to an existing filename1. If name2is given, the link has that name; otherwise
it is placed in the current directory and its name is the last component ofname1.

It is forbidden to link to a directory or to link across file systems.

SEE ALSO
rm(I)

BUGS
There is nothing particularly wrong withln, but tp doesn’t understand about links and makes one
copy for each name by which a file is known; thus if the tape is extracted several copies are re-
stored and the information that links were involved is lost.

- 1 -

-

LOGIN (I) 3/15/72 LOGIN (I)

NAME
login − sign onto UNIX

SYNOPSIS
login [username]

DESCRIPTION
The login command is used when a user initially signs onto UNIX, or it may be used at any time
to change from one user to another. The latter case is the one summarized above and described
here. See ‘How to Get Started’ for how to dial up initially.

If login is invoked without an argument, it will ask for a user name, and, if appropriate, a pass-
word. Echoing is turned off (if possible) during the typing of the password, so it will not appear
on the written record of the session.

After a successful login, accounting files are updated and the user is informed of the existence of
mailboxand message-of-the-day files.

Login is recognized by the Shell and executed directly (without forking).

FILES
/tmp/utmp accounting
/tmp/wtmp accounting
mailbox mail
/etc/motd message-of-the-day
/etc/passwd password file

SEE ALSO
init(VII), getty(VII), mail(I)

DIAGNOSTICS
‘login incorrect,’ if the name or the password is bad. ‘No Shell,’, ‘cannot open password file,’
‘no directory’: consult a UNIX programming councilor.

BUGS
If the first login is unsuccessful, it tends to go into a state where it won’t accept a correct login.
Hit EOT and try again.

- 1 -

-

LS (I) 8/20/73 LS (I)

NAME
ls − list contents of directory

SYNOPSIS
ls [−ltasdru] name ...

DESCRIPTION
For each directory argument,ls lists the contents of the directory; for each file argument,ls re-
peats its name and any other information requested. The output is sorted alphabetically by de-
fault. When no argument is given, the current directory is listed. When several arguments are
given, the arguments are first sorted appropriately, but file arguments appear before directories
and their contents. There are several options:

−l list in long format, giving mode, number of links, owner, size in bytes, and time of last
modification for each file. (See below.)

−t sort by time modified (latest first) instead of by name, as is normal

−a list all entries; usually those beginning with ‘.’ are suppressed

−s give size in blocks for each entry

−d if argument is a directory, list only its name, not its contents (mostly used with−l to get sta-
tus on directory)

−r reverse the order of sort to get reverse alphabetic or oldest first as appropriate

−u use time of last access instead of last modification for sorting (−t) or printing (−l)

The mode printed under the−l option contains 10 characters which are interpreted as follows:
the first character is

d if the entry is a directory;
b if the entry is a block-type special file;
c if the entry is a character-type special file;
− if the entry is a plain file.

The next 9 characters are interpreted as three sets of three bits each. The first set refers to owner
permissions; the next to permissions to others in the same user-group; and the last to all others.
Within each set the three characters indicate permission respectively to read, to write, or to exe-
cute the file as a program. For a directory, ‘execute’ permission is interpreted to mean permis-
sion to search the directory for a specified file. The permissions are indicated as follows:

r if the file is readable
w if the file is writable
x if the file is executable
− if the indicated permission is not granted

Finally, the group-execute permission character is given ass if the file has set-group-ID mode;
likewise the user-execute permission character is given ass if the file has set-user-ID mode.

FILES
/etc/passwd to get user ID’s forls −l.

BUGS

- 1 -

-

MAIL (I) 10/25/72 MAIL (I)

NAME
mail − send mail to another user

SYNOPSIS
mail [−yn]
mail letter person ...
mail person

DESCRIPTION
Mail without an argument searches for a file calledmailbox,prints it if present, and asks if it
should be saved. If the answer isy, the mail is renamedmbox,otherwise it is deleted.Mail with
a −y or −n argument works the same way, except that the answer to the question is supplied by
the argument.

When followed by the names of a letter and one or more people, the letter is appended to each
person’smailbox. When aperson is specified without aletter, the letter is taken from the
sender’s standard input up to an EOT. Each letter is preceded by the sender’s name and a post-
mark.

A personis either a user name recognized bylogin, in which case the mail is sent to the default
working directory of that user, or the path name of a directory, in which casemailboxin that di-
rectory is used.

When a user logs in he is informed of the presence of mail.

FILES
/etc/passwd to identify sender and locate persons
mailbox input mail
mbox saved mail

SEE ALSO
login(I)

BUGS
The mail should be prepended rather than appended to the mailbox. The old mbox should not be
destroyed when new mail is saved.

- 1 -

-

MAN (I) 8/20/73 MAN (I)

NAME
man − run off section of UNIX manual

SYNOPSIS
man [section] [title ...]

DESCRIPTION
Man is a shell command file that will locate and run off one or more sections of this manual.
Sectionis the section number of the manual, as an Arabic not Roman numeral, and is optional.
Title is one or more section names; these names bear a generally simple relation to the page cap-
tions in the manual. If thesectionis missing,1 is assumed. For example,

man man

would reproduce this page.

FILES
/usr/man/man?/*

BUGS
The manual is supposed to be reproducible either on the phototypesetter or on a typewriter.
However, on a typewriter some information is necessarily lost.

- 1 -

-

MERGE (I) 11/7/73 MERGE (I)

NAME
merge − merge several files

SYNOPSIS
merge[−anr] [−n] [+n] [name ...]

DESCRIPTION
Mergemerges several files together and writes the result on the standard output. If a file is des-
ignated by an unadorned ‘−’, the standard input is understood.

The merge is line-by-line in increasing ASCII collating sequence, except that upper-case letters
are considered the same as the corresponding lower-case letters.

Mergeunderstands several flag arguments.

−a Use strict ASCII collating sequence.

−n An initial numeric string, possibly preceded by ’−’, is sorted by numerical value.

−r Data is in reverse order.

−n The firstn fields in each line are ignored. A field is defined as a string of non-space, non-
tab characters separated by tabs and spaces from its neighbors.

+n The firstn characters are ignored. Fields (with−n) are skipped before characters.

SEE ALSO
sort(I)

BUGS
Only 8 files can be handled; any further files are ignored.

- 1 -

-

MESG (I) 3/15/72 MESG (I)

NAME
mesg − permit or deny messages

SYNOPSIS
mesg[n] [y]

DESCRIPTION
Mesgwith argumentn forbids messages viawrite by revoking non-user write permission on the
user’s typewriter.Mesgwith argumenty reinstates permission. All by itself,mesgreverses the
current permission. In all cases the previous state is reported.

FILES
/dev/tty?

SEE ALSO
write(I)

DIAGNOSTICS
‘?’ if the standard input file is not a typewriter

BUGS

- 1 -

-

MKDIR (I) 3/15/72 MKDIR (I)

NAME
mkdir − make a directory

SYNOPSIS
mkdir dirname ...

DESCRIPTION
Mkdir creates specified directories in mode 777. The standard entries ‘.’ and ‘..’ are made auto-
matically.

SEE ALSO
rmdir(I)

BUGS

- 1 -

-

MV (I) 8/20/73 MV (I)

NAME
mv − move or rename a file

SYNOPSIS
mv name1 name2

DESCRIPTION
Mv changes the name ofname1to name2. If name2is a directory,name1is moved to that direc-
tory with its original file-name. Directories may only be moved within the same parent directory
(just renamed).

If name2already exists, it is removed beforename1is renamed. Ifname2has a mode which for-
bids writing,mvprints the mode and reads the standard input to obtain a line; if the line begins
with y, the move takes place; if not,mvexits.

If name2would lie on a different file system, so that a simple rename is impossible,mv copies
the file and deletes the original.

BUGS
It should take a−f flag, like rm, to suppress the question if the target exists and is not writable.

- 1 -

-

NICE (I) 11/1/73 NICE (I)

NAME
nice − run a command at low priority

SYNOPSIS
nicecommand [arguments]

DESCRIPTION
Niceexecutescommandat low priority.

SEE ALSO
nohup(I), nice(II)

BUGS

- 1 -

-

NM (I) 8/20/73 NM (I)

NAME
nm − print name list

SYNOPSIS
nm [−cjnru] [name]

DESCRIPTION
Nm prints the symbol table from the output file of an assembler or loader run. Each symbol
name is preceded by its value (blanks if undefined) and one of the lettersU (undefined)A (abso-
lute) T (text segment symbol),D (data segment symbol),B (bss segment symbol), orC (com-
mon symbol). Global symbols have their first character underlined. Normally, the output is
sorted alphabetically and symbols consisting of a letter followed by one or more digits are not
printed (that is, symbols which look like C internal symbols).

If no file is given, the symbols ina.out are listed.

Options are:

−c list only C-style external symbols, that is those beginning with underscore ‘_’.

−j list symbols consisting of a letter followed by digits, which are normally suppressed.

−n sort by value instead of by name

−r sort in reverse order

−u print only undefined symbols.

FILES
a.out

BUGS

- 1 -

-

NOHUP (I) 11/1/73 NOHUP (I)

NAME
nohup − run a command immune to hangups

SYNOPSIS
nohup command [arguments]

DESCRIPTION
Nohupexecutescommandwith hangups, quits and interrupts all ignored.

SEE ALSO
nice(I), signal(II)

BUGS

- 1 -

-

NROFF (I) 1/15/73 NROFF (I)

NAME
nroff − format text

SYNOPSIS
nroff [+n] [−n] [−s] [−h] [−q] [−i] files

DESCRIPTION
Nroff formats text according to control lines embedded in the text files.Nroff will read the stan-
dard input if no file arguments are given. The non-file option arguments are interpreted as fol-
lows:

+n Output will commence at the first page whose page number isn or larger

−n will cause printing to stop after pagen.

−s Stop prior to each page to permit paper loading. Printing is restarted by typing a ‘newline’
character.

−h Spaces are replaced where possible with tabs to speed up output (or reduce the size of the
output file).

−q Prompt names for insertions are not printed and the bell character is sent instead; the inser-
tion is not echoed.

−i Causes the standard input to be read after the files.

Nroff is more completely described in [1]. A condensed Request Summary is included here.

FILES
/usr/lib/suftab suffix hyphenation tables
/tmp/rtm? temporary

SEE ALSO
[1] NROFF User’s Manual, internal memorandum.

BUGS

- 1 -

-

NROFF (I) 1/15/73 NROFF (I)

REQUEST REFERENCE AND INDEX

Request Initial If no Cause
Form Value Argument Break Explanation

I. Page Control

.pl +N N=66 N=66 no Page Length.

.bp +N N=1 - yes Begin Page.

.pn +N N=1 ignored no Page Number.

.po +N N=0 N=prev no Page Offset.

.ne N - N=1 no NEed N lines.

II. Text Filling, Adjusting, and Centering

.br - - yes BReak.

.fi fill - yes FIll output lines.

.nf fill - yes NoFill.

.ad c adj,norm adjust no ADjust mode on.

.na adjust - no NoAdjust.

.ce N off N=1 yes CEnter N input text lines.

III. Line Spacing and Blank Lines

.ls +N N=1 N=prev no Line Spacing.

.sp N - N=1 yes SPace N lines

.lv N - N=1 no LeaVe N lines

.sv N - N=1 no SaVe N lines.

.os - - no Output Saved lines.

.ns space - no No-Space mode on.

.rs - - no Restore Spacing.

.xh off - no EXtra-Half-line mode on.

IV. Line Length and Indenting

.ll +N N=65 N=prev no Line Length.

.in +N N=0 N=prev yes INdent.

.ti +N - N=1 yes Temporary Indent.

V. Macros, Diversion, and Line Traps

.de xx - ignored no DEfine or redefine a macro.

.ds xx - ignored no Define or redefine String.

.rm xx - - no ReMove macro name.

.di xx - end no DIvert output to macro "xx".

.wh -N xx - - no WHen; set a line trap.

.ch xx y - - no CHange trap line.

.ch -N -M - - no "

.ch xx -M - - no "

.ch -N y - - no "

VI. Number Registers

.nr ab +N -M- no Number Register.

.nr a +N -M - no "

.nc c \n \n no Number Character.

.ar arabic - no Arabic numbers.

.ro arabic - no Roman numbers.

.RO arabic - no ROMAN numbers.

VII. Input and Output Conventions and Character Translations

.ta N,M,... - none no PseudoTAbs setting.

.tc c space space no Tab replacement Character.

.lc c . . no Leader replacement Character.

.ul N - N=1 no UNderline input text lines.

- 2 -

-

NROFF (I) 1/15/73 NROFF (I)

.cc c . . no Basic Control Character.

.c2 c ′ ′ no Nobreak control character.

.ec c - \ no Escape Character.

.li N - N=1 no Accept input lines LIterally.

.tr abcd.... - - no TRanslate on output.

VIII. Hyphenation.

.nh on - no No Hyphen.

.hy on - no HYphenate.

.hc c none none no Hyphenation indicator Character.

IX. Three Part Titles.

.tl ′left′center′right′ - no TitLe.

.lt N N=65 N=prev no Length of Title.

X. Output Line Numbering.

.nm +N M S I off no Number Mode on or off, set parameters.

.np M S I - reset no Number Parameters set or reset.

XI. Conditional Input Line Acceptance

.if !N anything - no IF true accept line of "anything".

.if c anything- no "

.if !c anything - no "

.if N anything - no "

XII. Environment Switching.

.ev N N=0 N=prev no EnVironment switched.

XIII. Insertions from the Standard Input Stream

.rd prompt - bell no ReaD insert.

.ex - - no EXit.

XIV. Input File Switching

.so filename - - no Switch SOurce file (push down).

.nx filename - no NeXt file.

XV. Miscellaneous

.tm mesg - - no Typewriter Message

.ig - - no IGnore.

.fl - - no FLush output buffer.

.ab - - no ABort.

- 3 -

-

OD (I) 1/15/73 OD (I)

NAME
od − octal dump

SYNOPSIS
od [−abcdho] [file] [[+] offset[.][b]]

DESCRIPTION
Od dumpsfile in one or more formats as selected by the first argument. If the first argument is
missing−o is default. The meanings of the format argument characters are:

a interprets words as PDP-11 instructions and dis-assembles the operation code. Unknown op-
eration codes print as ???.

b interprets bytes in octal.

c interprets bytes in ascii. Unknown ascii characters are printed as \?.

d interprets words in decimal.

h interprets words in hex.

o interprets words in octal.

The file argument specifies which file is to be dumped. If no file argument is specified, the stan-
dard input is used. Thusodcan be used as a filter.

The offset argument specifies the offset in the file where dumping is to commence. This argu-
ment is normally interpreted as octal bytes. If ‘.’ is appended, the offset is interpreted in deci-
mal. If ‘b’ is appended, the offset is interpreted in blocks. (A block is 512 bytes.) If the file ar-
gument is omitted, the offset argument must be preceded by ‘+’.

Dumping continues until end-of-file.

SEE ALSO
db(I)

BUGS

- 1 -

-

OPR (I) 1/15/73 OPR (I)

NAME
opr − off line print

SYNOPSIS
opr [−−] [−] [+] [+−]file ...

DESCRIPTION
Opr will arrange to have the 201 data phone daemon submit a job to the Honeywell 6070 to print
the file arguments. Normally, the output appears at the GCOS central site. If the first argument
is −−, the output is remoted to station R1, which has an IBM 1403 printer.

Normally, each file is printed in the state it is found when the data phone daemon reads it. If a
particular file argument is preceded by+, or a preceding argument of+ has been encountered,
thenopr will make a copy for the daemon to print. If the file argument is preceded by−, or a
preceding argument of− has been encountered, thenopr will unlink (remove) the file.

If there are no arguments except for the optional−−, then the standard input is read and off-line
printed. Thusopr may be used as a filter.

FILES
/usr/dpd/* spool area
/etc/passwd personal ident cards
/etc/dpd daemon

SEE ALSO
dpd(I), passwd(V)

BUGS
There should be a way to specify a general remote site.

- 1 -

-

PASSWD (I) 9/1/72 PASSWD (I)

NAME
passwd − set login password

SYNOPSIS
passwdname password

DESCRIPTION
The passwordis placed on the given login name. This can only be done by the person corre-
sponding to the login name or by the super-user. An explicit null argument ("") for the password
argument will remove any password from the login name.

FILES
/etc/passwd

SEE ALSO
login(I), passwd(V), crypt(III)

BUGS

- 1 -

-

PFE (I) 11/1/73 PFE (I)

NAME
pfe − print floating exception

SYNOPSIS
pfe

DESCRIPTION
Pfewill examine the floating point exception register and print a diagnostic for the last floating
point exception.

SEE ALSO
signal(II)

BUGS
Since there is but one floating point exception register and it cannot be saved and restored by the
system, the floating exception that is printed is the one that occured system wide. Floating ex-
ceptions are therefore volatile.

- 1 -

-

PLOT (I) 6/4/73 PLOT (I)

NAME
plot − make a graph

SYNOPSIS
plot [option] ...

DESCRIPTION
Plot takes pairs of numbers from the standard input as abscissas and ordinates of a graph. The
graph is plotted on the storage scope, /dev/vt0.

The following options are recognized, each as a separate argument.

a Supply abscissas automatically (they are missing from the input); spacing is given by the
next argument, or is assumed to be 1 if next argument is not a number.

c Place character string given by next argument at each point.

d Omit connections between points. (Disconnect.)

gn Grid style:
n=0, no grid
n=1, axes only
n=2, complete grid (default).

s Save screen, don’t erase before plotting.

x Next 1 (or 2) arguments are lower (and upper)x limits.

y Next 1 (or 2) arguments are lower (and upper)y limits.

Points are connected by straight line segments in the order they appear in input. If a specified
lower limit exceeds the upper limit, or if the automatic increment is negative, the graph is plotted
upside down. Automatic abscissas begin with the lowerx limit, or with 0 if no limit is specified.
Grid lines and automatically determined limits fall on round values, however roundness may be
subverted by giving an inappropriately rounded lower limit. Plotting symbols specified byc are
placed so that a small initial letter, such as + o x, will fall approximately on the plotting point.

FILES
/dev/vt0

SEE ALSO
spline(VI)

BUGS
A limit of 1000 points is enforced silently.

- 1 -

-

PR (I) 1/15/73 PR (I)

NAME
pr − print file

SYNOPSIS
pr [−h name] [−n] [+n] [file ...]

DESCRIPTION
Pr produces a printed listing of one or more files. The output is separated into pages headed by a
date, the name of the file or a header (if any), and the page number. If there are no file argu-
ments,pr prints the standard input file, and is thus usable as a filter.

Options apply to all following files but may be reset between files:

−n producen-column output

+n begin printing with pagen.

−h treat the next argument as a header

If there is a header in force, it is printed in place of the file name. Interconsole messages via
write(I) are forbidden during apr.

FILES
/dev/tty? to suspend messages.

SEE ALSO
cat(I), cp(I)

DIAGNOSTICS
none (files not found are ignored)

BUGS
It would be nice to be able to set the number of lines per page.

- 1 -

-

PROOF (I) 1/15/73 PROOF (I)

NAME
proof − compare two text files

SYNOPSIS
proof oldfile newfile

DESCRIPTION
Proof lists those lines ofnewfilethat differ from corresponding lines inoldfile. The line number
in newfileis given. When changes, insertions or deletions have been made the program attempts
to resynchronize the text in the two files by finding a sequence of lines in both files that again
agree.

SEE ALSO
cmp(I), comm(I)

DIAGNOSTICS
yes, but they are undecipherable, e.g. ‘?1’.

BUGS
This program has a long way to go before even a list of specific bugs is appropriate.

- 1 -

-

PS (I) 10/15/73 PS (I)

NAME
ps − process status

SYNOPSIS
ps [alx]

DESCRIPTION
Ps prints certain indicia about active processes. Thea flag asks for information about all pro-
cesses with teletypes (ordinarily only one’s own processes are displayed);x asks even about pro-
cesses with no typewriter;l asks for a long listing. Ordinarily only the typewriter number (if not
one’s own) and the process number are given.

The long listing is columnar and contains

A number encoding the state (last digit) and flags (first 1 or 2 digits) of the process.

The priority of the process; high numbers mean low priority.

A number related in some unknown way to the scheduling heuristic.

The last character of the control typewriter of the process.

The process unique number (as in certain cults it is possible to kill a process if you know
its true name).

The size in blocks of the core image of the process.

The last column if non-blank tells the core address in the system of the event which the
process is waiting for; if blank, the process is running.

Unfortunately if you have forgotten the number of a process you will have to guess which one it
is. Plainpswill tell you only a list of numbers.

FILES
/usr/sys/unix system namelist
/dev/mem resident system

SEE ALSO
kill(I)

BUGS
The ability to see, even if dimly, the name by which the process was invoked would be welcome.

- 1 -

-

REW (I) 1/15/73 REW (I)

NAME
rew − rewind tape

SYNOPSIS
rew [[m]digit]

DESCRIPTION
Rewrewinds DECtape or magtape drives. The digit is the logical tape number, and should range
from 0 to 7. if the digit is preceded bym, rew applies to magtape rather than DECtape. A miss-
ing digit indicates drive 0.

FILES
/dev/tap?
/dev/mt?

BUGS

- 1 -

-

RM (I) 1/20/73 RM (I)

NAME
rm − remove (unlink) files

SYNOPSIS
rm [−f] [−r] name ...

DESCRIPTION
Rmremoves the entries for one or more files from a directory. If an entry was the last link to the
file, the file is destroyed. Removal of a file requires write permission in its directory, but neither
read nor write permission on the file itself.

If there is no write permission to a file designated to be removed,rm will print the file name, its
mode and then read a line from the standard input. If the line begins withy, the file is removed,
otherwise it is not. The optional argument−f prevents this interaction.

If a designated file is a directory, an error comment is printed unless the optional argument−r
has been used. In that case,rm recursively deletes the entire contents of the specified directory.
To remove directoriesper sesee rmdir(I).

FILES
/etc/glob to implement the−r flag

SEE ALSO
rmdir(I)

BUGS
Whenrm removes the contents of a directory under the−r flag, full pathnames are not printed in
diagnostics.

- 1 -

-

RMDIR (I) 3/15/72 RMDIR (I)

NAME
rmdir − remove directory

SYNOPSIS
rmdir dir ...

DESCRIPTION
Rmdir removes (deletes) directories. The directory must be empty (except for the standard en-
tries ‘.’ and ‘..’, which rmdir itself removes). Write permission is required in the directory in
which the directory appears.

BUGS
Needs a−r flag. Actually, write permission in the directory’s parent isnot required.

- 1 -

-

ROFF (I) 6/12/72 ROFF (I)

NAME
roff − format text

SYNOPSIS
roff [+n] [−n] [−s] [−h] file ...

DESCRIPTION
Roff formats text according to control lines embedded in the text in the given files. Encountering
a nonexistent file terminates printing. Incoming interconsole messages are turned off during
printing. The optional flag arguments mean:

+n Start printing at the first page with numbern.

−n Stop printing at the first page numbered higher thann.

−s Stop before each page (including the first) to allow paper manipulation; resume on receipt
of an interrupt signal.

−h Insert tabs in the output stream to replace spaces whenever appropriate.

A Request Summary is attached.

FILES
/usr/lib/suftabsuffix hyphenation tables
/tmp/rtm?temporary

SEE ALSO
nroff (I), troff (I)

BUGS
Roff is the simplest of the runoff programs, but is virtually undocumented.

- 1 -

-

ROFF (I) 6/12/72 ROFF (I)

REQUEST SUMMARY

Request Break Initial Meaning
.ad yes yes Begin adjusting right margins.
.ar no arabic Arabic page numbers.
.br yes - Causes a line break − the filling of the current line is stopped.
.bl n yes - Insert of n blank lines, on new page if necessary.
.bp +n yes n=1 Begin new page and number it n; no n means ‘+1’.
.cc c no c=. Control character becomes ‘c’.
.ce n yes - Center the next n input lines, without filling.
.de xx no - Define macro named ‘xx’ (definition ends on line beginning ‘..’).
.ds yes no Double space; same as ‘.ls 2’.
.ef t no t=´´´´ Even foot title becomes t.
.eh t no t=´´´´ Even head title becomes t.
.fi yes yes Begin filling output lines.
.fo no t=´´´´ All foot titles are t.
.hc c no none Hyphenation character set to ‘c’.
.he t no t=´´´´ All head titles are t.
.hx no - Title lines are suppressed.
.hy n no n=1 Hyphenation is done, if n=1; and is not done, if n=0.
.ig no - Ignore input lines through a line beginning with ‘..’.
.in +n yes - Indent n spaces from left margin.
.ix +n no - Same as ‘.in’ but without break.
.li n no - Literal, treat next n lines as text.
.ll +n no n=65 Line length including indent is n characters.
.ls +n yes n=1 Line spacing set to n lines per output line.
.m1 n no n=2 Put n blank lines between the top of page and head title.
.m2 n no n=2 n blank lines put between head title and beginning of text on

page.
.m3 n no n=1 n blank lines put between end of text and foot title.
.m4 n no n=3 n blank lines put between the foot title and the bottom of page.
.na yes no Stop adjusting the right margin.
.ne n no - Begin new page, if n output lines cannot fit on present page.
.nn +n no - The next n output lines are not numbered.
.n1 no no Number output lines; start with 1 each page
.n2 n no no Number output lines; stop numbering if n=0.
.ni +n no n=0 Line numbers are indented n.
.nf yes no Stop filling output lines.
.nx filename - Change to input file ‘filename’.
.of t no t=´´´´ Odd foot title becomes t.
.oh t no t=´´´´ Odd head title becomes t.
.pa +n yes n=1 Same as ‘.bp’.
.pl +n no n=66 Total paper length taken to be n lines.
.po +n no n=0 Page offset. All lines are preceded by N spaces.
.ro no arabic Roman page numbers.
.sk n no - Produce n blank pages starting next page.
.sp n yes - Insert block of n blank lines.
.ss yes yes Single space output lines, equivalent to ‘.ls 1’.
.ta N M ... - Pseudotab settings. Initial tab settings are columns 9,17,25,...
.tc c no c=‘ ’ Tab replacement character becomes ‘c’.
.ti +n yes - Temporarily indent next output line n space.
.tr abcd.. no - Translate a into b, c into d, etc.
.ul n no - Underline the letters and numbers in the next n input lines.

- 2 -

-

SH (I) 4/18/73 SH (I)

NAME
sh − shell (command interpreter)

SYNOPSIS
sh [name [arg1 ... [arg9]]]

DESCRIPTION
Sh is the standard command interpreter. It is the program which reads and arranges the execu-
tion of the command lines typed by most users. It may itself be called as a command to interpret
files of commands. Before discussing the arguments to the Shell used as a command, the struc-
ture of command lines themselves will be given.

Commands. Each command is a sequence of non-blank command arguments separated by
blanks. The first argument specifies the name of a command to be executed. Except for certain
types of special arguments discussed below, the arguments other than the command name are
passed without interpretation to the invoked command.

If the first argument is the name of an executable file, it is invoked; otherwise the string ‘/bin/’ is
prepended to the argument. (In this way most standard commands, which reside in ‘/bin’, are
found.) If no such command is found, the string ‘/usr’ is further prepended (to give
‘/usr/bin/command’) and another attempt is made to execute the resulting file. (Certain lesser-
used commands live in ‘/usr/bin’.) If the ‘/usr/bin’ file exists, but is not executable, it is used by
the Shell as a command file. That is to say it is executed as though it were typed from the con-
sole. If all attempts fail, a diagnostic is printed.

Command lines. One or more commands separated by ‘ ’ or ‘ˆ’ constitute apipeline. The stan-
dard output of each command but the last in a pipeline is taken as the standard input of the next
command. Each command is run as a separate process, connected by pipes (see pipe(II)) to its
neighbors. A command line contained in parentheses ‘()’ may appear in place of a simple com-
mand as an element of a pipeline.

A command lineconsists of one or more pipelines separated, and perhaps terminated by ‘;’ or
‘&’. The semicolon designates sequential execution. The ampersand causes the preceding pipe-
line to be executed without waiting for it to finish. The process id of such a pipeline is reported,
so that it may be used if necessary for a subsequentwait or kill.

Termination Reporting. If a command (not followed by ‘&’) terminates abnormally, a mes-
sage is printed. (All terminations other than exit and interrupt are considered abnormal.) Termi-
nation reports for commands followed by ‘&’ are given upon receipt of the first command subse-
quent to the termination of the command, or when await is executed. The following is a list of
the abnormal termination messages:

Bus error
Trace/BPT trap
Illegal instruction
IOT trap
EMT trap
Bad system call
Quit
Floating exception
Memory violation
Killed

If a core image is produced, ‘− Core dumped’ is appended to the appropriate message.

Redirection of I/O. There are three character sequences that cause the immediately following
string to be interpreted as a special argument to the Shell itself. Such an argument may appear
anywhere among the arguments of a simple command, or before or after a parenthesized com-
mand list, and is associated with that command or command list.

An argument of the form ‘<arg’ causes the file ‘arg’ to be used as the standard input file of the
associated command.

- 1 -

-

SH (I) 4/18/73 SH (I)

An argument of the form ‘>arg’ causes file ‘arg’ to be used as the standard output file for the as-
sociated command. ‘Arg’ is created if it did not exist, and in any case is truncated at the outset.

An argument of the form ‘>>arg’ causes file ‘arg’ to be used as the standard output for the asso-
ciated command. If ‘arg’ did not exist, it is created; if it did exist, the command output is ap-
pended to the file.

For example, either of the command lines

ls >junk; cat tail >>junk
(ls; cat tail) >junk

creates, on file ‘junk’, a listing of the working directory, followed immediately by the contents
of file ‘tail’.

Either of the constructs ‘>arg’ or ‘>>arg’ associated with any but the last command of a pipeline
is ineffectual, as is ‘<arg’ in any but the first.

Generation of argument lists. If any argument contains any of the characters ‘?’, ‘*’ or ‘[’, it is
treated specially as follows. The current directory is searched for files whichmatchthe given ar-
gument.

The character ‘*’ in an argument matches any string of characters in a file name (including the
null string).

The character ‘?’ matches any single character in a file name.

Square brackets ‘[...]’ specify a class of characters which matches any single file-name character
in the class. Within the brackets, each ordinary character is taken to be a member of the class. A
pair of characters separated by ‘−’ places in the class each character lexically greater than or
equal to the first and less than or equal to the second member of the pair.

Other characters match only the same character in the file name.

For example, ‘*’ matches all file names; ‘?’ matches all one-character file names; ‘[ab]*.s’
matches all file names beginning with ‘a’ or ‘b’ and ending with ‘.s’; ‘?[zi−m]’ matches all two-
character file names ending with ‘z’ or the letters ‘i’ through ‘m’.

If the argument with ‘*’ or ‘?’ also contains a ‘/’, a slightly different procedure is used: instead
of the current directory, the directory used is the one obtained by taking the argument up to the
last ‘/’ before a ‘*’ or ‘?’. The matching process matches the remainder of the argument after
this ‘/’ against the files in the derived directory. For example: ‘/usr/dmr/a*.s’ matches all files
in directory ‘/usr/dmr’ which begin with ‘a’ and end with ‘.s’.

In any event, a list of names is obtained which match the argument. This list is sorted into alpha-
betical order, and the resulting sequence of arguments replaces the single argument containing
the ‘*’, ‘[’, or ‘?’. The same process is carried out for each argument (the resulting lists arenot
merged) and finally the command is called with the resulting list of arguments.

For example: directory /usr/dmr contains the files a1.s, a2.s, ..., a9.s. From any directory, the
command

as /usr/dmr/a?.s

callsaswith arguments /usr/dmr/a1.s, /usr/dmr/a2.s, ... /usr/dmr/a9.s in that order.

Quoting. The character ‘\’ causes the immediately following character to lose any special mean-
ing it may have to the Shell; in this way ‘<’, ‘>’, and other characters meaningful to the Shell
may be passed as part of arguments. A special case of this feature allows the continuation of
commands onto more than one line: a new-line preceded by ‘\’ is translated into a blank.

Sequences of characters enclosed in double (") or single (´) quotes are also taken literally. For
example:

ls  pr −h "My directory"

causes a directory listing to be produced byls, and passed on topr to be printed with the heading
‘My directory’. Quotes permit the inclusion of blanks in the heading, which is a single argument

- 2 -

-

SH (I) 4/18/73 SH (I)

to pr.

Argument passing. When the Shell is invoked as a command, it has additional string process-
ing capabilities. Recall that the form in which the Shell is invoked is

sh [name [arg1 ... [arg9]]]

Thenameis the name of a file which will be read and interpreted. If not given, this subinstance
of the Shell will continue to read the standard input file.

In command lines in the file (not in command input), character sequences of the form ‘$n’,
wheren is a digit, are replaced by thenth argument to the invocation of the Shell (argn). ‘$0’ is
replaced byname.

End of file. An end-of-file in the Shell’s input causes it to exit. A side effect of this fact means
that the way to log out from UNIX is to type an EOT.

Special commands.The following commands are treated specially by the Shell.

chdir is done without spawning a new process by executingsys chdir(II).

login is done by executing /bin/login without creating a new process.

wait is done without spawning a new process by executingsys wait(II).

shift is done by manipulating the arguments to the Shell.

‘ :’ is simply ignored.

Command file errors; interrupts. Any Shell-detected error, or an interrupt signal, during the
execution of a command file causes the Shell to cease execution of that file.

Process that are created with a ‘&’ ignore interrupts. Also if such a process has not redirected its
input with a ‘<’, its input is automatically redirected to the zero length file /dev/null.

FILES
/etc/glob, which interprets ‘*’, ‘?’, and ‘[’.
/dev/null as a source of end-of-file.

SEE ALSO
‘The UNIX Time-sharing System’, which gives the theory of operation of the Shell.
chdir(I), login(I), wait(I), shift(I)

BUGS
When output is redirected, particularly to make a multicommand pipeline, diagnostics tend to be
sent down the pipe and are sometimes lost altogether. Not all components of a pipeline
swawned with ‘&’ ignore interrupts.

- 3 -

-

SHIFT (I) 8/21/73 SHIFT (I)

NAME
shift − adjust Shell arguments

SYNOPSIS
shift

DESCRIPTION
Shift is used in Shell command files to shift the argument list left by 1, so that old$2 can now be
referred to by$1 and so forth.Shift is useful to iterate over several arguments to a command
file. For example, the command file

: loop
if $1x = x exit
pr −3 $1
shift
goto loop

prints each of its arguments in 3-column format.

Shift is executed within the Shell.

SEE ALSO
sh (I)

BUGS

- 1 -

-

SIZE (I) 9/2/72 SIZE (I)

NAME
size − size of an object file

SYNOPSIS
size[object ...]

DESCRIPTION
The size, in bytes, of the object files are printed. If no file is given,a.out is default. The size is
printed in decimal for the text, data, and bss portions of each file. The sum of these is also print-
ed in octal and decimal.

BUGS

- 1 -

-

SLEEP (I) 11/1/73 SLEEP (I)

NAME
sleep − suspend execution for an interval

SYNOPSIS
sleeptime

DESCRIPTION
Sleepwill suspend execution fortime seconds. It is used to execute a command in a certain
amount of time as in:

(sleep 105; command)&

Or to execute a command every so often as in this shell command file:

: loop
command
sleep 37
goto loop

SEE ALSO
sleep(II)

BUGS
Timemust be less than 65536 seconds.

- 1 -

-

SNO (I) 2/9/73 SNO (I)

NAME
sno − Snobol interpreter

SYNOPSIS
sno [file]

DESCRIPTION
Snois a Snobol III (with slight differences) compiler and interpreter.Snoobtains input from the
concatenation offile and the standard input. All input through a statement containing the label
‘end’ is considered program and is compiled. The rest is available to ‘syspit’.

Snodiffers from Snobol III in the following ways.

There are no unanchored searches. To get the same effect:

a ** b unanchored search for b
a *x* b = x c unanchored assignment

There is no back referencing.

x = "abc"
a *x* x is an unanchored search for ‘abc’

Function declaration is different. The function declaration is done at compile time by the use of
the label ‘define’. Thus there is no ability to define functions at run time and the use of the name
‘define’ is preempted. There is also no provision for automatic variables other than the parame-
ters. For example:

definef()

or

define f(a,b,c)

All labels except ‘define’ (even ‘end’) must have a non-empty statement.

If ‘start’ is a label in the program, program execution will start there. If not, execution begins
with the first executable statement. ‘define’ is not an executable statement.

There are no builtin functions.

Parentheses for arithmetic are not needed. Normal precedence applies. Because of this, the
arithmetic operators ‘/’ and ‘*’ must be set off by space.

The right side of assignments must be non-empty.

Either ´ or " may be used for literal quotes.

The pseudo-variable ‘sysppt’ is not available.

SEE ALSO
Snobol III manual. (JACM; Vol. 11 No. 1; Jan 1964; pp 21)

BUGS

- 1 -

-

SORT (I) 5/7/73 SORT (I)

NAME
sort − sort a file

SYNOPSIS
sort [−anr] [+n] [−n] [input [output]]

DESCRIPTION
Sortsortsinput and writes the result onoutput. If the output file is not given, the standard output
is used. If the input file is missing, the standard input is used. Thussort may be used as a filter.
The input and output file may be the same.

The sort is line-by-line in increasing ASCII collating sequence, except that upper-case letters are
considered the same as the corresponding lower-case letters.

Sortunderstands several flag arguments.

−a Use strict ASCII collating sequence.

−n An initial numeric string is sorted by numerical value.

−r Output is in reverse order.

−n The firstn fields in each line are ignored. A field is defined as a string of non-space, non-
tab characters separated by tabs and spaces from its neighbors.

+n The firstn characters are ignored in the sort. Fields (with−n) are skipped before characters.

FILES
/tmp/stm?

BUGS
The largest file that can be sorted is about 128K bytes.

- 1 -

-

SPEAK (I) 8/15/73 SPEAK (I)

NAME
speak − word to voice translator

SYNOPSIS
speak[−epsv] [vocabulary [output]]

DESCRIPTION
Speakturns a stream of words into utterances and outputs them to a voice synthesizer, or to a
specified output file. It has facilities for maintaining a vocabulary. It receives, from the standard
input

− working lines: text of words separated by blanks
− phonetic lines: strings of phonemes for one word preceded and separated by commas. The

phonemes may be followed by comma-percent then a ‘replacement part’ − an ASCII string
with no spaces. The phonetic code is given in vsp(VII).

− empty lines
− command lines: beginning with!. The following command lines are recognized:

!r file replace coded vocabulary from file
!w file write coded vocabulary on file
!p print parsing for working word
!l list vocabulary on standard output with phonetics
!c word copy phonetics from working word to specified word
!d print phonetics for working word

Each working line replaces its predecessor. Its first word is the ‘working word’. Each phonetic
line replaces the phonetics stored for the working word. In particular, a phonetic line of comma
only deletes the entry for the working word. Each working line, phonetic line or empty line
causes the working line to be uttered. The process terminates at the end of input.

Unknown words are pronounced by rules, and failing that, are spelled. Spelling is done by tak-
ing each character of the word, prefixing it with *, and looking it up. Unspellable words burp.

Speakis initialized with a coded vocabulary stored in file /usr/lib/speak.m. The vocabulary op-
tion substitutes a different file for /usr/lib/speak.m.

A set of single letter options may appear in any order preceded by−. Their meanings are:

−e suppress English steps (4−8) below
−p suppress pronunciation by rule
−s suppress spelling
−v suppress voice output

The steps of pronunciation by rule are:

(1) If there were no lower case letters in the working line, fold all upper case letters to lower.
(2) Fold an initial cap to lower case, and try again.
(3) If word has only one letter, or has no lower case vowels, quit.
(4) If there is a finals,strip it.
(5) Replace final −ie by −y.
(6) If any changes have been made, try whole word again.
(7) Locate probable long vowels and capitalize them. Mark probable silente’s.
(8) Put back thes stripped in (4), if any.
(9) Place # before and after word.
(10) Prefix word with%, and look up longest initial match in the stored table of words; if none,

quit.
(11) Use phonemes from the stored phonetic string as pronunciation, and replace the matched

stuff by the replacement part of the phonetic string.
(12) If anything remains, go to (10).

Long vowels are located this way in step (7):

- 1 -

-

SPEAK (I) 8/15/73 SPEAK (I)

(1) A u appearing in context [ˆaeiou]u[ˆaeiouwxy][aieouy]. (The notation is just a regular ex-
pression à la ed(I).)(pustUlous)

(2) One of [aeo] appearing in the context [aeo][ˆaehiouwxy][ie][aou] or in the context
[aeo][ˆaehiouwxy]ien is assumed long. The digramth behaves as a single letter in this
test. (rAdium, facEtious, quOtient, carpAthian)

(3) If the first vowel in the word isi followed by one ofaou, it is assumed long.(Iodine, dI-
ameter, trIumph)

(4) If the only vowel in the word is finale, the vowel is assumed long.(bE, shE)
(5) If the only vowels in the word appear in the pattern [aeiouy][ˆaeiouwxy]S, where S is one

of the suffixes
−al −le −re −y

then the first vowel is assumed long.(glObal, tAble, lUcre, lAdy)
(6) If no suffix was found in (5), as many of these suffixes as possible are isolated from right

to left. Stripping stops whene has been stripped, nor ise stripped before a suffix begin-
ning with e. Each suffix is marked by inserting just before the first letter, or just aftere
in those suffixes that begin withe.

−able −ably −e −ed
−er −ery −est −ful
−ing −less −ment −ness

(care ful  ly, maj or, fine ry, state , caree r)
(7) If the word, exclusive of suffixes, ends ini or y, and contains no earlier vowel, theni or y

is assumed long.(pY(from pie),crY ing, lIe d)
(8) If the first suffix begins with one of [aeio], then the vowel [aeiouy] in an immediately pre-

ceding pattern [ˆaeo][aeiouy][ˆaeiouwxy] is assumed long. The digramth behaves as a
single letter in this test.(cAre ful  ly, bAthe d, mAj or, pOt able, port able)

(9) In these exceptional cases no long letter is assumed in the preceding step:
(i) beforeg, if there are any earlier vowels(postage , stAge , college)
(ii) e is not long beforel (travele d)

(10) If the first suffix begins with one of [aeio], and the word exclusive of suffixes ends in
[aeiouyAEIOUY]th, then digramth is capitalized.(breaTH ing, blITHe ly)

(11) An attempt is made to recognize silente in the middle of compound words. Such ane is
marked by a following , and preceding vowels, other thane, are assumed long as in step
(8). Silente is marked in the context [bdgmnprst][bdgpt]le[ˆaeioruy]S, where S is any
string that contains [aeiouy] but does not contain or the end of the word. Silente is also
marked in the context [ˆaeiu][aiou][ˆaeiouwxy]e[ˆaeinoruy]S.(simple ton, fAce guard,
cAve man, cavernous)

FILES
/usr/lib/speak.m

SEE ALSO
vs(VII), vs(IV)

DIAGNOSTICS
‘?’ for unknown command with!, or for unreadable or unwritable vocabulary file

BUGS
Vocabulary overflow is unchecked. Excessively long words cause dumps. Space is not
reclaimed from deleted entries.

- 2 -

-

SPLIT (I) 1/15/73 SPLIT (I)

NAME
split − split a file into pieces

SYNOPSIS
split [file1 [file2]]

DESCRIPTION
Split reads file1 and writes it in 1000-line pieces, as many as are necessary, onto a set of output
files. The name of the first output file is file2 with an ‘a’ appended, and so on through the alpha-
bet and beyond. If no output name is given, ‘x’ is default.

If no input file is given, or the first argument is ‘−’, then the standard input file is used.

BUGS
Watch out for 14-character file names. The number of lines per file should be an argument.

- 1 -

-

STRIP (I) 3/15/72 STRIP (I)

NAME
strip − remove symbols and relocation bits

SYNOPSIS
strip name ...

DESCRIPTION
Strip removes the symbol table and relocation bits ordinarily attached to the output of the assem-
bler and loader. This is useful to save space after a program has been debugged.

The effect ofstrip is the the same as use of the−s option ofld.

FILES
/tmp/stm? temporary file

SEE ALSO
ld(I), as(I)

BUGS

- 1 -

-

STTY (I) 6/12/72 STTY (I)

NAME
stty − set teletype options

SYNOPSIS
stty option ...

DESCRIPTION
Sttywill set certain I/O options on the current output teletype. The option strings are selected
from the following set:

even allow even parity
−even disallow even parity
odd allow odd parity
−odd disallow odd parity
raw raw mode input (no erase, kill, interrupt, quit, EOT; parity bit passed back)
−raw negate raw mode
−nl allow carriage return for new-line, and output CR-LF for carriage return or new-line
nl accept only new-line to end lines
echo echo back every character typed
−echo do not echo characters
lcase map upper case to lower case
−lcase do not map case
−tabs replace tabs by spaces in output
tabs preserve tabs
delay calculate cr, tab, and form-feed delays
−delay no cr/tab/ff delays
tdelay calculate tab delays
−tdelay no tab delays

SEE ALSO
stty(II)

BUGS
There should be ‘package’ options such asexecuport, 33,or terminet.

- 1 -

-

SUM (I) 3/15/72 SUM (I)

NAME
sum − sum file

SYNOPSIS
sum name ...

DESCRIPTION
Sumsums the contents of the bytes (mod 2ˆ16) of one or more files and prints the answer in oc-
tal. A separate sum is printed for each file specified, along with the number of whole or partial
512-byte blocks read.

In practice,sumis often used to verify that all of a special file can be read without error.

BUGS

- 1 -

-

TIME (I) 8/16/73 TIME (I)

NAME
time − time a command

SYNOPSIS
time command

DESCRIPTION
The given command is executed; after it is complete,time prints the elapsed time during the
command, the time spent in the system, and the time spent in execution of the command.

The execution time can depend on what kind of memory the program happens to land in; the
user time in MOS is often half what it is in core.

BUGS
Notice thattime x >y puts the timing information intoy. One can get around this bytime sh fol-
lowed byx >y.
Elapsed time is accurate to the second, while the CPU times are measured to the 60th second.
Thus the sum of the CPU times can be up to a second larger than the elapsed time.

- 1 -

-

TP (I) 10/15/73 TP (I)

NAME
tp − manipulate DECtape and magtape

SYNOPSIS
tp [key] [name ...]

DESCRIPTION
Tp saves and restores selected portions of the file system hierarchy on DECtape or mag tape. Its
actions are controlled by thekeyargument. The key is a string of characters containing at most
one function letter and possibly one or more function modifiers. Other arguments to the com-
mand are file or directory names specifying which files are to be dumped, restored, or listed.

The function portion of the key is specified by one of the following letters:

r The indicated files and directories, together with all subdirectories, are dumped onto
the tape. If files with the same names already exist, they are replaced. ‘Same’ is deter-
mined by string comparison, so ‘./abc’ can never be the same as ‘/usr/dmr/abc’ even if
‘/usr/dmr’ is the current directory. If no file argument is given, ‘.’ is the default.

u updates the tape.u is the same asr, but a file is replaced only if its modification date
is later than the date stored on the tape; that is to say, if it has changed since it was
dumped.u is the default command if none is given.

d deletes the named files and directories from the tape. At least one file argument must
be given. This function is not permitted on magtapes.

x extracts the named files from the tape to the file system. The owner, mode, and date-
modified are restored to what they were when the file was dumped. If no file argu-
ment is given, the entire contents of the tape are extracted.

t lists the names of all files stored on the tape which are the same as or are hierarchically
below the file arguments. If no file argument is given, the entire contents of the tape is
listed.

The following characters may be used in addition to the letter which selects the function desired.

m Specifies magtape as opposed to DECtape.

0,...,7 This modifier selects the drive on which the tape is mounted. For DECtape, ‘x’ is
default; for magtape ‘0’ is the default.

v Normally tp does its work silently. Thev (verbose) option causes it to type the
name of each file it treats preceded by the function letter. With thet function, v
gives more information about the tape entries than just the name.

c means a fresh dump is being created; the tape directory will be zeroed before begin-
ning. Usable only withr andu. This option is assumed with magtape since it is im-
possible to selectively overwrite magtape.

f causes new entries on tape to be ‘fake’ in that no data is present for these entries.
Such fake entries cannot be extracted. Usable only withr andu.

i Errors reading and writing the tape are noted, but no action is taken. Normally, er-
rors cause a return to the command level.

w causestp to pause before treating each file, type the indicative letter and the file
name (as with v) and await the user’s response. Responsey means ‘yes’, so the file
is treated. Null response means ‘no’, and the file does not take part in whatever is
being done. Responsex means ‘exit’; thetp command terminates immediately. In
thex function, files previously asked about have been extracted already. Withr, u,
andd no change has been made to the tape.

FILES
/dev/tap?
/dev/mt?

- 1 -

-

TP (I) 10/15/73 TP (I)

DIAGNOSTICS
Several; the non-obvious one is ‘Phase error’, which means the file changed after it was selected
for dumping but before it was dumped.

BUGS

- 2 -

-

TR (I) 9/24/73 TR (I)

NAME
tr − transliterate

SYNOPSIS
tr [−cds] [string1 [string2]]

DESCRIPTION
Tr copies the standard input to the standard output with substitution or deletion of selected char-
acters. Input characters found instring1 are mapped into the corresponding characters of
string2. If string2 is short, it is padded with corresponding characters fromstring1. Any combi-
nation of the options−cdsmay be used.−c complements the set of characters instring1with re-
spect to the universe of characters whose ascii codes are 001 through 377 octal.−d deletes all
input characters not instring1. −s squeezes all strings of repeated output characters that are in
string2 to single characters.

The following abbreviation conventions may be used to introduce ranges of characters or re-
peated characters into the strings:

[a−b] stands for the string of characters whose ascii codes run from charactera to characterb.

[a*n], wheren is an integer or empty, stands forn-fold repetition of charactera. n is taken to be
octal or decimal according as its first digit is or is not zero. A zero or missingn is taken to be
huge; this facility is useful for paddingstring2.

The escape character ‘\’ may be used as insh to remove special meaning from any character in a
string. In addition, ‘\’ followed by 1, 2 or 3 octal digits stands for the character whose ascii code
is given by those digits.

The following example creates a list of all the words in ‘file1’ one per line in ‘file2’, where a
word is taken to be a maximal string of alphabetics. The strings are quoted to protect the special
characters from interpretation by the Shell; 012 is the ascii code for newline.

tr −cs "[A−Z][a−z]" "[\012*]" <file1 >file2

SEE ALSO
sh(I), ed(I), ascii(VII)

BUGS
Won’t handle ascii NUL.
Also, Kernighan’s Lemma can really bite you; try looking for strings which have \ and * in them.

- 1 -

-

TROFF (I) 1/15/73 TROFF (I)

NAME
troff − format text

SYNOPSIS
troff [+n] [−n] [−t] [−f] [−w] [−i] [−a] files

DESCRIPTION
Troff formats text for a Graphic Systems phototypesetter according to control lines embedded in
the text files. Troff is based on nroff(I). The non-file option arguments are interpreted as fol-
lows:

+n Commence typesetting at the first page numberedn or larger.

−n Stop after pagen.

−t Place output on standard output instead of the phototypesetter.

−f Refrain from feeding out paper and stopping the phototypesetter at the end.

−w Wait until phototypsetter is available, if currently busy.

−i Read from standard input after the files have been exhausted.

−a Send a printable approximation of the results to the standard output.

A TROFF Guide is available [1] which can be used in conjunction with an NROFF Manual [2].

FILES
/usr/lib/suftabsuffix hyphenation tables
/tmp/rtm?temporary

SEE ALSO
[1] Preliminary TROFF Guide (unpublished).
[2] NROFF User’s Manual (internal memorandum).
TROFF Made Trivial (unpublished).
nroff(I), roff(I)

BUGS

- 1 -

-

TSS (I) 3/15/72 TSS (I)

NAME
tss − interface to MH-TSS

SYNOPSIS
tss

DESCRIPTION
Tsswill call the Honeywell 6070 on the 201 data phone. It will then go into direct access with
MH-TSS. Output generated by MH-TSS is typed on the standard output and input requested by
MH-TSS is read from the standard input with UNIX typing conventions.

An interrupt signal is transmitted as a ‘break’ to MH-TSS.

Input lines beginning with ‘!’ are interpreted as UNIX commands. Input lines beginning with
‘˜’ are interpreted as commands to the interface routine.

˜<file insert input from named UNIX file
˜>file deliver tss output to named UNIX file
˜p pop the output file
˜q disconnect from tss (quit)
˜r file receive from HIS routine csr/daccopy
˜s file send file to HIS routine csr/daccopy

Ascii files may be most efficiently transmitted using the HIS routine csr/daccopy in this fashion.
Bold face text comes from MH-TSS.Aftnameis the 6070 file to be dealt with;file is the UNIX
file.

SYSTEM? csr/daccopy (s)aftname
Send Encoded Filẽs file

SYSTEM? csr/daccopy (r)aftname
Receive Encoded Filẽr file

FILES
/dev/dn0, /dev/dp0, /etc/msh

DIAGNOSTICS
Most often, ‘Transmission error on last message.’

BUGS
When problems occur, and they often do,tssexits rather abruptly.

- 1 -

-

TTY (I) 3/15/72 TTY (I)

NAME
tty − get typewriter name

SYNOPSIS
tty

DESCRIPTION
Tty gives the name of the user’s typewriter in the form ‘ttyn’ for n a digit or letter. The actual
path name is then ‘/dev/ttyn’.

DIAGNOSTICS
‘not a tty’ if the standard input file is not a typewriter.

BUGS

- 1 -

-

TYPE (I) 6/12/72 TYPE (I)

NAME
type − type on 2741

SYNOPSIS
type file ...

DESCRIPTION
Typecopies its input files to the fixed output portttyc converting to 2741 EBCDIC output code.
Before each new page (66 lines) and before each new file,typestops and reads the 2741 before
continuing. This allows time for insertion of single sheet paper. To continue, push the ATTN
key on the 2741.

FILES
/dev/ttyc

BUGS
Since it is impossible to second guess a 2741, quite often it is necessary to print a # to put this
device in a state it might already be in.
The value of padding out a page with up to 66 carriage returns is doubtful.

- 1 -

-

TYPO (I) 1/15/73 TYPO (I)

NAME
typo − find possible typos

SYNOPSIS
typo [−] file1 ...

DESCRIPTION
Typohunts through a document for unusual words, typographic errors, andhapax legomenaand
prints them on the standard output.

The words used in the document are printed out in decreasing order of peculiarity along with an
index of peculiarity. An index of 10 or more is considered peculiar. Printing of certain very
common English words is suppressed.

The statistics for judging words are taken from the document itself, with some help from known
statistics of English. The ‘−’ option suppresses the help from English and should be used if the
document is written in, for example, Urdu.

Roff andnroff control lines are ignored. Upper case is mapped into lower case. Quote marks,
vertical bars, hyphens, and ampersands are stripped from within words. Words hyphenated
across lines are put back together.

FILES
/tmp/ttmp??, /usr/lib/salt, /usr/lib/w2006

BUGS
Because of the mapping into lower case and the stripping of special characters, words may be
hard to locate in the original text.

The expanded escape sequences oftroff are not correctly recognized.

- 1 -

-

UNIQ (I) 12/1/72 UNIQ (I)

NAME
uniq − report repeated lines in a file

SYNOPSIS
uniq [−udc [+n] [−n]] [input [output]]

DESCRIPTION
Uniq reads the input file comparing adjacent lines. In the normal case, the second and succeed-
ing copies of repeated lines are removed; the remainder is written on the output file. Note that
repeated lines must be adjacent in order to be found; see sort(I). If the−u flag is used, just the
lines that are not repeated in the original file are output. The−d option specifies that one copy of
just the repeated lines is to be written. The normal mode output is the union of the−u and−d
mode outputs.

The−c option supersedes−u and−d and generates an output report in the style of−ud but with
each line preceded by a count of the number of times it occurred.

Then arguments specify skipping an initial portion of each line in the comparison:

−n The firstn fields together with any blanks before each are ignored. A field is defined
as a string of non-space, non-tab characters separated by tabs and spaces from its
neighbors.

+n The firstn characters are ignored. Fields are skipped before characters.

SEE ALSO
sort(I), comm(I)

BUGS

- 1 -

-

WAIT (I) 4/9/73 WAIT (I)

NAME
wait − await completion of process

SYNOPSIS
wait

DESCRIPTION
Wait until all processes started with& have completed, and report on abnormal terminations.

Becausesys waitmust be executed in the parent process, the shell itself executeswait, without
creating a new process

SEE ALSO
sh(I)

BUGS
After executingwait there is no way to interrupt the processes waited on. This is because inter-
rupts were set to be ignored when the process was created. The only out (if the process does not
terminate) is tokill the process from another terminal or to hangup.

- 1 -

-

WC (I) 3/15/72 WC (I)

NAME
wc − get (English) word count

SYNOPSIS
wc files

DESCRIPTION
Wcprovides a count of the words, text lines, and control lines for each argument file. If no files
are provided,wc reads the standard input.

A text line is a sequence of characters not beginning with ‘.’, ‘!’ or ‘´’ and ended by a new-line.
A control line is a line beginning with ‘.’, ‘!’ or ‘´’. A word is a sequence of characters bounded
by the beginning of a line, by the end of a line, or by a blank or a tab.

When there is more than one input file, a grand total is also printed.

DIAGNOSTICS
none; arguments not found are ignored.

BUGS

- 1 -

-

WHO (I) 3/15/72 WHO (I)

NAME
who − who is on the system

SYNOPSIS
who [who-file]

DESCRIPTION
Who,without an argument, lists the name, typewriter channel, and login time for each current
UNIX user.

Without an argument,who examines the /tmp/utmp file to obtain its information. If a file is
given, that file is examined. Typically the given file will be /tmp/wtmp, which contains a record
of all the logins since it was created. Thenwho will list logins, logouts, and crashes since the
creation of the wtmp file.

Each login is listed with user name, typewriter name (with ‘/dev/’ suppressed), and date and
time. When an argument is given, logouts produce a similar line without a user name. Reboots
produce a line with ‘x’ in the place of the device name, and a fossil time indicative of when the
system went down.

FILES
/tmp/utmp

SEE ALSO
login(I), init(VII)

BUGS

- 1 -

-

WRITE (I) 8/5/73 WRITE (I)

NAME
write − write to another user

SYNOPSIS
write user [ttyno]

DESCRIPTION
Write copies lines from your typewriter to that of another user. When first called, it sends the
message

message from yourname...

The recipient of the message should write back at this point. Communication continues until an
end of file is read from the typewriter or an interrupt is sent. At that pointwrite writes ‘EOT’ on
the other terminal and exits.

If you want to write to a user who is logged in more than once, thettynoargument may be used
to indicate the last character of the appropriate typewriter name.

Permission to write may be denied or granted by use of themesgcommand. At the outset writ-
ing is allowed. Certain commands, in particularroff andpr, disallow messages in order to pre-
vent messy output.

If the character ‘!’ is found at the beginning of a line,write calls the mini-shellmshto execute
the rest of the line as a command.

The following protocol is suggested for usingwrite: when you first write to another user, wait
for him to write back before starting to send. Each party should end each message with a dis-
tinctive signal ((o) for ‘over’ is conventional) that the other may reply.(oo) (for ‘over and out’)
is suggested when conversation is about to be terminated.

FILES
/tmp/utmp to find user
/etc/msh to execute ‘!’

SEE ALSO
mesg(I), who(I)

BUGS

- 1 -

