
-

20BOOT (VIII) 10/31/73 20BOOT (VIII)

NAME
20boot − install new 11/20 system

SYNOPSIS
20boot

DESCRIPTION
This shell command file copies the current version of the 11/20 program used to run the VT01
display onto the /dev/vt0 file. The 11/20 should have been started at its ROM location 773000.

FILES
/dev/vt0, /usr/mdec/20.o (11/20 program)

SEE ALSO
vt (IV)

- 1 -

-

BOOT PROCEDURES (VIII) 11/1/73 BOOT PROCEDURES (VIII)

NAME
boot procedures − UNIX startup

DESCRIPTION
The advent of the new system has changed the boot procedures.These procedures apply only to
C-language systems.

How to start UNIX. UNIX is started by placing it in core starting at location zero and transfer-
ring to zero. There are various ways to do this. If UNIX is still intact after it has been running,
the most obvious method is simply to transfer to zero.

The tp command places a bootstrap program on the otherwise unused block zero of the tape.
The DECtape version of this program is calledtboot, the magtape versionmboot. If tboot or
mbootis read into location zero and executed there, it will type ‘=’ on the console, read in atp
entry name, load that entry into core, and transfer to zero. Thus the next easiest way to run
UNIX is to maintain the UNIX code on a tape usingtp. Then when a boot is required, execute
(somehow) a program which reads in and jumps to the first block of the tape. In response to the
‘=’ prompt, type the entry name of the system on the tape (we use plain ‘unix’). It is strongly
recommended that a current version of the system be maintained in this way, even if the first or
third methods of booting the system are usually used.

The standard DEC ROM which loads DECtape is sufficient to read intboot, but the magtape
ROM loads block one, not zero. If no suitable ROM is available, magtape and DECtape pro-
grams are presented below which may be manually placed in core and executed.

A third method of rebooting the system involves the otherwise unused block zero of each UNIX
file system. The single-block programubootwill read a UNIX pathname from the console, find
the corresponding file on a device, load that file into core location zero, and transfer to it. The
current version of this boot program reads a single character (eitherp or k for RP or RK, both
drive 0) to specify which device is to be searched.Ubootoperates under very severe space con-
straints. It supplies no prompts, except that it echos a carriage return and line feed after thep or
k. No diagnostic is provided if the indicated file cannot be found, nor is there any means of cor-
recting typographical errors in the file name except to start the program over.Ubootcan reside
on any of the standard file systems or may be loaded from atp tape as described above.

The standard DEC disk ROMs will load and executeubootfrom block zero.

The switches. The console switches play an important role in the use and especially the booting
of UNIX. During operation, the console switches are examined 60 times per second, and the
contents of the address specified by the switches are displayed in the display register. (This is
not true on the 11/40 since there is no display register on that machine.) If the switch address is
even, the address is interpreted in kernel (system) space; if odd, the rounded-down address is in-
terpreted in the current user space.

If any diagnostics are produced by the system, they are printed on the console only if the
switches are non-zero. Thus it is wise to have a non-zero value in the switches at all times.

During the startup of the system, theinit program (VIII) reads the switches and will come up
single-user if the switches are set to 173030.

It is unwise to have a non-existent address in the switches. This causes a bus error in the system
(displayed as 177777) at the rate of 60 times per second. If there is a transfer of more than 16ms
duration on a device with a data rate faster than the bus error timeout (approx 10µs) then a per-
manent disk non-existent-memory error will occur.

ROM programs. Here are some programs which are suitable for installing in read-only memo-
ries, or for manual keying into core if no ROM is present. Each program is position-independent
but should be placed well above location 0 so it will not be overwritten. Each reads a block from
the beginning of a device into core location zero. The octal words constituting the program are
listed on the left.

- 1 -

-

BOOT PROCEDURES (VIII) 11/1/73 BOOT PROCEDURES (VIII)

DECtape (drive 0) from endzone:
012700 mov $tcba,r0
177346
010040 mov r0,-(r0) / use tc addr for wc
012710 mov $3,(r0) / read bn forward
000003
105710 1: tstb (r0) / wait for ready
002376 bge 1b
112710 movb $5,(r0) / read (forward)
000005
000777 br . / loop; now halt and start at 0

DECtape (drive 0) with search:
012700 1: mov $tcba,r0
177346
010040 mov r0,-(r0) / use tc addr for wc
012740 mov $4003,-(r0) / read bn reverse
004003
005710 2: tst (r0)
002376 bge 2b / wait for error
005760 tst -2(r0) / loop if not end zone
177776
002365 bge 1b
012710 mov $3,(r0) / read bn forward
000003
105710 2: tstb (r0) / wait for ready
002376 bge 2b
112710 movb $5,(r0) / read (forward)
000005
105710 2: tstb (r0) / wait for ready
002376 bge 2b
005007 clr pc / transfer to zero

Caution: both of these DECtape programs will (literally) blow a fuse if 2 drives are dialed to
zero.

Magtape from load point:
012700 mov $mtcma,r0
172526
010040 mov r0,-(r0) / usr mt addr for wc
012740 mov $60003,-(r0) / read 9-track
060003
000777 br . / loop; now halt and start at 0

RK (drive 0):
012700 mov $rkmr,r0
177414
005040 clr -(r0)
005040 clr -(r0)
010040 mov r0,-(r0)
012740 mov $5,-(r0)
000005
105710 1: tstb (r0)
002376 bge 1b
005007 clr pc

RP (drive 0)
012700 mov $rpmr,r0
176726
005040 clr -(r0)

- 2 -

-

BOOT PROCEDURES (VIII) 11/1/73 BOOT PROCEDURES (VIII)

005040 clr -(r0)
005040 clr -(r0)
010040 mov r0,-(r0)
012740 mov $5,-(r0)
000005
105710 1: tstb (r0)
002376 bge 1b
005007 clr pc

FILES
/usr/sys/unix − UNIX code
/usr/mdec/mboot − tp magtape bootstrap
/usr/mdec/tboot − tp DECtape bootstrap
/usr/mdec/uboot − file system bootstrap

SEE ALSO
tp(I), init(VII)

- 3 -

-

CHECK (VIII) 8/31/73 CHECK (VIII)

NAME
check − file system consistency check

SYNOPSIS
check[−lsib [numbers]] [filesystem]

DESCRIPTION
Checkexamines a file system, builds a bit map of used blocks, and compares this bit map against
the free list maintained on the file system. It also reads directories and compares the link-count
in each i-node with the number of directory entries by which it is referenced. If the file system is
not specified, a check of a default file system is performed. The normal output ofcheckincludes
a report of

The number of blocks missing; i.e. not in any file nor in the free list,
The number of special files,
The total number of files,
The number of large files,
The number of directories,
The number of indirect blocks,
The number of blocks used in files,
The highest-numbered block appearing in a file,
The number of free blocks.

The−l flag causescheckto produce as part of its output report a list of the all the path names of
files on the file system. The list is in i-number order; the first name for each file gives the i-
number while subsequent names (i.e. links) have the i-number suppressed. The entries ‘‘.’’ and
‘‘ ..’’ for directories are also suppressed.

The−s flag causescheckto ignore the actual free list and reconstruct a new one by rewriting the
super-block of the file system. The file system should be dismounted while this is done; if this is
not possible (for example if the root file system has to be salvaged) care should be taken that the
system is quiescent and that it is rebooted immediately afterwards so that the old, bad in-core
copy of the super-block will not continue to be used. Notice also that the words in the super-
block which indicate the size of the free list and of the i-list are believed. If the super-block has
been curdled these words will have to be patched. The−s flag causes the normal output reports
to be suppressed.

The occurrence ofi n times in a flag argument−ii...i causescheckto store away the nextn argu-
ments which are taken to be i-numbers. When any of these i-numbers is encountered in a direc-
tory a diagnostic is produced, as described below, which indicates among other things the entry
name.

Likewise, n appearances ofb in a flag like −bb...b cause the nextn arguments to be taken as
block numbers which are remembered; whenever any of the named blocks turns up in a file, a di-
agnostic is produced.

FILES
Currently, /dev/rp0 is the default file system.

SEE ALSO
fs (V)

DIAGNOSTICS
There are some self-evident diagnostics like ‘‘can’t open ...’’, ‘‘can’t write’’ If a read error is
encountered, the block number of the bad block is printed andcheckexits. ‘‘Bad freeblock’’
means that a block number outside the available space was encountered in the free list. ‘‘n dups
in free’’ means thatn blocks were found in the free list which duplicate blocks either in some file
or in the earlier part of the free list.

An important class of diagnostics is produced by a routine which is called for each block which
is encountered in an i-node corresponding to an ordinary file or directory. These have the form

- 1 -

-

CHECK (VIII) 8/31/73 CHECK (VIII)

b# complaint; i= i# (class)

Hereb# is the block number being considered;complaintis the diagnostic itself. It may be

blk if the block number was mentioned as an argument after−b;
bad if the block number has a value not inside the allocatable space on the device, as indi-

cated by the devices’s super-block;
dup if the block number has already been seen in a file;
din if the block is a member of a directory, and if an entry is found therein whose i-number

is outside the range of the i-list on the device, as indicated by the i-list size specified
by the super-block. Unfortunately this diagnostic does not indicate the offending entry
name, but since the i-number of the directory itself is given (see below) the problem
can be tracked down.

The i# in the form above is the i-number in which the named block was found. Theclassis an
indicator of what type of block was involved in the difficulty:

sdir indicates that the block is a data block in a small file;
ldir indicates that the block is a data block in a large file (the indirect block number is not

available);
idir indicates that the block is an indirect block (pointing to data blocks) in a large file;
free indicates that the block was mentioned after−b and is free;
urk indicates a malfunction incheck.

When an i-number specified after−i is encountered while reading a directory, a report in the
form

ino; i= d# (class) name

wherei# is the requested i-number.d# is the i-number of the directory,classis the class of the
directory block as discussed above (virtually always ‘‘sdir’’) andnameis the entry name. This
diagnostic gives enough information to find a full path name for an i-number without using the-l
option: use−b n to find an entry name and the i-number of the directory containing the reference
to n, then recursively use−b on the i-number of the directory to find its name.

Another important class of file system diseases indicated bycheckis files for which the number
of directory entries does not agree with the link-count field of the i-node. The diagnostic is hard
to interpret. It has the form

i# delta

Here i# is the i-number affected.Delta is an octal number accumulated in a byte, and thus can
have the value 0 through 377(8). The easiest way (short of rewriting the routine) of explaining
the significance ofdelta is to describe how it is computed.

If the associated i-node is allocated (that is, has theallocatedbit on) add 100 todelta. If its
link-count is non-zero, add another 100 plus the link-count. Each time a directory entry specify-
ing the associated i-number is encountered, subtract 1 fromdelta. At the end, the i-number and
deltaare printed ifdelta is neither 0 nor 200. The first case indicates that the i-node was unallo-
cated and no entries for it appear; the second that it was allocated and that the link-count and the
number of directory entries agree.

Therefore (to explain the symptoms of the most common difficulties)delta = 377 (−1 in 8-bit,
2’s complement octal) means that there is a directory entry for an unallocated i-node. This is
somewhat serious and the entry should be be found and removed forthwith.Delta = 201 usually
means that a normal, allocated i-node has no directory entry. This difficulty is much less seri-
ous. Whatever blocks there are in the file are unavailable, but no further damage will occur if
nothing is done. Aclri followed by acheck −s will restore the lost space at leisure.

In general, values ofdelta equal to or somewhat above 0, 100, or 200 are relatively innocuous;
just below these numbers there is danger of spreading infection.

BUGS
Unfortunately,check−l on file systems with more than 3000 or so files does not work because it
runs out of core.

- 2 -

-

CHECK (VIII) 8/31/73 CHECK (VIII)

Sincecheckis inherently two-pass in nature, extraneous diagnostics may be produced if applied
to active file systems.

It believes even preposterous super-blocks and consequently can get core images.

- 3 -

-

CLRI (VIII) 10/31/73 CLRI (VIII)

NAME
clri − clear i-node

SYNOPSIS
clri i-number [filesystem]

DESCRIPTION
Clri writes zeros on the 32 bytes occupied by the i-node numberedi-number. If the file system
argument is given, the i-node resides on the given device, otherwise on a default file system.
The file system argument must be a special file name referring to a device containing a file sys-
tem. Afterclri, any blocks in the affected file will show up as ‘‘missing’’ in acheckof of the
file system.

Read and write permission is required on the specified file system device. The i-node becomes
allocatable.

The primary purpose of this routine is to remove a file which for some reason appears in no di-
rectory. If it is used to zap an i-node which does appear in a directory, care should be taken to
track down the entry and remove it. Otherwise, when the i-node is reallocated to some new file,
the old entry will still point to that file. At that point removing the old entry will destroy the new
file. The new entry will again point to an unallocated i-node, so the whole cycle is likely to be
repeated again and again.

BUGS
Whatever the default file system is, it is likely to be wrong. Specify the file system explicitly.

If the file is open,clri is likely to be ineffective.

- 1 -

-

DF (VIII) 1/20/73 DF (VIII)

NAME
df − disk free

SYNOPSIS
df [filesystem]

DESCRIPTION
Df prints out the number of free blocks available on a file system. If the file system is unspeci-
fied, the free space on all of the normally mounted file systems is printed.

FILES
/dev/rf?, /dev/rk?, /dev/rp?

SEE ALSO
check(VIII)

BUGS

- 1 -

-

DUMP (VIII) 11/24/73 DUMP (VIII)

NAME
dump − incremental file system dump

SYNOPSIS
dump [key [arguments] filesystem]

DESCRIPTION
Dumpwill make an incremental file system dump on magtape of all files changed after a certain
date. The argumentkey,specifies the date and other options about the dump.Key consists of
characters from the setiu0hds.

i the dump date is taken from the file/etc/ddate.

u the date just prior to this dump is written on/etc/ddateupon successful completion of this
dump.

0 the dump date is taken as the epoch (beginning of time). Thus this option causes an entire
file system dump to be taken.

h the dump date is some number of hours before the current date. The number of hours is
taken from the next argument inarguments.

d the dump date is some number of days before the current date. The number of days is tak-
en from the next argument inarguments.

s the size of the dump tape is specified in feet. The number of feet is taken from the next ar-
gument inarguments. It is assumed that there are 9 standard UNIX records per foot.
When the specified size is reached, the dump will wait for reels to be changed. The de-
fault size is 1700 feet.

If no arguments are given, thekey is assumed to bei and the file system is assumed to be
/dev/rp1.

Full dumps should be taken on quiet file systems as follows:

dump 0u /dev/rp1
check -l /dev/rp1

Thecheckwill come in handy in case it is necessary to resore indiviidual files from this dump.
Incremental dumps should then be taken when desired by:

dump

When the incremental dumps get cumbersome, a new complete dump should be taken. In this
way, a restore requires loading of the complete dump tape and only the latest incremental tape.

FILES
/dev/mt0magtape
/dev/rp1default file system
/etc/ddate

SEE ALSO
restor, check(VIII), dump(V)

BUGS

- 1 -

-

INO (VIII) 11/1/73 INO (VIII)

NAME
ino − get the i-number of a file

SYNOPSIS
ino file ...

DESCRIPTION
The i-number of each file argument is printed. An i-number of zero is printed if a bad argument
is given.

BUGS

- 1 -

-

MKFS (VIII) 11/1/73 MKFS (VIII)

NAME
mkfs − construct a file system

SYNOPSIS
/etc/mkfsspecial proto

DESCRIPTION
Mkfs constructs a file system by writing on the special filespecialaccording to the directions
found in the prototype fileproto. The prototype file contains tokens separated by spaces or new
lines. The first token is the name of a file to be copied onto block zero as the bootstrap program
(see boot procedures(VIII)). The second token is a number specifying the size of the created file
system. Typically it will be the number of blocks on the device, perhaps diminished by space for
swapping. The next token is the i-list size in blocks (remember there are 16 i-nodes per block).
The next set of tokens comprise the specification for the root file. File specifications consist of
tokens giving the mode, the user-id, the group id, and the initial contents of the file. The syntax
of the contents field depends on the mode.

The mode token for a file is a 6 character string. The first character specifies the type of the file.
(The characters−bcd specify regular, block special, character special and directory files respec-
tively.) The second character of the type is eitheru or − to specify set-user-id mode or not. The
third is g or − for the set-group-id mode. The rest of the mode is a three digit octal number giv-
ing the owner, group, and foreigner read, write, execute permissions (seechmod(I)).

Two decimal number tokens come after the mode; they specify the user and group ID’s of the
owner of the file.

If the file is a regular file, the next token is a pathname whence the contents and size are copied.

If the file is a block or character special file, two decimal number tokens follow which give the
major and minor device numbers.

If the file is a directory,mkfsmakes the entries. and.. and then reads a list of names and (recur-
sively) file specifications for the entries in the directory. The scan is terminated with the token
$.

If the prototype file cannot be opened and its name consists of a string of digits,mkfsbuilds a
file system with a single empty directory on it. The size of the file system is the value ofproto
interpreted as a decimal number. The i-list size is the file system size divided by 50. (This cor-
responds to an average size of three blocks per file.) The boot program is left uninitialized.

A sample prototype specification follows:

/usr/mdec/uboot
4872 55
d−−777 3 1
usr d−−777 3 1

sh −−−755 3 1 /bin/sh
ken d−−755 6 1

$
b0 b−−644 3 1 0 0
c0 c−−644 3 1 0 0
$

$

SEE ALSO
file system(V), directory(V), boot procedures(VIII)

DIAGNOSTICS
There are various diagnostics for syntax errors, inconsistent values, and sizes too small.

BUGS
It is not possible to initialize a file larger than 64K bytes.
The size of the file system is restricted to 64K blocks.

- 1 -

-

MKFS (VIII) 11/1/73 MKFS (VIII)

There should be some way to specify links.

- 2 -

-

MKNOD (VIII) 10/31/73 MKNOD (VIII)

NAME
mknod − build special file

SYNOPSIS
/etc/mknodname [c] [b] major minor

DESCRIPTION
Mknodmakes a directory entry and corresponding i-node for a special file. The first argument is
the nameof the entry. The second isb if the special file is block-type (disks, tape) orc if it is
character-type (other devices). The last two arguments are numbers specifying themajor device
type and theminor device (e.g. unit, drive, or line number).

The assignment of major device numbers is specific to each system. For reference, here are the
numbers for the MH 2C-644 machine. Do not believe them too much.

Block devices:
0 RF fixed-head disk
1 RK moving-head disk
2 TC DECtape
3 TM magtape
4 RP moving-head disk
5 Vermont Research moving-head disk

Character devices:
0 KL on-line console
1 DC communications lines
2 PC paper tape
3 DP synchronous interface
4 DN ACU interface
5 core memory
6 VT scope (via 11/20)
7 DA voice response unit
8 CT phototypesetter
9 VS voice synthesizer
10 TIU Spider interface

SEE ALSO
mknod (II)

BUGS

- 1 -

-

MOUNT (VIII) 10/31/73 MOUNT (VIII)

NAME
mount − mount file system

SYNOPSIS
/etc/mountspecial file

DESCRIPTION
Mountannounces to the system that a removable file system is present on the device correspond-
ing to special filespecial(which must refer to a disk or possibly DECtape). Thefile must exist
already; it becomes the name of the root of the newly mounted file system.

SEE ALSO
umount (VIII)

BUGS
Mounting file systems full of garbage can crash the system.

- 1 -

-

RELOC (VIII) 2/7/73 RELOC (VIII)

NAME
reloc − relocate object files

SYNOPSIS
reloc file octal [−]

DESCRIPTION
Relocmodifies the named object program file so that it will operate correctly at a different core
origin than the one for which it was assembled or loaded.

The new core origin is the old origin increased by the givenoctal number (or decreased if the
number has a ‘−’ sign).

If the object file was generated byld, the−r and−d options must have been given to preserve the
relocation information and define any common symbols in the file.

If the optional last argument is given, then anysetdinstruction at the start of the file will be re-
placed by a no-op.

The purpose of this command is to simplify the preparation of object programs for systems
which have no relocation hardware. It is hard to imagine a situation in which it would be useful
to attempt directly to execute a program treated byreloc.

SEE ALSO
as(I), ld(I), a.out(V)

BUGS

- 1 -

-

RESTOR (VIII) 11/24/73 RESTOR (VIII)

NAME
restor − incremental file system restore

SYNOPSIS
restor key [arguments]

DESCRIPTION
Restoris used to read magtapes dumped with thedumpcommand. Thekeyargument specifies
what is to be done.Key is a character from the settrxw.

t The date that the tape was made and the date that was specified in thedumpcommand are
printed. A list of all of the i-numbers on the tape are also given.

r The tape is read and loaded into the file system specified inarguments.This should not be
done lightly (see below).

x Each file on the tape is individually extracted into a file whose name is the file’s i-number.
If there arearguments,they are interpreted as i-numbers and only they are extracted.

w In conjunction with thex option, before each file is extracted, its i-number is typed out.
To extract this file, you must respond withy.

The r option should only be used to restore a complete dump tape onto a clear file system or to
restore an incremental dump tape onto this. Thus

/etc/mkfs /dev/rp0 40600
restor r /dev/rp0

is a typical sequence to restore a complete dump. Anotherrestor can be done to get an incre-
mental dump in on top of this.

A dumpfollowed by amkfsand arestor is used to change the size of a file system.

FILES
/dev/mt0

SEE ALSO
dump, mkfs, check, clri (VIII)

DIAGNOSTICS
There are various diagnostics involved with reading the tape and writing the disk. There are also
diagnostics if the i-list or the free list of the file system is not large enough to hold the dump.

BUGS
There is redundant information on the tape that could be used in case of tape reading problems.
Unfortunately,restor’sapproach is to exit if anything is wrong.

Files that have been deleted are not removed when incremental tapes are loaded. It will be nec-
essary tocheckthe restored file system andclri any files that show up with a 201 delta diagnos-
tic.

The current version ofrestor does not free space occupied by files that are overwritten. Thus a
checkwill have to be performed to reclain the missing space.

- 1 -

-

SU (VIII) 10/31/73 SU (VIII)

NAME
su − become privileged user

SYNOPSIS
su

DESCRIPTION
Suallows one to become the super-user, who has all sorts of marvelous (and correspondingly
dangerous) powers. In order forsu to do its magic, the user must supply a password. If the pass-
word is correct,su will execute the Shell with the UID set to that of the super-user. To restore
normal UID privileges, type an end-of-file to the super-user Shell.

The password demanded is that of the entry ‘‘root’’ in the system’s password file.

To remind the super-user of his responsibilities, the Shell substitutes ‘#’ for its usual prompt
‘%’.

SEE ALSO
sh (I)

- 1 -

-

SYNC (VIII) 11/1/73 SYNC (VIII)

NAME
sync − update the super block

SYNOPSIS
sync

DESCRIPTION
Syncexecutes thesyncsystem primitive. If the system is to be stopped,syncmust be called to
insure file system integrity. See sync(II) for details.

SEE ALSO
sync(II)

BUGS

- 1 -

-

UMOUNT (VIII) 10/31/73 UMOUNT (VIII)

NAME
umount − dismount file system

SYNOPSIS
/etc/umountspecial

DESCRIPTION
Umountannounces to the system that the removable file system previously mounted on special
file specialis to be removed.

SEE ALSO
mount (VIII)

DIAGNOSTICS
It complains if the special file is not mounted or if it is busy. The file system is busy if there is
an open file on it or if someone has his current directory there.

BUGS

- 1 -

-

UPDATE (VIII) 11/1/73 UPDATE (VIII)

NAME
update − periodically update the super block

SYNOPSIS
update

DESCRIPTION
Updateis a program that executes thesyncprimitive every 30 seconds. This insures that the file
system is fairly up to date in case of a crash. This command should not be executed directly, but
should be executed out of the initialization shell command file. See sync(II) for details.

SEE ALSO
sync(II), init(VII)

BUGS
There is a system bug which, it is suspected, may be aggravated by this program. Until further
notice,updateshould not be run.

- 1 -

