
-

UNIX PROGRAMMER’S MANUAL

Fourth Edition

K. Thompson

D. M. Ritchie

November, 1973

Copyright © 1972, 1973
Bell Telephone Laboratories, Inc.

No part of this document may be reproduced,
or distributed outside the Laboratories, without

the written permission of Bell Telephone Laboratories.

-

Copyright © 1972, 1973
Bell Telephone Laboratories, Incorporated

This manual was set by a Graphic Systems photo-
typesetter driven by thetroff formatting program op-
erating under theUNIX system. The text of the man-
ual was prepared using theedtext editor.

-

PREFACE
to the Fourth Edition

In the months since the last appearance of this manual, many changes have occurred both in the system it-
self and in the way it is used. The most important changes result from a complete rewrite of theUNIX sys-
tem in the C language. There have also been substantial changes in much of the system software. It is
these changes, of course, which mandated the new edition of this manual.

The number ofUNIX installations is now above 20, and many more are expected. None of these has exactly
the same complement of hardware or software. Therefore, at any particular installation, it is quite possible
that this manual will give inappropriate information. In particular,the information in this manual applies
only to UNIX systems which operate under the C language versions of the system.Installations which use
older versions ofUNIX will find earlier editions of this manual more appropriate to their situation.

Even in installations which have the latest versions of the operating system, not all the software and other
facilities mentioned herein will be available. For example, the typesetter, voice response unit, and voice
synthesizer are hardly universally available devices; also, some of theUNIX software has not been released
for use outside the Bell System.

The authors are grateful to L. L. Cherry, M. E. Lesk, E. N. Pinson, and C. S. Roberts for their contributions
to the system software, and to L. E. McMahon for software and for his contributions to this manual. We
are particularly appreciative of the invaluable technical, editorial, and administrative efforts of J. F. Os-
sanna, M. D. McIlroy, and R. Morris. They all contributed greatly to the stock ofUNIX software and to this
manual. Their inventiveness, thoughtful criticism, and ungrudging support increased immeasurably not
only whatever success theUNIX system enjoys, but also our own enjoyment in its creation.

i

-

INTRODUCTION TO THIS MANUAL

This manual gives descriptions of the publicly available features ofUNIX . It provides neither a general
overview (see ‘‘TheUNIX Time-sharing System’’ for that) nor details of the implementation of the system
(which remain to be disclosed).

Within the area it surveys, this manual attempts to be as complete and timely as possible. A conscious de-
cision was made to describe each program in exactly the state it was in at the time its manual section was
prepared. In particular, the desire to describe something as it should be, not as it is, was resisted. In-
evitably, this means that many sections will soon be out of date.

This manual is divided into eight sections:

I. Commands
II. System calls
III. Subroutines
IV. Special files
V. File formats
VI. User-maintained programs
VII. Miscellaneous
VIII. Maintenance

Commands are programs intended to be invoked directly by the user, in contradistinction to subroutines,
which are intended to be called by the user’s programs. Commands generally reside in directory/bin (for
binary programs). This directory is searched automatically by the command line interpreter. Some pro-
grams also reside in/ usr/ bin, to save space in/bin. Some programs classified as commands are located
elsewhere; this fact is indicated in the appropriate sections.

System calls are entries into theUNIX supervisor. In assembly language, they are coded with the use of the
opcodesys, a synonym for thetrap instruction. In this edition, the C language interface routines to the sys-
tem calls have been incorporated in section II.

A small assortment of subroutines is available; they are described in section III. The binary form of most
of them is kept in the system library/ lib/ liba.a. The subroutines available from C and from Fortran are
also included; they reside in/ lib/ libc.a and/ lib/ libf.a respectively.

The special files section IV discusses the characteristics of each system ‘‘file’’ which actually refers to an
I/O device. The names in this section refer to the DEC device names for the hardware, instead of the names
of the special files themselves.

The file formats section V documents the structure of particular kinds of files; for example, the form of the
output of the loader and assembler is given. Excluded are files used by only one command, for example the
assembler’s intermediate files.

User-maintained programs (section VI) are not considered part of theUNIX system, and the principal reason
for listing them is to indicate their existence without necessarily giving a complete description. The author
should be consulted for information.

The miscellaneous section (VII) gathers odds and ends.

Section VIII discusses commands which are not intended for use by the ordinary user, in some cases be-
cause they disclose information in which he is presumably not interested, and in others because they per-
form privileged functions.

Each section consists of a number of independent entries of a page or so each. The name of the entry is in
the upper corners of its pages, its preparation date in the upper middle. Entries within each section are al-
phabetized. The page numbers of each entry start at 1. (The earlier hope for frequent, partial updates of the

ii

-

manual is clearly in vain, but in any event it is not feasible to maintain consecutive page numbering in a
document like this.)

All entries are based on a common format, not all of whose subsections will always appear.

Thenamesection repeats the entry name and gives a very short description of its purpose.

The synopsissummarizes the use of the program being described. A few conventions are used,
particularly in the Commands section:

Boldfacewords are considered literals, and are typed just as they appear.

Square brackets ([]) around an argument indicate that the argument is optional. When
an argument is given as ‘‘name’’, it always refers to a file name.

Ellipses ‘‘. . .’’ are used to show that the previous argument-prototype may be repeated.

A final convention is used by the commands themselves. An argument beginning with a
minus sign ‘‘_’’ is often taken to mean some sort of flag argument even if it appears in a
position where a file name could appear. Therefore, it is unwise to have files whose
names begin with ‘‘_’’.

Thedescriptionsection discusses in detail the subject at hand.

Thefiles section gives the names of files which are built into the program.

A see alsosection gives pointers to related information.

A diagnosticssection discusses the diagnostic indications which may be produced. Messages
which are intended to be self-explanatory are not listed.

Thebugssection gives known bugs and sometimes deficiencies. Occasionally also the suggested
fix is described.

At the beginning of this document is a table of contents, organized by section and alphabetically within
each section. There is also a permuted index derived from the table of contents. Within each index entry,
the title of the writeup to which it refers is followed by the appropriate section number in parentheses. This
fact is important because there is considerable name duplication among the sections, arising principally
from commands which exist only to exercise a particular system call.

This manual was prepared using theUNIX text editoredand the formatting programtroff.

iii

-

HOW TO GET STARTED

This section provides the basic information you need to get started onUNIX : how to log in and log out, how
to communicate through your terminal, and how to run a program.

Logging in. You must callUNIX from an appropriate terminal.UNIX supportsASCII terminals typified by
theTTY 37, the GE Terminet 300, the Memorex 1240, and various graphical terminals. You must also have
a valid user name, which may be obtained, together with the telephone number, from the system adminis-
trators. The same telephone number serves terminals operating at all the standard speeds. After a data con-
nection is established, the login procedure depends on what kind of terminal you are using.

TTY 37 terminal: UNIX will type out ‘‘login: ’’; you respond with your user name. From theTTY

37 terminal, and any other which has the ‘‘new-line’’ function (combined carriage return and line-
feed), terminate each line you type with the ‘‘new-line’’ key (not the ‘‘return’’ key).

300-baud terminals: Such terminals include the GE Terminet 300, most display terminals, Exe-
cuport, TI, and certain Anderson-Jacobson terminals. These terminals generally have a speed
switch which should be set at ‘‘300’’ (or ‘‘30’’ for 30 characters per second) and a half/full duplex
switch which should be set at full-duplex. (Note that this switch will often have to be changed
since many other systems require half-duplex). When a connection is established, a few garbage
characters are typed (the login message at the wrong speed). Depress the ‘‘break’’ key; this is a
speed-independent signal toUNIX that a 300-baud terminal is in use.UNIX will type ‘‘login: ’’ at
the correct speed; you type your user name, followed by the ‘‘return’’ key. Henceforth, the ‘‘re-
turn’’, ‘‘new line’’, or ‘‘linefeed’’ keys will give exactly the same results.

For all these terminals, it is important that you type your name in lower case if possible; if you type upper
case letters,UNIX will assume that your terminal cannot generate lower-case letters and will translate all
subsequent upper-case letters to lower case.

The evidence that you have successfully logged in is that the Shell program will type a ‘‘%’’ to you. (The
Shell is described below under ‘‘How to run a program.’’)

For more information, consultgetty(VII), which discusses the login sequence in more detail, anddc (IV),
which discusses typewriter I/O.

Logging out. There are three ways to log out:

You can simply hang up the phone.

You can log out by typing an end-of-file indication (EOT character, control ‘‘d’’) to the Shell.
The Shell will terminate and the ‘‘login: ’’ message will appear again.

You can also log in directly as another user by giving alogin command (I).

How to communicate through your terminal. When you type toUNIX , a gnome deep in the system is gath-
ering your characters and saving them in a secret place. The characters will not be given to a program until
you type a return (or new-line), as described above inLogging in.

UNIX typewriter I/O is full-duplex. It has full read-ahead, which means that you can type at any time, even
while a program is typing at you. Of course, if you type during output, the output will have the input char-
acters interspersed. However, whatever you type will be saved up and interpreted in correct sequence.
There is a limit to the amount of read-ahead, but it is generous and not likely to be exceeded unless the sys-
tem is in trouble. When the read-ahead limit is exceeded, the system throws away all the saved characters.
(We reassure you that this doesn’t happen often.)

On a typewriter input line, the character ‘‘@’’ kills all the characters typed before it, so typing mistakes can
be repaired on a single line. Also, the character ‘‘#’’ erases the last character typed. Successive uses of
‘‘#’’ erase characters back to, but not beyond, the beginning of the line. ‘‘@’’ and ‘‘#’’ can be transmitted
to a program by preceding them with ‘‘\’’. (So, to erase ‘‘\’’, you need two ‘‘#’’s).

iv

-

TheASCII ‘‘delete’’ (a.k.a. ‘‘rubout’’) character is not passed to programs but instead generates aninterrupt
signal. This signal generally causes whatever program you are running to terminate. It is typically used to
stop a long printout that you don’t want. However, programs can arrange either to ignore this signal alto-
gether, or to be notified when it happens (instead of being terminated). The editor, for example, catches in-
terrupts and stops what it is doing, instead of terminating, so that an interrupt can be used to halt an editor
printout without losing the file being edited.

Thequit signal is generated by typing theASCII FS character. It not only causes a running program to ter-
minate but also generates a file with the core image of the terminated process. Quit is useful for debugging.

Besides adapting to the speed of the terminal,UNIX tries to be intelligent about whether you have a terminal
with the new-line function or whether it must be simulated with carriage-return and line-feed. In the latter
case, all input carriage returns are turned to new-line characters (the standard line delimiter) and both a car-
riage return and a line feed are echoed to the terminal. If you get into the wrong mode, thesttycommand
(I) will rescue you.

Tab characters are used freely inUNIX source programs. If your terminal does not have the tab function,
you can arrange to have them turned into spaces during output, and echoed as spaces during input. The sys-
tem assumes that tabs are set every eight columns. Again, thesttycommand (I) will set or reset this mode.
Also, there is a file which, if printed onTTY 37 or TermiNet 300 terminals, will set the tab stops correctly
(tabs(VII)).

Sectiondc (IV) discusses typewriter I/O more fully. Sectionkl (IV) discusses the console typewriter.

How to run a program; The Shell. When you have successfully logged intoUNIX , a program called the
Shell is listening to your terminal. The Shell reads typed-in lines, splits them up into a command name and
arguments, and executes the command. A command is simply an executable program. The Shell looks
first in your current directory (see next section) for a program with the given name, and if none is there,
then in a system directory. There is nothing special about system-provided commands except that they are
kept in a directory where the Shell can find them.

The command name is always the first word on an input line; it and its arguments are separated from one
another by spaces.

When a program terminates, the Shell will ordinarily regain control and type a ‘‘%’’ at you to indicate that
it is ready for another command.

The Shell has many other capabilities, which are described in detail in sectionsh(I).

The current directory. UNIX has a file system arranged in a hierarchy of directories. When the system ad-
ministrator gave you a user name, he also created a directory for you (ordinarily with the same name as
your user name). When you log in, any file name you type is by default in this directory. Since you are the
owner of this directory, you have full permissions to read, write, alter, or destroy its contents. Permissions
to have your will with other directories and files will have been granted or denied to you by their owners.
As a matter of observed fact, fewUNIX users protect their files from destruction, let alone perusal, by other
users.

To change the current directory (but not the set of permissions you were endowed with at login) usechdir
(I).

Path names. To refer to files not in the current directory, you must use a path name. Full path names be-
gin with ‘‘/’’, the name of the root directory of the whole file system. After the slash comes the name of
each directory containing the next sub-directory (followed by a ‘‘/’’) until finally the file name is reached.
E.g.: / usr/ lem/ filexrefers to the filefilex in the directorylem; lem is itself a subdirectory ofusr; usr
springs directly from the root directory.

If your current directory has subdirectories, the path names of files therein begin with the name of the sub-
directory (no prefixed ‘‘/’’).

Without important exception, a path name may be used anywhere a file name is required.

v

-

Important commands which modify the contents of files arecp (I), mv (I), and rm (I), which respectively
copy, move (i.e. rename) and remove files. To find out the status of files or directories, usels (I). See
mkdir (I) for making directories;rmdir (I) for destroying them.

For a fuller discussion of the file system, see ‘‘TheUNIX Time-Sharing System,’’ by the present authors, to
appear in the Communications of the ACM; a version is also available from the same source as this manual.
It may also be useful to glance through section II of this manual, which discusses system calls, even if you
don’t intend to deal with the system at the assembly-language level.

Writing a program. To enter the text of a source program into aUNIX file, useed (I). The three principal
languages inUNIX are assembly language (seeas (I)), Fortran (seefc (I)), and C (seecc (I)). After the pro-
gram text has been entered through the editor and written on a file, you can give the file to the appropriate
language processor as an argument. The output of the language processor will be left on a file in the cur-
rent directory named ‘‘a.out’’. (If the output is precious, usemv to move it to a less exposed name soon.)
If you wrote in assembly language, you will probably need to load the program with library subroutines;
seeld (I). The other two language processors call the loader automatically.

When you have finally gone through this entire process without provoking any diagnostics, the resulting
program can be run by giving its name to the Shell in response to the ‘‘%’’ prompt.

The next command you will need isdb (I). As a debugger,db is better than average for assembly-language
programs, marginally useful for C programs (when completed,cdb(I) will be a boon), and virtually useless
for Fortran.

Your programs can receive arguments from the command line just as system programs do. Seeexec(II).

Text processing. Almost all text is entered through the editor. The commands most often used to write
text on a terminal are:cat, pr, roff, nroff,andtroff, all in section I.

The cat command simply dumpsASCII text on the terminal, with no processing at all. Thepr command
paginates the text, supplies headings, and has a facility for multi-column output.Troff andnroff are elabo-
rate text formatting programs, and require careful forethought in entering both the text and the formatting
commands into the input file.Troff drives a Graphic Systems phototypesetter; it was used to produce this
manual. Nroff produces output on a typewriter terminal.Roff (I) is a somewhat less elaborate text format-
ting program, and requires somewhat less forethought.

Surprises. Certain commands provide inter-user communication. Even if you do not plan to use them, it
would be well to learn something about them, because someone else may aim them at you.

To communicate with another user currently logged in,write (I) is used;mail (I) will leave a message
whose presence will be announced to another user when he next logs in. The write-ups in the manual also
suggest how to respond to the two commands if you are a target.

When you log in, a message-of-the-day may greet you before the first ‘‘%’’.

vi

-

TABLE OF CONTENTS

I. COMMANDS

ar archive and library maintainer
as . assembler
bas . basic
cat . concatenate and print
catsim phototypesetter simulator
cc . C compiler
cdb . C debugger
chdir change working directory
chmod . change mode
chown . change owner
cmp . compare two files
comm print lines common to two files
cp . copy
cref make cross reference listing
date . print and set the date
db . debug
dc . desk calculator
dsw . delete interactively
du . summarize disk usage
echo . echo arguments
ed . editor
exit . terminate command file
fc . fortran compiler
fed edit associative memory for form letter
file . determine format of file
form . form letter generator
goto . command transfer
grep . search a file for a pattern
if . conditional command
kill . do in an unwanted process
ld . link editor
ln . make a link
login . sign onto UNIX
ls . list contents of directory
mail . send mail to another user
man run off section of UNIX manual
merge . merge several files
mesg . permit or deny messages
mkdir . make a directory
mv . move or rename a file
nice run a command at low priority
nm . print name list
nohup run a command immune to hangups
nroff . format text
od . octal dump
opr . off line print
passwd . set login password
pfe . print floating exception
plot . make a graph

vii

-

pr . print file
proof . compare two text files
ps . process status
rew . rewind tape
rm . remove (unlink) files
rmdir . remove directory
roff . format text
sh shell (command interpreter)
shift . adjust Shell arguments
size . size of an object file
sleep suspend execution for an interval
sno . Snobol interpreter
sort . sort a file
speak . word to voice translator
split . split a file into pieces
strip remove symbols and relocation bits
stty . set teletype options
sum . sum file
time . time a command
tp manipulate DECtape and magtape
tr . transliterate
troff . format text
tss . interface to MH-TSS
tty . get typewriter name
type . type on 2741
typo . find possible typos
uniq report repeated lines in a file
wait await completion of process
wc . get (English) word count
who . who is on the system
write . write to another user

II. SYSTEM CALLS

break . set program break
chdir change working directory
chmod . change mode of file
chown . change owner
close . close a file
creat . create a new file
csw . read console switches
dup duplicate an open file descriptor
exec . execute a file
exit . terminate process
fork . spawn new process
fstat . get status of open file
getgid . get group identification
getuid . get user identification
gtty . get typewriter status
indir . indirect system call
kill . send signal to a process
link . link to a file
mknod make a directory or a special file

viii

-

mount . mount file system
nice . set program priority
open open for reading or writing
pipe . create a pipe
read . read from file
seek . move read/write pointer
setgid . set process group ID
setuid . set process user ID
signal . catch or ignore signals
sleep stop execution for interval
stat . get file status
stime . set time
stty . set mode of typewriter
sync . update super-block
time . get date and time
times . get process times
umount . dismount file system
unlink . remove directory entry
wait . wait for process to die
write . write on a file

III. SUBROUTINES

atan . arc tangent function
atof . ascii to floating
compar default comparison routine for qsort
crypt . password encoding
ctime convert date and time to ASCII
ecvt . output conversion
exp . exponential function
fptrap . floating point interpreter
gerts Gerts communication over 201
getarg get command arguments from Fortran
getc . buffered input
getchar . read character
getpw . get name from UID
hmul . high-order product
hypot . calculate hypotenuse
ierror . catch Fortran errors
ldiv . long division
log . natural logarithm
mesg write message on typewriter
nargs . argument count
nlist . get entries from name list
perror . system error messages
pow . floating exponentiation
printf . formatted print
putc . buffered output
putchar . write character
qsort . quicker sort
rand . random number generator
reset . execute non-local goto
setfil specify Fortran file name

ix

-

sin . sine, cosine
sqrt . square root function
switch . switch on value
ttyn return name of current typewriter
vt . display (vt01) interface

IV. SPECIAL FILES

cat . phototypesetter interface
da . voice response unit
dc DC-11 communications interface
dn . dn11 ACU interface
dp dp11 201 data-phone interface
kl KL-11/TTY-33 console typewriter
mem . core memory
pc PC-11 paper tape reader/punch
rf RF11/RS11 fixed-head disk file
rk . RK-11/RK03 (or RK05) disk
rp RP-11/RP03 moving-head disk
tc . TC-11/TU56 DECtape
tiu . Spider interface
tm TM-11/TU-10 magtape interface
vs . voice synthesizer interface
vt . 11/20 (vt01) interface

V. FILE FORMATS

a.out assembler and link editor output
ar . archive (library) file format
core . format of core image file
dir . format of directories
fs . format of file system volume
passwd . password file
tp . DEC/mag tape formats
utmp . user information
wtmp . user login history

VI. USER MAINTAINED PROGRAMS

azel . obtain satellite predictions
bj . the game of black jack
cal . print calendar
chess . the game of chess
cubic three dimensional tic-tac-toe
factor discover prime factors of a number
hyphen find hyphenated words
m6 general purpose macro processor
maze . generate a maze problem
moo . guessing game
ov . overlay pages
ptx . permuted index
sfs . structured file scanner
sky . obtain ephemerides

x

-

spline . interpolate smooth curve
tmg . compiler-compiler
ttt . tic-tac-toe
wump . hunt the wumpus
yacc yet another compiler-compiler

VII. MISCELLANEOUS

ascii . map of ASCII character set
dpd . spawn data phone daemon
getty . set typewriter mode
glob generate command arguments
greek graphics for extended ascii type-box
init process control initialization
msh . mini-shell
tabs . set tab stops
tmheader . TM cover sheet
vs . voice synthesizer code

VIII. SYSTEM MAINTAINANCE

20boot . install new 11/20 system
boot procedures . UNIX startup
check file system consistency check
clri . clear i-node
df . disk free
dump incremental file system dump
ino . get the i-number of a file
mkfs . construct a file system
mknod . build special file
mount . mount file system
reloc . relocate object files
restor incremental file system restore
su . become privileged user
sync . update the super block
umount . dismount file system
update periodically update the super block

xi

-

PERMUTED INDEX

20boot(VIII) install new 11/20 system
vt(IV) 11/20 (vt01) interface

dp(IV) dp11 201 data-phone interface
gerts(III) Gerts communication over 201

20boot(VIII) install new 11/20 system
type(I) type on 2741

dn(IV) dn11 ACU interface
shift(I) adjust Shell arguments

yacc(VI) yet another compiler-compiler
mail(I) send mail to another user

write(I) write to another user
a.out(V) assembler and link editor output

atan(III) arc tangent function
ar(I) archive and library maintainer

ar(V) archive (library) file format
nargs(III) argument count

getarg(III) get command arguments from Fortran
echo(I) echo arguments

glob(VII) generate command arguments
shift(I) adjust Shell arguments

ar(I) archive and library maintainer
ar(V) archive (library) file format

ascii(VII) map of ASCII character set
atof(III) ascii to floating

greek(VII) graphics for extended ascii type-box
ctime(III) convert date and time to ASCII

ascii(VII) map of ASCII character set
as(I) assembler

a.out(V) assembler and link editor output
as(I) assembler

fed(I) edit associative memory for form letter
nice(I) run a command at low priority

atan(III) arc tangent function
atof(III) ascii to floating

wait(I) await completion of process
azel(VI) obtain satellite predictions
bas(I) basic

bas(I) basic
su(VIII) become privileged user

strip(I) remove symbols and relocation bits
bj(VI) the game of black jack

bj(VI) the game of black jack
sync(VIII) update the super block

update(VIII) periodically update the super block
boot procedures(VIII) UNIX startup

break(II) set program break
break(II) set program break

getc(III) buffered input
putc(III) buffered output

mknod(VIII) build special file
cc(I) C compiler

xii

-

cdb(I) C debugger
hypot(III) calculate hypotenuse
dc(I) desk calculator

cal(VI) print calendar
indir(II) indirect system call

cal(VI) print calendar
ierror(III) catch Fortran errors
signal(II) catch or ignore signals

cat(I) concatenate and print
cat(IV) phototypesetter interface
catsim(I) phototypesetter simulator
cc(I) C compiler
cdb(I) C debugger

chmod(II) change mode of file
chmod(I) change mode
chown(I) change owner

chown(II) change owner
chdir(I) change working directory

chdir(II) change working directory
ascii(VII) map of ASCII character set

getchar(III) read character
putchar(III) write character

chdir(I) change working directory
chdir(II) change working directory

check(VIII) file system consistency check
check(VIII) file system consistency check

chess(VI) the game of chess
chess(VI) the game of chess
chmod(I) change mode
chmod(II) change mode of file
chown(I) change owner
chown(II) change owner

clri(VIII) clear i-node
close(II) close a file

close(II) close a file
clri(VIII) clear i-node
cmp(I) compare two files

vs(VII) voice synthesizer code
getarg(III) get command arguments from Fortran

glob(VII) generate command arguments
nice(I) run a command at low priority

exit(I) terminate command file
nohup(I) run a command immune to hangups

sh(I) shell (command interpreter)
goto(I) command transfer

if(I) conditional command
time(I) time a command

comm(I) print lines common to two files
comm(I) print lines common to two files

gerts(III) Gerts communication over 201
dc(IV) DC-11 communications interface

cmp(I) compare two files
proof(I) compare two text files

xiii

-

compar(III) default comparison routine for qsort
compar(III) default comparison routine for qsort

cc(I) C compiler
tmg(VI) compiler-compiler

yacc(VI) yet another compiler-compiler
fc(I) fortran compiler

wait(I) await completion of process
cat(I) concatenate and print
if(I) conditional command

check(VIII) file system consistency check
csw(II) read console switches

kl(IV) KL-11/TTY-33 console typewriter
mkfs(VIII) construct a file system

ls(I) list contents of directory
init(VII) process control initialization
ecvt(III) output conversion

ctime(III) convert date and time to ASCII
cp(I) copy

core(V) format of core image file
mem(IV) core memory

core(V) format of core image file
sin(III) sine, cosine

nargs(III) argument count
wc(I) get (English) word count

tmheader(VII) TM cover sheet
cp(I) copy

creat(II) create a new file
pipe(II) create a pipe

creat(II) create a new file
cref(I) make cross reference listing

cref(I) make cross reference listing
crypt(III) password encoding
csw(II) read console switches
ctime(III) convert date and time to ASCII
cubic(VI) three dimensional tic-tac-toe

ttyn(III) return name of current typewriter
spline(VI) interpolate smooth curve

dpd(VII) spawn data phone daemon
da(IV) voice response unit

dpd(VII) spawn data phone daemon
dp(IV) dp11 201 data-phone interface

ctime(III) convert date and time to ASCII
time(II) get date and time

date(I) print and set the date
date(I) print and set the date
db(I) debug

dc(IV) DC-11 communications interface
dc(I) desk calculator
dc(IV) DC-11 communications interface

db(I) debug
cdb(I) C debugger

tp(V) DEC/mag tape formats
tp(I) manipulate DECtape and magtape

xiv

-

tc(IV) TC-11/TU56 DECtape
compar(III) default comparison routine for qsort

dsw(I) delete interactively
mesg(I) permit or deny messages

dup(II) duplicate an open file descriptor
dc(I) desk calculator

file(I) determine format of file
df(VIII) disk free

wait(II) wait for process to die
cubic(VI) three dimensional tic-tac-toe

dir(V) format of directories
unlink(II) remove directory entry
mknod(II) make a directory or a special file

chdir(I) change working directory
chdir(II) change working directory

ls(I) list contents of directory
mkdir(I) make a directory
rmdir(I) remove directory

dir(V) format of directories
factor(VI) discover prime factors of a number

rf(IV) RF11/RS11 fixed-head disk file
df(VIII) disk free

du(I) summarize disk usage
rk(IV) RK-11/RK03 (or RK05) disk

rp(IV) RP-11/RP03 moving-head disk
umount(II) dismount file system

umount(VIII) dismount file system
vt(III) display (vt01) interface

ldiv(III) long division
dn(IV) dn11 ACU interface

dn(IV) dn11 ACU interface
kill(I) do in an unwanted process

dp(IV) dp11 201 data-phone interface
dpd(VII) spawn data phone daemon
dp(IV) dp11 201 data-phone interface
dsw(I) delete interactively
du(I) summarize disk usage

dump(VIII) incremental file system dump
od(I) octal dump

dump(VIII) incremental file system dump
dup(II) duplicate an open file descriptor

dup(II) duplicate an open file descriptor
echo(I) echo arguments

echo(I) echo arguments
ecvt(III) output conversion
ed(I) editor

fed(I) edit associative memory for form letter
a.out(V) assembler and link editor output

ed(I) editor
ld(I) link editor

crypt(III) password encoding
wc(I) get (English) word count

nlist(III) get entries from name list

xv

-

unlink(II) remove directory entry
sky(VI) obtain ephemerides

perror(III) system error messages
ierror(III) catch Fortran errors

pfe(I) print floating exception
exec(II) execute a file

exec(II) execute a file
reset(III) execute non-local goto

sleep(I) suspend execution for an interval
sleep(II) stop execution for interval

exit(I) terminate command file
exit(II) terminate process
exp(III) exponential function

exp(III) exponential function
pow(III) floating exponentiation

greek(VII) graphics for extended ascii type-box
factor(VI) discover prime factors of a number

factor(VI) discover prime factors of a number
fc(I) fortran compiler
fed(I) edit associative memory for form letter

dup(II) duplicate an open file descriptor
grep(I) search a file for a pattern

ar(V) archive (library) file format
split(I) split a file into pieces

setfil(III) specify Fortran file name
sfs(VI) structured file scanner

stat(II) get file status
check(VIII) file system consistency check

dump(VIII) incremental file system dump
restor(VIII) incremental file system restore

fs(V) format of file system volume
mkfs(VIII) construct a file system

mount(II) mount file system
mount(VIII) mount file system

umount(II) dismount file system
umount(VIII) dismount file system

chmod(II) change mode of file
close(II) close a file

core(V) format of core image file
creat(II) create a new file

exec(II) execute a file
exit(I) terminate command file
file(I) determine format of file
fstat(II) get status of open file

file(I) determine format of file
ino(VIII) get the i-number of a file

link(II) link to a file
mknod(II) make a directory or a special file

mknod(VIII) build special file
mv(I) move or rename a file

passwd(V) password file
pr(I) print file

read(II) read from file

xvi

-

rf(IV) RF11/RS11 fixed-head disk file
cmp(I) compare two files

comm(I) print lines common to two files
size(I) size of an object file
merge(I) merge several files

sort(I) sort a file
proof(I) compare two text files
reloc(VIII) relocate object files

rm(I) remove (unlink) files
sum(I) sum file

uniq(I) report repeated lines in a file
write(II) write on a file

hyphen(VI) find hyphenated words
typo(I) find possible typos

rf(IV) RF11/RS11 fixed-head disk file
pfe(I) print floating exception

pow(III) floating exponentiation
fptrap(III) floating point interpreter

atof(III) ascii to floating
fork(II) spawn new process

form(I) form letter generator
fed(I) edit associative memory for form letter

core(V) format of core image file
dir(V) format of directories
fs(V) format of file system volume

file(I) determine format of file
nroff(I) format text
roff(I) format text

troff(I) format text
ar(V) archive (library) file format

tp(V) DEC/mag tape formats
printf(III) formatted print

form(I) form letter generator
fc(I) fortran compiler

ierror(III) catch Fortran errors
setfil(III) specify Fortran file name

getarg(III) get command arguments from Fortran
fptrap(III) floating point interpreter

df(VIII) disk free
read(II) read from file

getarg(III) get command arguments from Fortran
nlist(III) get entries from name list
getpw(III) get name from UID

fstat(II) get status of open file
fs(V) format of file system volume

atan(III) arc tangent function
exp(III) exponential function
sqrt(III) square root function

bj(VI) the game of black jack
chess(VI) the game of chess

moo(VI) guessing game
m6(VI) general purpose macro processor

maze(VI) generate a maze problem

xvii

-

glob(VII) generate command arguments
form(I) form letter generator

rand(III) random number generator
gerts(III) Gerts communication over 201

gerts(III) Gerts communication over 201
getarg(III) get command arguments from Fortran

time(II) get date and time
wc(I) get (English) word count

nlist(III) get entries from name list
stat(II) get file status

getgid(II) get group identification
getpw(III) get name from UID

times(II) get process times
fstat(II) get status of open file

ino(VIII) get the i-number of a file
tty(I) get typewriter name

gtty(II) get typewriter status
getuid(II) get user identification

getarg(III) get command arguments from Fortran
getchar(III) read character
getc(III) buffered input
getgid(II) get group identification
getpw(III) get name from UID
getty(VII) set typewriter mode
getuid(II) get user identification
glob(VII) generate command arguments
goto(I) command transfer

reset(III) execute non-local goto
greek(VII) graphics for extended ascii type-box

plot(I) make a graph
greek(VII) graphics for extended ascii type-box
grep(I) search a file for a pattern

getgid(II) get group identification
setgid(II) set process group ID

gtty(II) get typewriter status
moo(VI) guessing game

nohup(I) run a command immune to hangups
hmul(III) high-order product

wtmp(V) user login history
hmul(III) high-order product

wump(VI) hunt the wumpus
hyphen(VI) find hyphenated words

hyphen(VI) find hyphenated words
hypot(III) calculate hypotenuse

hypot(III) calculate hypotenuse
getgid(II) get group identification

getuid(II) get user identification
setgid(II) set process group ID

setuid(II) set process user ID
ierror(III) catch Fortran errors
if(I) conditional command

signal(II) catch or ignore signals
core(V) format of core image file

xviii

-

nohup(I) run a command immune to hangups
uniq(I) report repeated lines in a file

kill(I) do in an unwanted process
dump(VIII) incremental file system dump
restor(VIII) incremental file system restore

ptx(VI) permuted index
indir(II) indirect system call

indir(II) indirect system call
utmp(V) user information

init(VII) process control initialization
init(VII) process control initialization

clri(VIII) clear i-node
ino(VIII) get the i-number of a file

getc(III) buffered input
20boot(VIII) install new 11/20 system
dsw(I) delete interactively

tss(I) interface to MH-TSS
cat(IV) phototypesetter interface

dc(IV) DC-11 communications interface
dn(IV) dn11 ACU interface

dp(IV) dp11 201 data-phone interface
tiu(IV) Spider interface

tm(IV) TM-11/TU-10 magtape interface
vs(IV) voice synthesizer interface

vt(III) display (vt01) interface
vt(IV) 11/20 (vt01) interface

spline(VI) interpolate smooth curve
fptrap(III) floating point interpreter

sh(I) shell (command interpreter)
sno(I) Snobol interpreter

sleep(I) suspend execution for an interval
sleep(II) stop execution for interval

split(I) split a file into pieces
ino(VIII) get the i-number of a file

bj(VI) the game of black jack
kill(I) do in an unwanted process
kill(II) send signal to a process

kl(IV) KL-11/TTY-33 console typewriter
kl(IV) KL-11/TTY-33 console typewriter
ld(I) link editor
ldiv(III) long division

form(I) form letter generator
fed(I) edit associative memory for form letter

ar(V) archive (library) file format
ar(I) archive and library maintainer

opr(I) off line print
comm(I) print lines common to two files

uniq(I) report repeated lines in a file
a.out(V) assembler and link editor output

ld(I) link editor
link(II) link to a file

link(II) link to a file
ln(I) make a link

xix

-

ls(I) list contents of directory
cref(I) make cross reference listing

nlist(III) get entries from name list
nm(I) print name list

ln(I) make a link
log(III) natural logarithm

log(III) natural logarithm
wtmp(V) user login history
passwd(I) set login password

login(I) sign onto UNIX
ldiv(III) long division

nice(I) run a command at low priority
ls(I) list contents of directory
m6(VI) general purpose macro processor

m6(VI) general purpose macro processor
tm(IV) TM-11/TU-10 magtape interface

tp(I) manipulate DECtape and magtape
mail(I) send mail to another user

mail(I) send mail to another user
ar(I) archive and library maintainer

mknod(II) make a directory or a special file
mkdir(I) make a directory

plot(I) make a graph
ln(I) make a link

cref(I) make cross reference listing
man(I) run off section of UNIX manual

tp(I) manipulate DECtape and magtape
man(I) run off section of UNIX manual

ascii(VII) map of ASCII character set
maze(VI) generate a maze problem

maze(VI) generate a maze problem
mem(IV) core memory

fed(I) edit associative memory for form letter
mem(IV) core memory

merge(I) merge several files
merge(I) merge several files
mesg(I) permit or deny messages
mesg(III) write message on typewriter

mesg(III) write message on typewriter
mesg(I) permit or deny messages
perror(III) system error messages

tss(I) interface to MH-TSS
msh(VII) mini-shell

mkdir(I) make a directory
mkfs(VIII) construct a file system
mknod(II) make a directory or a special file
mknod(VIII) build special file

chmod(II) change mode of file
stty(II) set mode of typewriter

chmod(I) change mode
getty(VII) set typewriter mode

moo(VI) guessing game
mount(II) mount file system

xx

-

mount(VIII) mount file system
mount(II) mount file system
mount(VIII) mount file system

mv(I) move or rename a file
seek(II) move read/write pointer

rp(IV) RP-11/RP03 moving-head disk
msh(VII) mini-shell
mv(I) move or rename a file

getpw(III) get name from UID
nlist(III) get entries from name list

nm(I) print name list
ttyn(III) return name of current typewriter

setfil(III) specify Fortran file name
tty(I) get typewriter name

nargs(III) argument count
log(III) natural logarithm

20boot(VIII) install new 11/20 system
creat(II) create a new file

fork(II) spawn new process
nice(I) run a command at low priority
nice(II) set program priority
nlist(III) get entries from name list
nm(I) print name list
nohup(I) run a command immune to hangups

reset(III) execute non-local goto
nroff(I) format text

rand(III) random number generator
factor(VI) discover prime factors of a number

size(I) size of an object file
reloc(VIII) relocate object files

sky(VI) obtain ephemerides
azel(VI) obtain satellite predictions

od(I) octal dump
od(I) octal dump

opr(I) off line print
man(I) run off section of UNIX manual

login(I) sign onto UNIX
dup(II) duplicate an open file descriptor
fstat(II) get status of open file

open(II) open for reading or writing
open(II) open for reading or writing
opr(I) off line print

stty(I) set teletype options
rk(IV) RK-11/RK03 (or RK05) disk

ecvt(III) output conversion
a.out(V) assembler and link editor output

putc(III) buffered output
gerts(III) Gerts communication over 201

ov(VI) overlay pages
ov(VI) overlay pages

chown(I) change owner
chown(II) change owner

ov(VI) overlay pages

xxi

-

pc(IV) PC-11 paper tape reader/punch
passwd(I) set login password
passwd(V) password file

crypt(III) password encoding
passwd(V) password file

passwd(I) set login password
grep(I) search a file for a pattern

pc(IV) PC-11 paper tape reader/punch
pc(IV) PC-11 paper tape reader/punch

update(VIII) periodically update the super block
mesg(I) permit or deny messages
ptx(VI) permuted index

perror(III) system error messages
pfe(I) print floating exception

dpd(VII) spawn data phone daemon
cat(IV) phototypesetter interface

catsim(I) phototypesetter simulator
split(I) split a file into pieces

pipe(II) create a pipe
pipe(II) create a pipe

plot(I) make a graph
fptrap(III) floating point interpreter

seek(II) move read/write pointer
typo(I) find possible typos

pow(III) floating exponentiation
azel(VI) obtain satellite predictions

pr(I) print file
factor(VI) discover prime factors of a number

date(I) print and set the date
cal(VI) print calendar

pr(I) print file
pfe(I) print floating exception

comm(I) print lines common to two files
nm(I) print name list

cat(I) concatenate and print
printf(III) formatted print

opr(I) off line print
printf(III) formatted print

nice(I) run a command at low priority
nice(II) set program priority

su(VIII) become privileged user
maze(VI) generate a maze problem

boot procedures(VIII) UNIX startup
init(VII) process control initialization

setgid(II) set process group ID
ps(I) process status

times(II) get process times
wait(II) wait for process to die

setuid(II) set process user ID
exit(II) terminate process

fork(II) spawn new process
kill(I) do in an unwanted process

kill(II) send signal to a process

xxii

-

m6(VI) general purpose macro processor
wait(I) await completion of process

hmul(III) high-order product
break(II) set program break
nice(II) set program priority

proof(I) compare two text files
ps(I) process status
ptx(VI) permuted index

m6(VI) general purpose macro processor
putchar(III) write character
putc(III) buffered output

compar(III) default comparison routine for qsort
qsort(III) quicker sort

qsort(III) quicker sort
rand(III) random number generator

rand(III) random number generator
getchar(III) read character

csw(II) read console switches
read(II) read from file

pc(IV) PC-11 paper tape reader/punch
read(II) read from file

open(II) open for reading or writing
seek(II) move read/write pointer

cref(I) make cross reference listing
reloc(VIII) relocate object files

strip(I) remove symbols and relocation bits
reloc(VIII) relocate object files

unlink(II) remove directory entry
rmdir(I) remove directory
strip(I) remove symbols and relocation bits

rm(I) remove (unlink) files
mv(I) move or rename a file
uniq(I) report repeated lines in a file

uniq(I) report repeated lines in a file
reset(III) execute non-local goto

da(IV) voice response unit
restor(VIII) incremental file system restore

restor(VIII) incremental file system restore
ttyn(III) return name of current typewriter

rew(I) rewind tape
rew(I) rewind tape
rf(IV) RF11/RS11 fixed-head disk file

rf(IV) RF11/RS11 fixed-head disk file
rk(IV) RK-11/RK03 (or RK05) disk

rk(IV) RK-11/RK03 (or RK05) disk
rk(IV) RK-11/RK03 (or RK05) disk
rmdir(I) remove directory
rm(I) remove (unlink) files
roff(I) format text

sqrt(III) square root function
compar(III) default comparison routine for qsort

rp(IV) RP-11/RP03 moving-head disk
rp(IV) RP-11/RP03 moving-head disk

xxiii

-

nice(I) run a command at low priority
nohup(I) run a command immune to hangups

man(I) run off section of UNIX manual
azel(VI) obtain satellite predictions

sfs(VI) structured file scanner
grep(I) search a file for a pattern

man(I) run off section of UNIX manual
seek(II) move read/write pointer

mail(I) send mail to another user
kill(II) send signal to a process

passwd(I) set login password
stty(II) set mode of typewriter

setgid(II) set process group ID
setuid(II) set process user ID
break(II) set program break
nice(II) set program priority

tabs(VII) set tab stops
stty(I) set teletype options

date(I) print and set the date
stime(II) set time

getty(VII) set typewriter mode
ascii(VII) map of ASCII character set

setfil(III) specify Fortran file name
setgid(II) set process group ID
setuid(II) set process user ID

merge(I) merge several files
sfs(VI) structured file scanner

tmheader(VII) TM cover sheet
shift(I) adjust Shell arguments

sh(I) shell (command interpreter)
sh(I) shell (command interpreter)
shift(I) adjust Shell arguments

login(I) sign onto UNIX
kill(II) send signal to a process

signal(II) catch or ignore signals
signal(II) catch or ignore signals
catsim(I) phototypesetter simulator

sin(III) sine, cosine
sin(III) sine, cosine

size(I) size of an object file
size(I) size of an object file
sky(VI) obtain ephemerides
sleep(I) suspend execution for an interval
sleep(II) stop execution for interval

spline(VI) interpolate smooth curve
sno(I) Snobol interpreter

sno(I) Snobol interpreter
sort(I) sort a file

sort(I) sort a file
qsort(III) quicker sort

dpd(VII) spawn data phone daemon
fork(II) spawn new process

speak(I) word to voice translator

xxiv

-

mknod(II) make a directory or a special file
mknod(VIII) build special file

setfil(III) specify Fortran file name
tiu(IV) Spider interface

spline(VI) interpolate smooth curve
split(I) split a file into pieces

split(I) split a file into pieces
sqrt(III) square root function

sqrt(III) square root function
boot procedures(VIII) UNIX startup

stat(II) get file status
fstat(II) get status of open file

gtty(II) get typewriter status
ps(I) process status

stat(II) get file status
stime(II) set time

sleep(II) stop execution for interval
tabs(VII) set tab stops

strip(I) remove symbols and relocation bits
sfs(VI) structured file scanner

stty(I) set teletype options
stty(II) set mode of typewriter

sum(I) sum file
sum(I) sum file

du(I) summarize disk usage
sync(VIII) update the super block

update(VIII) periodically update the super block
sync(II) update super-block

sleep(I) suspend execution for an interval
su(VIII) become privileged user

switch(III) switch on value
csw(II) read console switches

switch(III) switch on value
strip(I) remove symbols and relocation bits

sync(II) update super-block
sync(VIII) update the super block

vs(VII) voice synthesizer code
vs(IV) voice synthesizer interface

indir(II) indirect system call
check(VIII) file system consistency check

dump(VIII) incremental file system dump
perror(III) system error messages

restor(VIII) incremental file system restore
fs(V) format of file system volume

20boot(VIII) install new 11/20 system
mkfs(VIII) construct a file system

mount(II) mount file system
mount(VIII) mount file system

umount(II) dismount file system
umount(VIII) dismount file system

who(I) who is on the system
tabs(VII) set tab stops

tabs(VII) set tab stops

xxv

-

atan(III) arc tangent function
tp(V) DEC/mag tape formats

pc(IV) PC-11 paper tape reader/punch
rew(I) rewind tape

tc(IV) TC-11/TU56 DECtape
tc(IV) TC-11/TU56 DECtape

stty(I) set teletype options
exit(I) terminate command file

exit(II) terminate process
proof(I) compare two text files

nroff(I) format text
roff(I) format text

troff(I) format text
cubic(VI) three dimensional tic-tac-toe

cubic(VI) three dimensional tic-tac-toe
ttt(VI) tic-tac-toe
time(I) time a command

ctime(III) convert date and time to ASCII
time(I) time a command
time(II) get date and time
times(II) get process times

stime(II) set time
times(II) get process times
time(II) get date and time

tiu(IV) Spider interface
tmheader(VII) TM cover sheet

tm(IV) TM-11/TU-10 magtape interface
tmg(VI) compiler-compiler
tmheader(VII) TM cover sheet
tm(IV) TM-11/TU-10 magtape interface
tp(I) manipulate DECtape and magtape
tp(V) DEC/mag tape formats

goto(I) command transfer
speak(I) word to voice translator

tr(I) transliterate
tr(I) transliterate
troff(I) format text
tss(I) interface to MH-TSS
ttt(VI) tic-tac-toe
tty(I) get typewriter name
ttyn(III) return name of current typewriter

cmp(I) compare two files
comm(I) print lines common to two files

proof(I) compare two text files
type(I) type on 2741

greek(VII) graphics for extended ascii type-box
type(I) type on 2741

getty(VII) set typewriter mode
tty(I) get typewriter name

gtty(II) get typewriter status
kl(IV) KL-11/TTY-33 console typewriter

mesg(III) write message on typewriter
stty(II) set mode of typewriter

xxvi

-

ttyn(III) return name of current typewriter
typo(I) find possible typos

typo(I) find possible typos
getpw(III) get name from UID

umount(II) dismount file system
umount(VIII) dismount file system
uniq(I) report repeated lines in a file

da(IV) voice response unit
man(I) run off section of UNIX manual

boot procedures(VIII) UNIX startup
login(I) sign onto UNIX

rm(I) remove (unlink) files
unlink(II) remove directory entry

kill(I) do in an unwanted process
sync(II) update super-block

sync(VIII) update the super block
update(VIII) periodically update the super block

update(VIII) periodically update the super block
du(I) summarize disk usage

getuid(II) get user identification
setuid(II) set process user ID

utmp(V) user information
wtmp(V) user login history

mail(I) send mail to another user
su(VIII) become privileged user

write(I) write to another user
utmp(V) user information

switch(III) switch on value
da(IV) voice response unit

vs(VII) voice synthesizer code
vs(IV) voice synthesizer interface

speak(I) word to voice translator
fs(V) format of file system volume

vs(IV) voice synthesizer interface
vs(VII) voice synthesizer code

vt(III) display (vt01) interface
vt(IV) 11/20 (vt01) interface

vt(III) display (vt01) interface
vt(IV) 11/20 (vt01) interface

wait(II) wait for process to die
wait(I) await completion of process
wait(II) wait for process to die
wc(I) get (English) word count

who(I) who is on the system
who(I) who is on the system

wc(I) get (English) word count
speak(I) word to voice translator

hyphen(VI) find hyphenated words
chdir(I) change working directory

chdir(II) change working directory
putchar(III) write character

mesg(III) write message on typewriter
write(II) write on a file

xxvii

-

write(I) write to another user
write(I) write to another user
write(II) write on a file

open(II) open for reading or writing
wtmp(V) user login history

wump(VI) hunt the wumpus
wump(VI) hunt the wumpus
yacc(VI) yet another compiler-compiler

yacc(VI) yet another compiler-compiler

xxviii

-

AR (I) 3/15/72 AR (I)

NAME
ar − archive and library maintainer

SYNOPSIS
ar key afile name ...

DESCRIPTION
Ar maintains groups of files combined into a single archive file. Its main use is to create and up-
date library files as used by the loader. It can be used, though, for any similar purpose.

Key is one character from the setdrtux, optionally concatenated withv. Afile is the archive file.
Thenamesare constituent files in the archive file. The meanings of thekeycharacters are:

d means delete the named files from the archive file.

r means replace the named files in the archive file. If the archive file does not exist,r will create
it. If the named files are not in the archive file, they are appended.

t prints a table of contents of the archive file. If no names are given, all files in the archive are
tabled. If names are given, only those files are tabled.

u is similar to r except that only those files that have been modified are replaced. If no names
are given, all files in the archive that have been modified will be replaced by the modified ver-
sion.

x will extract the named files. If no names are given, all files in the archive are extracted. In
neither case doesx alter the archive file.

v means verbose. Under the verbose option,ar gives a file-by-file description of the making of a
new archive file from the old archive and the constituent files. The following abbreviations are
used:

c copy
a append
d delete
r replace
x extract

FILES
/tmp/vtm? temporary

SEE ALSO
ld(I), archive(V)

BUGS
Option tv should be implemented as a table with more information.

There should be a way to specify the placement of a new file in an archive. Currently, it is
placed at the end.

Sincear has not been rewritten to deal properly with the new file system modes, extracted files
have mode 666.

- 1 -

-

AS (I) 1/15/73 AS (I)

NAME
as − assembler

SYNOPSIS
as [−] name ...

DESCRIPTION
As assembles the concatenation of the named files. If the optional first argument− is used, all
undefined symbols in the assembly are treated as global.

The output of the assembly is left on the filea.out. It is executable if no errors occurred during
the assembly, and if there were no unresolved external references.

FILES
/etc/as2 pass 2 of the assembler
/tmp/atm[1-4]? temporary
a.out object

SEE ALSO
ld(I), nm(I), db(I), a.out(V), ‘UNIX Assembler Manual’.

DIAGNOSTICS
When an input file cannot be read, its name followed by a question mark is typed and assembly
ceases. When syntactic or semantic errors occur, a single-character diagnostic is typed out to-
gether with the line number and the file name in which it occurred. Errors in pass 1 cause can-
cellation of pass 2. The possible errors are:

) Parentheses error
] Parentheses error
< String not terminated properly
* Indirection used illegally
. Illegal assignment to ‘.’
A Error in address
B Branch instruction is odd or too remote
E Error in expression
F Error in local (‘f’ or ‘b’) type symbol
G Garbage (unknown) character
I End of file inside an if
M Multiply defined symbol as label
O Word quantity assembled at odd address
P ‘.’ different in pass 1 and 2
R Relocation error
U Undefined symbol
X Syntax error

BUGS
Symbol table overflow is not checked.x errors can cause incorrect line numbers in following di-
agnostics.

- 1 -

-

BAS (I) 1/15/73 BAS (I)

NAME
bas − basic

SYNOPSIS
bas [file]

DESCRIPTION
Basis a dialect of Basic. If a file argument is provided, the file is used for input before the con-
sole is read.Basaccepts lines of the form:

statement
integer statement

Integer numbered statements (known as internal statements) are stored for later execution. They
are stored in sorted ascending order. Non-numbered statements are immediately executed. The
result of an immediate expression statement (that does not have ‘=’ as its highest operator) is
printed.

Statements have the following syntax:

expression
The expression is executed for its side effects (assignment or function call) or for printing
as described above.

done
Return to system level.

draw expression expression expression
A line is drawn on the Tektronix 611 display ‘/dev/vt0’ from the current display position
to the XY co-ordinates specified by the first two expressions. The scale is zero to one in
both X and Y directions. If the third expression is zero, the line is invisible. The current
display position is set to the end point.

display list
The list of expressions and strings is concatenated and displayed (i.e. printed) on the 611
starting at the current display position. The current display position is not changed.

erase
The 611 screen is erased.

for name= expression expression statement
for name= expression expression

...
next

The for statement repetitively executes a statement (first form) or a group of statements
(second form) under control of a named variable. The variable takes on the value of the
first expression, then is incremented by one on each loop, not to exceed the value of the
second expression.

gotoexpression
The expression is evaluated, truncated to an integer and execution goes to the correspond-
ing integer numbered statment. If executed from immediate mode, the internal statements
are compiled first.

if expression statement
The statement is executed if the expression evaluates to non-zero.

list [expression [expression]]
is used to print out the stored internal statements. If no arguments are given, all internal
statements are printed. If one argument is given, only that internal statement is listed. If
two arguments are given, all internal statements inclusively between the arguments are
printed.

print list
The list of expressions and strings are concatenated and printed. (A string is delimited by

- 1 -

-

BAS (I) 1/15/73 BAS (I)

" characters.)

return [expression]
The expression is evaluated and the result is passed back as the value of a function call. If
no expression is given, zero is returned.

run
The internal statements are compiled. The symbol table is re-initialized. The random
number generator is reset. Control is passed to the lowest numbered internal statement.

Expressions have the following syntax:

name
A name is used to specify a variable. Names are composed of a letter followed by letters
and digits. The first four characters of a name are significant.

number
A number is used to represent a constant value. A number is written in Fortran style, and
contains digits, an optional decimal point, and possibly a scale factor consisting of ane
followed by a possibly signed exponent.

(expression)
Parentheses are used to alter normal order of evaluation.

expression operator expression
Common functions of two arguments are abbreviated by the two arguments separated by
an operator denoting the function. A complete list of operators is given below.

expression([expression [, expression] ...])
Functions of an arbitrary number of arguments can be called by an expression followed by
the arguments in parentheses separated by commas. The expression evaluates to the line
number of the entry of the function in the internally stored statements. This causes the in-
ternal statements to be compiled. If the expression evaluates negative, a builtin function is
called. The list of builtin functions appears below.

name[expression [, expression] ...]
Each expression is truncated to an integer and used as a specifier for the name. The result
is syntactically identical to a name.a[1,2] is the same asa[1][2]. The truncated expres-
sions are restricted to values between 0 and 32767.

The following is the list of operators:

=
= is the assignment operator. The left operand must be a name or an array element. The
result is the right operand. Assignment binds right to left, all other operators bind left to
right.

&
& (logical and) has result zero if either of its arguments are zero. It has result one if both
its arguments are non-zero. (logical or) has result zero if both of its arguments are zero.
It has result one if either of its arguments are non-zero.

< <= > >= == <>
The relational operators (< less than, <= less than or equal, > greater than, >= greater than
or equal, == equal to, <> not equal to) return one if their arguments are in the specified re-
lation. They return zero otherwise. Relational operators at the same level extend as fol-
lows: a>b>c is the same as a>b&b>c.

+ −
Add and subtract.

* /
Multiply and divide.

ˆ
Exponentiation.

- 2 -

-

BAS (I) 1/15/73 BAS (I)

The following is a list of builtin functions:

arg(i)
is the value of thei -th actual parameter on the current level of function call.

exp(x)
is the exponential function ofx.

log(x)
is the natural logarithm ofx.

sin(x)
is the sine ofx (radians).

cos(x)
is the cosine ofx (radians).

atn(x)
is the arctangent ofx . its value is between −π/2 and π/2.

rnd()
is a uniformly distributed random number between zero and one.

expr()
is the only form of program input. A line is read from the input and evaluated as an ex-
pression. The resultant value is returned.

int(x)
returnsx truncated to an integer.

FILES
/tmp/btm? temporary

DIAGNOSTICS
Syntax errors cause the incorrect line to be typed with an underscore where the parse failed. All
other diagnostics are self explanatory.

BUGS
Has been known to give core images. Needs a way tolist a program onto a file.

- 3 -

-

CAT (I) 1/15/73 CAT (I)

NAME
cat − concatenate and print

SYNOPSIS
cat file ...

DESCRIPTION
Cat reads each file in sequence and writes it on the standard output. Thus:

cat file

is about the easiest way to print a file. Also:

cat file1 file2 >file3

is about the easiest way to concatenate files.

If no input file is givencat reads from the standard input file.

If the argument− is encountered,cat reads from the standard input file.

SEE ALSO
pr(I), cp(I)

DIAGNOSTICS
none; if a file cannot be found it is ignored.

BUGS
cat x y >x andcat x y >y cause strange results.

- 1 -

-

CATSIM (I) 11/1/73 CATSIM (I)

NAME
catsim − phototypesetter simulator

SYNOPSIS
catsim

DESCRIPTION
Catsimwill interpret its standard input as codes for the phototypesetter (cat). The output ofcat-
sim is output to the display (vt).

About the only use ofcatsimis to save time and paper on the phototypesetter by the following
command:

troff −t files catsim

FILES
/dev/vt0

SEE ALSO
troff(I), cat(IV), vt(IV)

BUGS
Point sizes are not correct. The vt character set is restricted to one font of ASCII.

- 1 -

-

CC (I) 3/15/72 CC (I)

NAME
cc − C compiler

SYNOPSIS
cc [−c] [−p] file ...

DESCRIPTION
Cc is the UNIX C compiler. It accepts three types of arguments:

Arguments whose names end with ‘.c’ are assumed to be C source programs; they are compiled,
and the object program is left on the file whose name is that of the source with ‘.o’ substituted
for ‘.c’.

Other arguments (except for−c) are assumed to be either loader flag arguments, or C-compatible
object programs, typically produced by an earliercc run, or perhaps libraries of C-compatible
routines. These programs, together with the results of any compilations specified, are loaded (in
the order given) to produce an executable program with namea.out.

The −c argument suppresses the loading phase, as does any syntax error in any of the routines
being compiled.

If the −p flag is used, only the macro prepass is run on all files whose name ends in.c. The ex-
panded source is left on the file whose name is that of the source with.i substituted for.c.

FILES
file.c input file
file.o object file
a.out loaded output
/tmp/ctm? temporary
/lib/c[01] compiler
/lib/crt0.o runtime startoff
/lib/libc.a builtin functions, etc.
/lib/liba.a system library

SEE ALSO
‘C reference manual’, cdb(I), ld(I) for other flag arguments.

BUGS

- 1 -

-

CDB (I) 8/15/73 CDB (I)

NAME
cdb − C debugger

SYNOPSIS
cdb [core [a.out]]

DESCRIPTION
Cdb is a debugging program for use with C programs. It is by no means completed, and this sec-
tion is essentially only a placeholder for the actual description.

Even the presentcdbhas one useful feature: the command

$

will give a stack trace of the core image of a terminated C program. The calls are listed in the
order made; the actual arguments to each routine are given in octal.

SEE ALSO
cc(I), db(I), C Reference Manual

BUGS
It has to be fixed to work with the new system.

- 1 -

-

CHDIR (I) 3/15/72 CHDIR (I)

NAME
chdir − change working directory

SYNOPSIS
chdir directory

DESCRIPTION
Directory becomes the new working directory. The process must have execute permission on
the directory. The process must have execute (search) permission indirectory.

Because a new process is created to execute each command,chdir would be ineffective if it were
written as a normal command. It is therefore recognized and executed by the Shell.

SEE ALSO
sh(I)

BUGS

- 1 -

-

CHMOD (I) 8/20/73 CHMOD (I)

NAME
chmod − change mode

SYNOPSIS
chmodoctal file ...

DESCRIPTION
The octal mode replaces the mode of each of the files. The mode is constructed from the OR of
the following modes:

4000 set user ID on execution
2000 set group ID on execution
0400 read by owner
0200 write by owner
0100 execute by owner
0070 read, write, execute by group
0007 read, write, execute by others

Only the owner of a file (or the super-user) may change its mode.

SEE ALSO
ls(I)

BUGS

- 1 -

-

CHOWN (I) 3/15/72 CHOWN (I)

NAME
chown − change owner

SYNOPSIS
chown owner file ...

DESCRIPTION
Ownerbecomes the new owner of the files. The owner may be either a decimal UID or a login
name found in the password file.

Only the owner of a file (or the super-user) is allowed to change the owner. Unless it is done by
the super-user or the real user ID of the new owner, the set-user-ID permission bit is turned off
as the owner of a file is changed.

FILES
/etc/passwd

BUGS

- 1 -

-

CMP (I) 1/15/73 CMP (I)

NAME
cmp − compare two files

SYNOPSIS
cmp file1 file2

DESCRIPTION
The two files are compared for identical contents. Discrepancies are noted by giving the offset
and the differing words, all in octal.

SEE ALSO
proof (I), comm (I)

BUGS
If the shorter of the two files is of odd length,cmpacts as if a null byte had been appended to it.
Theoffsetis only a single-precision number.

- 1 -

-

COMM (I) 8/21/73 COMM (I)

NAME
comm − print lines common to two files

SYNOPSIS
comm [− [123]] file1 file2 [file3]

DESCRIPTION
Commreadsfile1 and file2, which should be in sort, and produces a three column output: lines
only in file1; lines only infile2; and lines in both files.

If file3 is given, the output will be placed there; otherwise it will be written on the standard out-
put.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thuscomm −12 prints only the
lines common to the two files;comm −23 prints only lines in the first file but not in the second;
comm −123 is a no-op.

SEE ALSO
uniq(I), proof(I), cmp(I)

BUGS

- 1 -

-

CP (I) 1/24/73 CP (I)

NAME
cp − copy

SYNOPSIS
cp file1 file2

DESCRIPTION
The first file is copied onto the second. The mode and owner of the target file are preserved if it
already existed; the mode of the source file is used otherwise.

If file2 is a directory, then the target file is a file in that directory with the file-name offile1.

SEE ALSO
cat(I), pr(I), mv(I)

BUGS
Copying a file onto itself destroys its contents.

- 1 -

-

CREF (I) 2/5/73 CREF (I)

NAME
cref − make cross reference listing

SYNOPSIS
cref [−acilostux123] name ...

DESCRIPTION
Cref makes a cross reference listing of program files in assembler or C format. The files named
as arguments in the command line are searched for symbols in the appropriate syntax.

The output report is in four columns:

(1) (2) (3) (4)
symbol file see text as it appears in file

below

Cref uses either anignore file or anonly file. If the −i option is given, it will take the next avail-
able argument to be anignore file name; if the−o option is given, the next available argument
will be taken as anonly file name. Ignoreandonly files should be lists of symbols separated by
new lines. If anignore file is given, all the symbols in that file will be ignored in columns (1)
and (3) of the output. If anonly file is given, only symbols appearing in that file will appear in
column (1). Only one of the options−i or −o may be used. The default setting is−i. Assembler
predefined symbols or C keywords are ignored.

The−s option causes current symbols to be put in column 3. In the assembler, the current sym-
bol is the most recent name symbol; in C, the current function name. The−l option causes the
line number within the file to be put in column 3.

The−t option causes the next available argument to be used as the name of the intermediate tem-
porary file (instead of /tmp/crt??). The file is created and is not removed at the end of the pro-
cess.

Options:

a assembler format (default)
c C format input
i useignorefile (see above)
l put line number in col. 3 (instead of current symbol)
o useonly file (see above)
s current symbol in col. 3 (default)
t user supplied temoprary file
u print only symbols that occur exactly once
x print only C external symbols
1 sort output on column 1 (default)
2 sort output on column 2
3 sort output on column 3

FILES
/tmp/crt?? temporaries
/usr/lib/aign default assemblerignorefile
/usr/lib/cign default Cignorefile
/usr/bin/crpost post processor
/usr/bin/upost post processor for−u option
/bin/sort used to sort temporaries

SEE ALSO
as(I), cc(I), sort(I)

BUGS

- 1 -

-

DATE (I) 11/1/73 DATE (I)

NAME
date − print and set the date

SYNOPSIS
date [mmddhhmm[yy]]

DESCRIPTION
If no argument is given, the current date is printed to the second. If an argument is given, the
current date is set. The firstmmis the month number;dd is the day number in the month;hh is
the hour number (24 hour system); the secondmmis the minute number;yy is the last 2 digits of
the year number and is optional. For example:

date 10080045

sets the date to Oct 8, 12:45 AM. The current year is the default if no year is mentioned. The
system operates in GMT.Date takes care of the conversion to and from local standard and day-
light time.

BUGS

- 1 -

-

DB (I) 8/20/73 DB (I)

NAME
db − debug

SYNOPSIS
db [core [namelist]] [−]

DESCRIPTION
Unlike many debugging packages (including DEC’s ODT, on whichdb is loosely based),db is
not loaded as part of the core image which it is used to examine; instead it examines files. Typi-
cally, the file will be either a core image produced after a fault or the binary output of the assem-
bler. Core is the file being debugged; if omittedcore is assumed.Namelistis a file containing a
symbol table. If it is omitted, the symbol table is obtained from the file being debugged, or if not
there froma.out. If no appropriate name list file can be found,db can still be used but some of
its symbolic facilities become unavailable.

For the meaning of the optional third argument, see the last paragraph below.

The format for mostdb requests is an address followed by a one character command. Addresses
are expressions built up as follows:

1. A name has the value assigned to it when the input file was assembled. It may be relocat-
able or not depending on the use of the name during the assembly.

2. An octal number is an absolute quantity with the appropriate value.

3. A decimal number immediately followed by ‘.’ is an absolute quantity with the appropriate
value.

4. An octal number immediately followed byr is a relocatable quantity with the appropriate
value.

5. The symbol. indicates the current pointer ofdb. The current pointer is set by manydb re-
quests.

6. A * before an expression forms an expression whose value is the number in the word ad-
dressed by the first expression. A* alone is equivalent to ‘*. ’.

7. Expressions separated by+ or blank are expressions with value equal to the sum of the
components. At most one of the components may be relocatable.

8. Expressions separated by− form an expression with value equal to the difference to the
components. If the right component is relocatable, the left component must be relocatable.

9. Expressions are evaluated left to right.

Names for registers are built in:

r0 ... r5
sp
pc
fr0 ... fr5

These may be examined. Their values are deduced from the contents of the stack in a core image
file. They are meaningless in a file that is not a core image.

If no address is given for a command, the current address (also specified by ‘‘.’’) is assumed. In
general, ‘‘.’’ points to the last word or byte printed bydb.

There aredb commands for examining locations interpreted as numbers, machine instructions,
ASCII characters, and addresses. For numbers and characters, either bytes or words may be ex-
amined. The following commands are used to examine the specified file.

/ The addressed word is printed in octal.

\ The addressed byte is printed in octal.

" The addressed word is printed as two ASCII characters.

- 1 -

-

DB (I) 8/20/73 DB (I)

´ The addressed byte is printed as an ASCII character.

‘ The addressed word is printed in decimal.

? The addressed word is interpreted as a machine instruction and a symbolic form of the in-
struction, including symbolic addresses, is printed. Often, the result will appear exactly as
it was written in the source program.

& The addressed word is interpreted as a symbolic address and is printed as the name of the
symbol whose value is closest to the addressed word, possibly followed by a signed offset.

<nl>(i. e., the character ‘‘new line’’) This command advances the current location counter ‘‘.’’
and prints the resulting location in the mode last specified by one of the above requests.

ˆ This character decrements ‘‘.’’ and prints the resulting location in the mode last selected
one of the above requests. It is a converse to <nl>.

% Exit.

Odd addresses to word-oriented commands are rounded down. The incrementing and decre-
menting of ‘‘.’’ done by the<nl> andˆ requests is by one or two depending on whether the last
command was word or byte oriented.

The address portion of any of the above commands may be followed by a comma and then by an
expression. In this case that number of sequential words or bytes specified by the expression is
printed. ‘‘.’’ is advanced so that it points at the last thing printed.

There are two commands to interpret the value of expressions.

= When preceded by an expression, the value of the expression is typed in octal. When not
preceded by an expression, the value of ‘‘.’’ is indicated. This command does not change
the value of ‘‘.’’.

: An attempt is made to print the given expression as a symbolic address. If the expression is
relocatable, that symbol is found whose value is nearest that of the expression, and the sym-
bol is typed, followed by a sign and the appropriate offset. If the value of the expression is
absolute, a symbol with exactly the indicated value is sought and printed if found; if no
matching symbol is discovered, the octal value of the expression is given.

The following command may be used to patch the file being debugged.

! This command must be preceded by an expression. The value of the expression is stored at
the location addressed by the current value of ‘‘.’’. The opcodes do not appear in the sym-
bol table, so the user must assemble them by hand.

The following command is used after a fault has caused a core image file to be produced.

$ causes the fault type and the contents of the general registers and several other registers to
be printed both in octal and symbolic format. The values are as they were at the time of the
fault.

For some purposes, it is important to know how addresses typed by the user correspond with lo-
cations in the file being debugged. The mapping algorithm employed bydb is non-trivial for
two reasons: First, in ana.out file, there is a 20(8) byte header which will not appear when the
file is loaded into core for execution. Therefore, apparent location 0 should correspond with ac-
tual file offset 20. Second, addresses in core images do not correspond with the addresses used
by the program because in a core image there is a 512-byte header containing the system’s per-
process data for the dumped process, and also because the stack is stored contiguously with the
text and data part of the core image rather than at the highest possible locations.Db obeys the
following rules:

If exactly one argument is given, and if it appears to be ana.out file, the 20-byte header is
skipped during addressing, i.e., 20 is added to all addresses typed. As a consequence, the header
can be examined beginning at location −20.

If exactly one argument is given and if the file does not appear to be ana.out file, no mapping is
done.

- 2 -

-

DB (I) 8/20/73 DB (I)

If zero or two arguments are given, the mapping appropriate to a core image file is employed.
This means that locations above the program break and below the stack effectively do not exist
(and are not, in fact, recorded in the core file). Locations above the user’s stack pointer are
mapped, in looking at the core file, to the place where they are really stored. The per-process
data kept by the system, which is stored in the first 512(10) bytes of the core file, cannot cur-
rently be examined (except by$).

If one wants to examine a file which has an associated name list, but is not a core image file, the
last argument ‘‘−’’ can be used (actually the only purpose of the last argument is to make the
number of arguments not equal to two). This feature is used most frequently in examining the
memory file /dev/mem.

SEE ALSO
as(I), core(V), a.out(V), od(I)

DIAGNOSTICS
‘‘File not found’’ if the first argument cannot be read; otherwise ‘‘?’’.

BUGS
There should be some way to examine the registers and other per-process data in a core image;
also there should be some way of specifying double-precision addresses. It does not know yet
about shared text segments.

- 3 -

-

DC (I) 1/15/73 DC (I)

NAME
dc − desk calculator

SYNOPSIS
dc [file]

DESCRIPTION
Dc is an arbitrary precision integer arithmetic package. The overall structure ofdc is a stacking
(reverse Polish) calculator. The following constructions are recognized by the calculator:

number The value of the number is pushed on the stack. A number is an unbroken string of
the digits 0-9. It may be preceded by an underscore _ to input a negative number.

+ − * / % ˆ The top two values on the stack are added (+), subtracted (−), multiplied (*), divided
(/), remaindered (%), or exponentiated (ˆ). The two entries are popped off the stack;
the result is pushed on the stack in their place.

sx The top of the stack is popped and stored into a register namedx, wherex may be
any character.

lx The value in registerx is pushed on the stack. The registerx is not altered. All reg-
isters start with zero value.

d The top value on the stack is pushed on the stack. Thus the top value is duplicated.

p The top value on the stack is printed. The top value remains unchanged.

f All values on the stack and in registers are printed.

q exits the program. If executing a string, the nesting level is popped by two.

x treats the top element of the stack as a character string and executes it as a string of
dc commands.

[...] puts the bracketed ascii string onto the top of the stack.

<x =x >x The top two elements of the stack are popped and compared. Registerx is executed
if they obey the stated relation.

v replaces the top element on the stack by its square root.

! interprets the rest of the line as a UNIX command.

c All values on the stack are popped.

i The top value on the stack is popped and used as the number radix for further input.

o The top value on the stack is popped and used as the number radix for further out-
put.

z The stack level is pushed onto the stack.

? A line of input is taken from the input source (usually the console) and executed.

new-line ignored except as the name of a register or to end the response to a?.

space ignored except as the name of a register or to terminate a number.

If a file name is given, input is taken from that file until end-of-file, then input is taken from the
console. An example which prints the first ten values of n! is

[la1+dsa*pla10>x]sx
0sa1
lxx

FILES
/etc/msh to implement ‘!’

- 1 -

-

DC (I) 1/15/73 DC (I)

DIAGNOSTICS
(x) ? for unrecognized character x.
(x) ? for not enough elements on the stack to do what was asked by command x.
‘Out of space’ when the free list is exhausted (too many digits).
‘Out of headers’ for too many numbers being kept around.
‘Out of pushdown’ for too many items on the stack.
‘Nesting Depth’ for too many levels of nested execution.

BUGS

- 2 -

-

DSW (I) 3/15/72 DSW (I)

NAME
dsw − delete interactively

SYNOPSIS
dsw [directory]

DESCRIPTION
For each file in the given directory (‘.’ if not specified)dswtypes its name. Ify is typed, the file
is deleted; ifx, dswexits; if new-line, the file is not deleted; if anything else,dswasks again.

SEE ALSO
rm(I)

BUGS
The namedswis a carryover from the ancient past. Its etymology is amusing.

- 1 -

-

DU (I) 1/20/73 DU (I)

NAME
du − summarize disk usage

SYNOPSIS
du [−s] [−a] [name ...]

DESCRIPTION
Du gives the number of blocks contained in all files and (recursively) directories within each
specified directory or filename. If nameis missing, ‘.’ is used.

The optional argument−s causes only the grand total to be given. The optional argument−a
causes an entry to be generated for each file. Absence of either causes an entry to be generated
for each directory only.

A file which has two links to it is only counted once.

BUGS
Non-directories given as arguments (not under−a option) are not listed.

Removable file systems do not work correctly since i-numbers may be repeated while the corre-
sponding files are distinct.Du should maintain an i-number list per root directory encountered.

- 1 -

-

ECHO (I) 3/15/72 ECHO (I)

NAME
echo − echo arguments

SYNOPSIS
echo[arg ...]

DESCRIPTION
Echowrites all its arguments in order as a line on the standard output file. It is mainly useful for
producing diagnostics in command files.

BUGS
Echowith no arguments does not print a blank line.

- 1 -

-

ED (I) 1/15/73 ED (I)

NAME
ed − editor

SYNOPSIS
ed [−] [name]

DESCRIPTION
Ed is the standard text editor.

If a nameargument is given,edsimulates ane command (see below) on the named file; that is
to say, the file is read intoed’s buffer so that it can be edited. The optional− simulates anos
command (see below) which suppresses the printing of characters counts bye, r, andw com-
mands.

Ed operates on a copy of any file it is editing; changes made in the copy have no effect on the
file until a w (write) command is given. The copy of the text being edited resides in a temporary
file called thebuffer. There is only one buffer.

Commands toedhave a simple and regular structure: zero or moreaddressesfollowed by a sin-
gle charactercommand,possibly followed by parameters to the command. These addresses
specify one or more lines in the buffer. Every command which requires addresses has default
addresses, so that the addresses can often be omitted.

In general, only one command may appear on a line. Certain commands allow the input of text.
This text is placed in the appropriate place in the buffer. Whileed is accepting text, it is said to
be in input mode.In this mode, no commands are recognized; all input is merely collected. In-
put mode is left by typing a period ‘.’ alone at the beginning of a line.

Edsupports a limited form ofregular expressionnotation. A regular expression is an expression
which specifies a set of strings of characters. A member of this set of strings is said to be
matchedby the regular expression. The regular expressions allowed byed are constructed as
follows:

1. An ordinary character (not one of those discussed below) is a regular expression and
matches that character.

2. A circumflex ‘ˆ’ at the beginning of a regular expression matches the null character at the
beginning of a line.

3. A currency symbol ‘$’ at the end of a regular expression matches the null character at the
end of a line.

4. A period ‘.’ matches any character but a new-line character.

5. A regular expression followed by an asterisk ‘*’ matches any number of adjacent occur-
rences (including zero) of the regular expression it follows.

6. A string of characters enclosed in square brackets ‘[]’ matches any character in the string
but no others. If, however, the first character of the string is a circumflex ‘ˆ’ the regular
expression matches any character but new-line and the characters in the string.

7. The concatenation of regular expressions is a regular expression which matches the con-
catenation of the strings matched by the components of the regular expression.

8. The null regular expression standing alone is equivalent to the last regular expression en-
countered.

Regular expressions are used in addresses to specify lines and in one command (sees below) to
specify a portion of a line which is to be replaced.

If it is desired to use one of the regular expression metacharacters as an ordinary character, that
character may be preceded by ‘\’. This also applies to the character bounding the regular expres-
sion (often ‘/’) and to ‘\’ itself.

Addresses are constructed as follows. To understand addressing ined it is necessary to know
that at any time there is acurrent line. Generally speaking, the current line is the last line af-

- 1 -

-

ED (I) 1/15/73 ED (I)

fected by a command; however, the exact effect on the current line by each command is dis-
cussed under the description of the command.

1. The character ‘.’ addresses the current line.

2. The character ‘ˆ’ addresses the line immediately before the current line.

3. The character ‘$’ addresses the last line of the buffer.

4. A decimal numbern addresses then-th line of the buffer.

5. ‘´x’ addresses the line associated (marked) with the mark name characterx which must
be a printable character. Lines are marked with thek command described below.

6. A regular expression enclosed in slashes ‘/’ addresses the first line found by searching to-
ward the end of the buffer and stopping at the first line containing a string matching the
regular expression. If necessary the search wraps around to the beginning of the buffer.

7. A regular expression enclosed in queries ‘?’ addresses the first line found by searching
toward the beginning of the buffer and stopping at the first line found containing a string
matching the regular expression. If necessary the search wraps around to the end of the
buffer.

8. An address followed by a plus sign ‘+’ or a minus sign ‘−’ followed by a decimal number
specifies that address plus (resp. minus) the indicated number of lines. The plus sign
may be omitted.

Commands may require zero, one, or two addresses. Commands which require no addresses re-
gard the presence of an address as an error. Commands which accept one or two addresses as-
sume default addresses when insufficient are given. If more addresses are given than such a
command requires, the last one or two (depending on what is accepted) are used.

Addresses are separated from each other typically by a comma ‘,’. They may also be separated
by a semicolon ‘;’. In this case the current line ‘.’ is set to the previous address before the next
address is interpreted. This feature can be used to determine the starting line for forward and
backward searches (‘/’, ‘?’) . The second address of any two-address sequence must correspond
to a line following the line corresponding to the first address.

In the following list of ed commands, the default addresses are shown in parentheses. The
parentheses are not part of the address, but are used to show that the given addresses are the de-
fault.

As mentioned, it is generally illegal for more than one command to appear on a line. However,
any command may be suffixed by ‘p’ (for ‘print’) . In that case, the current line is printed after
the command is complete.

(.) a
<text>
.

The append command reads the given text and appends it after the addressed line.
‘ .’ is left on the last line input, if there were any, otherwise at the addressed line.
Address ‘0’ is legal for this command; text is placed at the beginning of the buffer.

(. , .) c
<text>
.

The change command deletes the addressed lines, then accepts input text which re-
places these lines. ‘.’ is left at the last line input; if there were none, it is left at the
first line not changed.

(. , .) d
The delete command deletes the addressed lines from the buffer. The line originally
after the last line deleted becomes the current line; if the lines deleted were origi-
nally at the end, the new last line becomes the current line.

- 2 -

-

ED (I) 1/15/73 ED (I)

e filename
The edit command causes the entire contents of the buffer to be deleted, and then the
named file to be read in. ‘.’ is set to the last line of the buffer. The number of char-
acters read is typed. ‘filename’ is remembered for possible use as a default file
name in a subsequentr or w command.

f filename
The filename command prints the currently remembered file name. If ‘filename’ is
given, the currently remembered file name is changed to ‘filename’.

(1,$) g/regular expression/command list
In the global command, the first step is to mark every line which matches the given
regular expression. Then for every such line, the given command list is executed
with ‘ .’ initially set to that line. A single command or the first of multiple com-
mands appears on the same line with the global command. All lines of a multi-line
list except the last line must be ended with ‘\’.A, i, andc commands and associated
input are permitted; the ‘.’ terminating input mode may be omitted if it would be on
the last line of the command list. The (global) commands,g, andv, are not permit-
ted in the command list.

(.) i
<text>
.

This command inserts the given text before the addressed line. ‘.’ is left at the last
line input; if there were none, at the addressed line. This command differs from the
a command only in the placement of the text.

(.) kx
The mark command associates or marks the addressed line with the single character
mark namex. The ten most recent mark names are remembered. The current mark
names may be printed with then command.

(. , .) ma
The move command will reposition the addressed lines after the line addressed bya.
The last of the moved lines becomes the current line.

n
Then command will print the current mark names.

os
ov

After oscharacter counts printed bye, r, andw are suppressed.Ov turns them back
on.

(. , .) p
The print command prints the addressed lines. ‘.’ is left at the last line printed. The
p commandmaybe placed on the same line after any command.

q
The quit command causesedto exit. No automatic write of a file is done.

($) r filename
The read command reads in the given file after the addressed line. If no file name is
given, the remembered file name, if any, is used (seee and f commands) . The re-
membered file name is not changed unless ‘filename’ is the very first file name
mentioned. Address ‘0’ is legal forr and causes the file to be read at the beginning
of the buffer. If the read is successful, the number of characters read is typed. ‘.’ is
left at the last line read in from the file.

(. , .) s/regular expression/replacement/ or,
(. , .) s/regular expression/replacement/g

The substitute command searches each addressed line for an occurrence of the speci-
fied regular expression. On each line in which a match is found, all matched strings

- 3 -

-

ED (I) 1/15/73 ED (I)

are replaced by the replacement specified, if the global replacement indicator ‘g’ ap-
pears after the command. If the global indicator does not appear, only the first oc-
currence of the matched string is replaced. It is an error for the substitution to fail
on all addressed lines. Any character other than space or new-line may be used in-
stead of ‘/’ to delimit the regular expression and the replacement. ‘.’ is left at the
last line substituted.

An ampersand ‘&’ appearing in the replacement is replaced by the regular expres-
sion that was matched. The special meaning of ‘&’ in this context may be sup-
pressed by preceding it by ‘\’.

(1,$) v/regular expression/command list
This command is the same as the global command except that the command list is
executed with ‘.’ initially set to every lineexceptthose matching the regular expres-
sion.

(1,$) w filename
The write command writes the addressed lines onto the given file. If the file does
not exist, it is created mode 666 (readable and writeable by everyone) . The remem-
bered file name isnot changed unless ‘filename’ is the very first file name men-
tioned. If no file name is given, the remembered file name, if any, is used (seeeand
f commands) . ‘.’ is unchanged. If the command is successful, the number of char-
acters written is typed.

($) =
The line number of the addressed line is typed. ‘.’ is unchanged by this command.

!UNIX command
The remainder of the line after the ‘!’ is sent to UNIX to be interpreted as a com-
mand. ‘.’ is unchanged. The entire shell syntax is not recognized. See msh(VII) for
the restrictions.

(.+1) <newline>
An address alone on a line causes the addressed line to be printed. A blank line
alone is equivalent to ‘.+1p’; it is useful for stepping through text.

If an interrupt signal (ASCII DEL) is sent,edwill print a ‘?’ and return to its command level.

If invoked with the command name ‘−’, (see init(VII)) edwill sign on with the message ‘Edit-
ing system’ and print ‘*’ as the command level prompt character.

Ed has size limitations on the maximum number of lines that can be edited, on the maximum
number of characters in a line, in a global’s command list, in a remembered file name, and in the
size of the temporary file. The current sizes are: 4000 lines per file, 512 characters per line, 256
characters per global command list, 64 characters per file name, and 64K characters in the tem-
porary file (see BUGS) .

FILES
/tmp/etm?, temporary
/etc/msh, to implement the ‘!’ command.

DIAGNOSTICS
‘?’ for errors in commands; ‘TMP’ for temporary file overflow.

BUGS
The temporary file can grow to no more than 64K bytes.

- 4 -

-

EXIT (I) 3/15/72 EXIT (I)

NAME
exit − terminate command file

SYNOPSIS
exit

DESCRIPTION
Exit performs aseekto the end of its standard input file. Thus, if it is invoked inside a file of
commands, upon return fromexit the shell will discover an end-of-file and terminate.

SEE ALSO
if(I), goto(I), sh(I)

BUGS

- 1 -

-

FC (I) 8/20/73 FC (I)

NAME
fc − fortran compiler

SYNOPSIS
fc [−c] sfile1.f ... ofile1 ...

DESCRIPTION
Fc is the UNIX Fortran compiler. It accepts three types of arguments:

Arguments whose names end with ‘.f’ are assumed to be Fortran source program units; they are
compiled, and the object program is left on the file sfile1.o (i.e. the file whose name is that of
the source with ‘.o’ substituted for ‘.f’).

Other arguments (except for−c) are assumed to be either loader flags, or object programs, typi-
cally produced by an earlierfc run, or perhaps libraries of Fortran-compatible routines. These
programs, together with the results of any compilations specified, are loaded (in the order given)
to produce an executable program with namea.out.

The −c argument suppresses the loading phase, as does any syntax error in any of the routines
being compiled.

The following is a list of differences betweenfc and ANSI standard Fortran (also see the BUGS
section):

1. Arbitrary combination of types is allowed in expressions. Not all combinations are ex-
pected to be supported at runtime. All of the normal conversions involving integer, real,
double precision and complex are allowed.

2. DEC’simplicit statement is recognized. E.g.:implicit integer /i −n/

3. The types doublecomplex, logical*1, integer*1, integer*2 and real*8 (double precision) are
supported.

4. & as the first character of a line signals a continuation card.

5. c as the first character of a line signals a comment.

6. All keywords are recognized in lower case.

7. The notion of ‘column 7’ is not implemented.

8. G-format input is free form− leading blanks are ignored, the first blank after the start of the
number terminates the field.

9. A comma in any numeric or logical input field terminates the field.

10. There is no carriage control on output.

11. A sequence ofn characters in double quotes ‘"’ is equivalent ton h followed by those char-
acters.

12. Indata statements, a hollerith string may initialize an array or a sequence of array elements.

13. The number of storage units requested by a binaryread must be identical to the number
contained in the record being read.

In I/O statements, only unit numbers 0-19 are supported. Unit numbern refers to file fortnn;
(e.g. unit 9 is file ‘fort09’). For input, the file must exist; for output, it will be created. Unit 5 is
permanently associated with the standard input file; unit 6 with the standard output file. Also see
setfil (III) for a way to associate unit numbers with named files.

FILES
file.f input file
a.out loaded output
f.tmp[123] temporary (deleted)
/usr/fort/fc1 compiler proper
/lib/fr0.o runtime startoff
/lib/filib.a interpreter library

- 1 -

-

FC (I) 8/20/73 FC (I)

/lib/libf.a builtin functions, etc.
/lib/liba.a system library

SEE ALSO
ANSI standard, ld(I) for loader flags
Also see the writeups on the precious few non-standard Fortran subroutines, ierror and setfil (III)

DIAGNOSTICS
Compile-time diagnostics are given in English, accompanied if possible with the offending line
number and source line with an underscore where the error occurred. Runtime diagnostics are
given by number as follows:

1 invalid log argument
2 bad arg count to amod
3 bad arg count to atan2
4 excessive argument to cabs
5 exp too large in cexp
6 bad arg count to cmplx
7 bad arg count to dim
8 excessive argument to exp
9 bad arg count to idim
10 bad arg count to isign
11 bad arg count to mod
12 bad arg count to sign
13 illegal argument to sqrt
14 assigned/computed goto out of range
15 subscript out of range
16 real**real overflow
17 (negative real)**real

100 illegal I/O unit number
101 inconsistent use of I/O unit
102 cannot create output file
103 cannot open input file
104 EOF on input file
105 illegal character in format
106 format does not begin with (
107 no conversion in format but non-empty list
108 excessive parenthesis depth in format
109 illegal format specification
110 illegal character in input field
111 end of format in hollerith specification
999 unimplemented input conversion
Any of these errors can be caught by the program; seeierror (III).

BUGS
The following is a list of those features not yet implemented:

arithmetic statement functions
scale factors on input

Backspacestatement.

- 2 -

-

FED (I) 1/15/73 FED (I)

NAME
fed − edit associative memory for form letter

SYNOPSIS
fed

DESCRIPTION
Fed is used to edit a form letter associative memory file,form.m, which consists of named
strings. Commands consist of single letters followed by a list of string names separated by a sin-
gle space and ending with a new line. The conventions of the Shell with respect to ‘*’ and ‘?’
hold for all commands butm. The commands are:

ename ...
Fed writes the string whose name isnameonto a temporary file and executesed. On exit
from theed the temporary file is copied back into the associative memory. Each argument is
operated on separately. Be sure to give aned w command (without a filename) to rewrite
fed’stemporary file before quitting out ofed.

d [name ...]
deletes a string and its name from the memory. When called with no argumentsd operates
in a verbose mode typing each string name and deleting only if ay is typed. Aq response re-
turns tofed’s command level. Any other response does nothing.

m name1 name2 ...
(move) changes the name of name1 to name2 and removes previous string name2 if one ex-
ists. Several pairs of arguments may be given. Literal strings are expected for the names.

n [name ...]
(names) lists the string names in the memory. If called with the optional arguments, it just
lists those requested.

p name ...
prints the contents of the strings with names given by the arguments.

q
returns to the system.

c [p] [f]
checks the associative memory file for consistency and reports the number of free headers
and blocks. The optional arguments do the following:

p causes any unaccounted-for string to be printed.

f fixes broken memories by adding unaccounted-for headers to free storage and removing
references to released headers from associative memory.

FILES
/tmp/ftmp? temporary
form.m associative memory

SEE ALSO
form(I), ed(I), sh(I)

WARNING
It is legal but unwise to have string names with blanks, ‘:’ or ‘?’ in them.

BUGS

- 1 -

-

FILE (I) 11/1/73 FILE (I)

NAME
file − determine format of file

SYNOPSIS
file files

DESCRIPTION
File will examine each of its arguments and give a guess as to the contents of the file. It is the
only program that will give device numbers of special files.

BUGS
If the file is not instantly recognized, its type is given as ‘unknown’. There should be some
heuristic to recognize source file ‘signatures’ in each of the standard languages.

- 1 -

-

FORM (I) 6/15/72 FORM (I)

NAME
form − form letter generator

SYNOPSIS
form proto arg ...

DESCRIPTION
Form generates a form letter from a prototype letter, an associative memory, arguments and in a
special case, the current date.

If form is invoked with theproto argumentx, the associative memory is searched for an entry
with namex and the contents filed under that name are used as the prototype. If the search fails,
the message ‘[x]:’ is typed on the console and whatever text is typed in from the console, termi-
nated by two new lines, is used as the prototype. If the prototype argument is missing, ‘{letter}’
is assumed.

Basically,form is a copy process from the prototype to the output file. If an element of the form
[n] (wheren is a digit from 1 to 9) is encountered, then-th argument is inserted in its place, and
that argument is then rescanned. If [0] is encountered, the current date is inserted. If the desired
argument has not been given, a message of the form ‘[n]:’ is typed. The response typed in then
is used for that argument.

If an element of the form [name] or {name} is encountered, thenameis looked up in the associa-
tive memory. If it is found, the contents of the memory under thisnamereplaces the original el-
ement (again rescanned). If thenameis not found, a message of the form ‘[name]:’ is typed.
The response typed in is used for that element. The response is entered in the memory under the
name if the name is enclosed in []. The response is not entered in the memory but is remem-
bered for the duration of the letter if the name is enclosed in {}.

In both of the above cases, the response is typed in by entering arbitrary text terminated by two
new lines. Only the first of the two new lines is passed with the text.

If one of the special characters [{]}\ is preceded by a \, it loses its special character.

If a file named ‘forma’ already exists in the user’s directory, ‘formb’ is used as the output file
and so forth to ‘formz’.

The file ‘form.m’ is created if none exists. Because form.m is operated on by the disc allocator,
it should only be changed by usingfed,the form letter editor, orform.

FILES
form.m associative memory
form? output file (read only)

SEE ALSO
fed(I), type(I), roff(I)

BUGS
An unbalanced] or } acts as an end of file but may add a few strange entries to the associative
memory.

- 1 -

-

GOTO (I) 3/15/72 GOTO (I)

NAME
goto − command transfer

SYNOPSIS
goto label

DESCRIPTION
Goto is only allowed when the Shell is taking commands from a file. The file is searched from
the beginning for a line beginning with ‘:’ followed by one or more spaces followed by thelabel.
If such a line is found, thegoto command returns. Since the read pointer in the command file
points to the line after the label, the effect is to cause the Shell to transfer to the labelled line.

‘:’ is a do-nothing command that is ignored by the Shell and only serves to place a label.

SEE ALSO
sh(I)

BUGS

- 1 -

-

GREP (I) 3/3/73 GREP (I)

NAME
grep − search a file for a pattern

SYNOPSIS
grep [−v] [−l] [−n] expression [input] [output]

DESCRIPTION
Grep will search the input file (standard input default) for each line containing the regular ex-
pression. Normally, each line found is printed on the output file (standard output default). If the
−v flag is used, all lines but those matching are printed. If the−l flag is used, each line printed is
preceded by its line number. If the−n flag is used, no lines are printed, but the number of lines
that would normally have been printed is reported. If interrupt is hit, the number of lines
searched is printed.

For a complete description of the regular expression, see ed(I). Care should be taken when using
the characters $ * [̂ () and \ in the regular expression as they are also meaningful to the shell.
(Precede them by \)

SEE ALSO
ed(I), sh(I)

BUGS
Lines are limited to 512 characters; longer lines are truncated.

- 1 -

-

IF (I) 3/15/72 IF (I)

NAME
if − conditional command

SYNOPSIS
if expr command [arg ...]

DESCRIPTION
If evaluates the expressionexpr, and if its value is true, executes the givencommandwith the
given arguments.

The following primitives are used to construct theexpr:

−r file true if the file exists and is readable.

−w file true if the file exists and is writable

s1 = s2 true if the stringss1ands2are equal.

s1 != s2 true if the stringss1ands2are not equal.

These primaries may be combined with the following operators:

! unary negation operator

−a binaryandoperator

−o binaryor operator

(expr) parentheses for grouping.

−a has higher precedence than−o. Notice that all the operators and flags are separate arguments
to if and hence must be surrounded by spaces. Notice also that parentheses are meaningful to the
Shell and must be escaped.

SEE ALSO
sh(I)

BUGS

- 1 -

-

KILL (I) 8/18/73 KILL (I)

NAME
kill − do in an unwanted process

SYNOPSIS
kill processid ...

DESCRIPTION
Kills the specified processes. The processid of each asynchronous process started with ‘&’ is re-
ported by the shell. Processid’s can also be found by usingps(I).

The killed process must have been started from the same typewriter as the current user, unless he
is the superuser.

SEE ALSO
ps(I), sh(I)

BUGS
Clearly people should only be allowed to kill processes owned by them, and having the same
typewriter is neither necessary nor sufficient.

- 1 -

-

LD (I) 8/16/73 LD (I)

NAME
ld − link editor

SYNOPSIS
ld [−sulxrnd] name ...

DESCRIPTION
Ld combines several object programs into one; resolves external references; and searches li-
braries. In the simplest case the names of several object programs are given, andd combines
them, producing an object module which can be either executed or become the input for a further
ld run. (In the latter case, the−r option must be given to preserve the relocation bits.) The out-
put of ld is left ona.out. This file is executable only if no errors occurred during the load.

The argument routines are concatenated in the order specified. The entry point of the output is
the beginning of the first routine.

If any argument is a library, it is searched exactly once at the point it is encountered in the argu-
ment list. Only those routines defining an unresolved external reference are loaded. If a routine
from a library references another routine in the library, the referenced routine must appear after
the referencing routine in the library. Thus the order of programs within libraries is important.

Ld understands several flag arguments which are written preceded by a ‘−’. Except for−l, they
should appear before the file names.

−s ‘squash’ the output, that is, remove the symbol table and relocation bits to save space (but
impair the usefulness of the debugger). This information can also be removed bystrip.

−u take the following argument as a symbol and enter it as undefined in the symbol table. This
is useful for loading wholly from a library, since initially the symbol table is empty and an
unresolved reference is needed to force the loading of the first routine.

−l This option is an abbreviation for a library name.−l alone stands for ‘/lib/liba.a’, which is
the standard system library for assembly language programs.−lx stands for ‘/lib/libx.a’
wherex is any character. There are libraries for Fortran (x = f), and C (x = c). A library is
searched when its name is encountered, so the placement of a−l is significant.

−x do not preserve local (non-.globl) symbols in the output symbol table; only enter external
symbols. This option saves some space in the output file.

−r generate relocation bits in the output file so that it can be the subject of anotherld run. This
flag also prevents final definitions from being given to common symbols.

−d force definition of common storage even if the−r flag is present (used for reloc (VIII)).

−n Arrange that when the output file is executed, the text portion will be read-only and shared
among all users executing the file. This involves moving the data areas up the the first pos-
sible 4K word boundary following the end of the text.

FILES
/lib/lib?.a libraries
a.out output file

SEE ALSO
as(I), ar(I)

BUGS

- 1 -

-

LN (I) 3/15/72 LN (I)

NAME
ln − make a link

SYNOPSIS
ln name1 [name2]

DESCRIPTION
A link is a directory entry referring to a file; the same file (together with its size, all its protection
information, etc) may have several links to it. There is no way to distinguish a link to a file from
its original directory entry; any changes in the file are effective independently of the name by
which the file is known.

Ln creates a link to an existing filename1. If name2is given, the link has that name; otherwise
it is placed in the current directory and its name is the last component ofname1.

It is forbidden to link to a directory or to link across file systems.

SEE ALSO
rm(I)

BUGS
There is nothing particularly wrong withln, but tp doesn’t understand about links and makes one
copy for each name by which a file is known; thus if the tape is extracted several copies are re-
stored and the information that links were involved is lost.

- 1 -

-

LOGIN (I) 3/15/72 LOGIN (I)

NAME
login − sign onto UNIX

SYNOPSIS
login [username]

DESCRIPTION
The login command is used when a user initially signs onto UNIX, or it may be used at any time
to change from one user to another. The latter case is the one summarized above and described
here. See ‘How to Get Started’ for how to dial up initially.

If login is invoked without an argument, it will ask for a user name, and, if appropriate, a pass-
word. Echoing is turned off (if possible) during the typing of the password, so it will not appear
on the written record of the session.

After a successful login, accounting files are updated and the user is informed of the existence of
mailboxand message-of-the-day files.

Login is recognized by the Shell and executed directly (without forking).

FILES
/tmp/utmp accounting
/tmp/wtmp accounting
mailbox mail
/etc/motd message-of-the-day
/etc/passwd password file

SEE ALSO
init(VII), getty(VII), mail(I)

DIAGNOSTICS
‘login incorrect,’ if the name or the password is bad. ‘No Shell,’, ‘cannot open password file,’
‘no directory’: consult a UNIX programming councilor.

BUGS
If the first login is unsuccessful, it tends to go into a state where it won’t accept a correct login.
Hit EOT and try again.

- 1 -

-

LS (I) 8/20/73 LS (I)

NAME
ls − list contents of directory

SYNOPSIS
ls [−ltasdru] name ...

DESCRIPTION
For each directory argument,ls lists the contents of the directory; for each file argument,ls re-
peats its name and any other information requested. The output is sorted alphabetically by de-
fault. When no argument is given, the current directory is listed. When several arguments are
given, the arguments are first sorted appropriately, but file arguments appear before directories
and their contents. There are several options:

−l list in long format, giving mode, number of links, owner, size in bytes, and time of last
modification for each file. (See below.)

−t sort by time modified (latest first) instead of by name, as is normal

−a list all entries; usually those beginning with ‘.’ are suppressed

−s give size in blocks for each entry

−d if argument is a directory, list only its name, not its contents (mostly used with−l to get sta-
tus on directory)

−r reverse the order of sort to get reverse alphabetic or oldest first as appropriate

−u use time of last access instead of last modification for sorting (−t) or printing (−l)

The mode printed under the−l option contains 10 characters which are interpreted as follows:
the first character is

d if the entry is a directory;
b if the entry is a block-type special file;
c if the entry is a character-type special file;
− if the entry is a plain file.

The next 9 characters are interpreted as three sets of three bits each. The first set refers to owner
permissions; the next to permissions to others in the same user-group; and the last to all others.
Within each set the three characters indicate permission respectively to read, to write, or to exe-
cute the file as a program. For a directory, ‘execute’ permission is interpreted to mean permis-
sion to search the directory for a specified file. The permissions are indicated as follows:

r if the file is readable
w if the file is writable
x if the file is executable
− if the indicated permission is not granted

Finally, the group-execute permission character is given ass if the file has set-group-ID mode;
likewise the user-execute permission character is given ass if the file has set-user-ID mode.

FILES
/etc/passwd to get user ID’s forls −l.

BUGS

- 1 -

-

MAIL (I) 10/25/72 MAIL (I)

NAME
mail − send mail to another user

SYNOPSIS
mail [−yn]
mail letter person ...
mail person

DESCRIPTION
Mail without an argument searches for a file calledmailbox,prints it if present, and asks if it
should be saved. If the answer isy, the mail is renamedmbox,otherwise it is deleted.Mail with
a −y or −n argument works the same way, except that the answer to the question is supplied by
the argument.

When followed by the names of a letter and one or more people, the letter is appended to each
person’smailbox. When aperson is specified without aletter, the letter is taken from the
sender’s standard input up to an EOT. Each letter is preceded by the sender’s name and a post-
mark.

A personis either a user name recognized bylogin, in which case the mail is sent to the default
working directory of that user, or the path name of a directory, in which casemailboxin that di-
rectory is used.

When a user logs in he is informed of the presence of mail.

FILES
/etc/passwd to identify sender and locate persons
mailbox input mail
mbox saved mail

SEE ALSO
login(I)

BUGS
The mail should be prepended rather than appended to the mailbox. The old mbox should not be
destroyed when new mail is saved.

- 1 -

-

MAN (I) 8/20/73 MAN (I)

NAME
man − run off section of UNIX manual

SYNOPSIS
man [section] [title ...]

DESCRIPTION
Man is a shell command file that will locate and run off one or more sections of this manual.
Sectionis the section number of the manual, as an Arabic not Roman numeral, and is optional.
Title is one or more section names; these names bear a generally simple relation to the page cap-
tions in the manual. If thesectionis missing,1 is assumed. For example,

man man

would reproduce this page.

FILES
/usr/man/man?/*

BUGS
The manual is supposed to be reproducible either on the phototypesetter or on a typewriter.
However, on a typewriter some information is necessarily lost.

- 1 -

-

MERGE (I) 11/7/73 MERGE (I)

NAME
merge − merge several files

SYNOPSIS
merge[−anr] [−n] [+n] [name ...]

DESCRIPTION
Mergemerges several files together and writes the result on the standard output. If a file is des-
ignated by an unadorned ‘−’, the standard input is understood.

The merge is line-by-line in increasing ASCII collating sequence, except that upper-case letters
are considered the same as the corresponding lower-case letters.

Mergeunderstands several flag arguments.

−a Use strict ASCII collating sequence.

−n An initial numeric string, possibly preceded by ’−’, is sorted by numerical value.

−r Data is in reverse order.

−n The firstn fields in each line are ignored. A field is defined as a string of non-space, non-
tab characters separated by tabs and spaces from its neighbors.

+n The firstn characters are ignored. Fields (with−n) are skipped before characters.

SEE ALSO
sort(I)

BUGS
Only 8 files can be handled; any further files are ignored.

- 1 -

-

MESG (I) 3/15/72 MESG (I)

NAME
mesg − permit or deny messages

SYNOPSIS
mesg[n] [y]

DESCRIPTION
Mesgwith argumentn forbids messages viawrite by revoking non-user write permission on the
user’s typewriter.Mesgwith argumenty reinstates permission. All by itself,mesgreverses the
current permission. In all cases the previous state is reported.

FILES
/dev/tty?

SEE ALSO
write(I)

DIAGNOSTICS
‘?’ if the standard input file is not a typewriter

BUGS

- 1 -

-

MKDIR (I) 3/15/72 MKDIR (I)

NAME
mkdir − make a directory

SYNOPSIS
mkdir dirname ...

DESCRIPTION
Mkdir creates specified directories in mode 777. The standard entries ‘.’ and ‘..’ are made auto-
matically.

SEE ALSO
rmdir(I)

BUGS

- 1 -

-

MV (I) 8/20/73 MV (I)

NAME
mv − move or rename a file

SYNOPSIS
mv name1 name2

DESCRIPTION
Mv changes the name ofname1to name2. If name2is a directory,name1is moved to that direc-
tory with its original file-name. Directories may only be moved within the same parent directory
(just renamed).

If name2already exists, it is removed beforename1is renamed. Ifname2has a mode which for-
bids writing,mvprints the mode and reads the standard input to obtain a line; if the line begins
with y, the move takes place; if not,mvexits.

If name2would lie on a different file system, so that a simple rename is impossible,mv copies
the file and deletes the original.

BUGS
It should take a−f flag, like rm, to suppress the question if the target exists and is not writable.

- 1 -

-

NICE (I) 11/1/73 NICE (I)

NAME
nice − run a command at low priority

SYNOPSIS
nicecommand [arguments]

DESCRIPTION
Niceexecutescommandat low priority.

SEE ALSO
nohup(I), nice(II)

BUGS

- 1 -

-

NM (I) 8/20/73 NM (I)

NAME
nm − print name list

SYNOPSIS
nm [−cjnru] [name]

DESCRIPTION
Nm prints the symbol table from the output file of an assembler or loader run. Each symbol
name is preceded by its value (blanks if undefined) and one of the lettersU (undefined)A (abso-
lute) T (text segment symbol),D (data segment symbol),B (bss segment symbol), orC (com-
mon symbol). Global symbols have their first character underlined. Normally, the output is
sorted alphabetically and symbols consisting of a letter followed by one or more digits are not
printed (that is, symbols which look like C internal symbols).

If no file is given, the symbols ina.out are listed.

Options are:

−c list only C-style external symbols, that is those beginning with underscore ‘_’.

−j list symbols consisting of a letter followed by digits, which are normally suppressed.

−n sort by value instead of by name

−r sort in reverse order

−u print only undefined symbols.

FILES
a.out

BUGS

- 1 -

-

NOHUP (I) 11/1/73 NOHUP (I)

NAME
nohup − run a command immune to hangups

SYNOPSIS
nohup command [arguments]

DESCRIPTION
Nohupexecutescommandwith hangups, quits and interrupts all ignored.

SEE ALSO
nice(I), signal(II)

BUGS

- 1 -

-

NROFF (I) 1/15/73 NROFF (I)

NAME
nroff − format text

SYNOPSIS
nroff [+n] [−n] [−s] [−h] [−q] [−i] files

DESCRIPTION
Nroff formats text according to control lines embedded in the text files.Nroff will read the stan-
dard input if no file arguments are given. The non-file option arguments are interpreted as fol-
lows:

+n Output will commence at the first page whose page number isn or larger

−n will cause printing to stop after pagen.

−s Stop prior to each page to permit paper loading. Printing is restarted by typing a ‘newline’
character.

−h Spaces are replaced where possible with tabs to speed up output (or reduce the size of the
output file).

−q Prompt names for insertions are not printed and the bell character is sent instead; the inser-
tion is not echoed.

−i Causes the standard input to be read after the files.

Nroff is more completely described in [1]. A condensed Request Summary is included here.

FILES
/usr/lib/suftab suffix hyphenation tables
/tmp/rtm? temporary

SEE ALSO
[1] NROFF User’s Manual, internal memorandum.

BUGS

- 1 -

-

NROFF (I) 1/15/73 NROFF (I)

REQUEST REFERENCE AND INDEX

Request Initial If no Cause
Form Value Argument Break Explanation

I. Page Control

.pl +N N=66 N=66 no Page Length.

.bp +N N=1 - yes Begin Page.

.pn +N N=1 ignored no Page Number.

.po +N N=0 N=prev no Page Offset.

.ne N - N=1 no NEed N lines.

II. Text Filling, Adjusting, and Centering

.br - - yes BReak.

.fi fill - yes FIll output lines.

.nf fill - yes NoFill.

.ad c adj,norm adjust no ADjust mode on.

.na adjust - no NoAdjust.

.ce N off N=1 yes CEnter N input text lines.

III. Line Spacing and Blank Lines

.ls +N N=1 N=prev no Line Spacing.

.sp N - N=1 yes SPace N lines

.lv N - N=1 no LeaVe N lines

.sv N - N=1 no SaVe N lines.

.os - - no Output Saved lines.

.ns space - no No-Space mode on.

.rs - - no Restore Spacing.

.xh off - no EXtra-Half-line mode on.

IV. Line Length and Indenting

.ll +N N=65 N=prev no Line Length.

.in +N N=0 N=prev yes INdent.

.ti +N - N=1 yes Temporary Indent.

V. Macros, Diversion, and Line Traps

.de xx - ignored no DEfine or redefine a macro.

.ds xx - ignored no Define or redefine String.

.rm xx - - no ReMove macro name.

.di xx - end no DIvert output to macro "xx".

.wh -N xx - - no WHen; set a line trap.

.ch xx y - - no CHange trap line.

.ch -N -M - - no "

.ch xx -M - - no "

.ch -N y - - no "

VI. Number Registers

.nr ab +N -M- no Number Register.

.nr a +N -M - no "

.nc c \n \n no Number Character.

.ar arabic - no Arabic numbers.

.ro arabic - no Roman numbers.

.RO arabic - no ROMAN numbers.

VII. Input and Output Conventions and Character Translations

.ta N,M,... - none no PseudoTAbs setting.

.tc c space space no Tab replacement Character.

.lc c . . no Leader replacement Character.

.ul N - N=1 no UNderline input text lines.

- 2 -

-

NROFF (I) 1/15/73 NROFF (I)

.cc c . . no Basic Control Character.

.c2 c ′ ′ no Nobreak control character.

.ec c - \ no Escape Character.

.li N - N=1 no Accept input lines LIterally.

.tr abcd.... - - no TRanslate on output.

VIII. Hyphenation.

.nh on - no No Hyphen.

.hy on - no HYphenate.

.hc c none none no Hyphenation indicator Character.

IX. Three Part Titles.

.tl ′left′center′right′ - no TitLe.

.lt N N=65 N=prev no Length of Title.

X. Output Line Numbering.

.nm +N M S I off no Number Mode on or off, set parameters.

.np M S I - reset no Number Parameters set or reset.

XI. Conditional Input Line Acceptance

.if !N anything - no IF true accept line of "anything".

.if c anything- no "

.if !c anything - no "

.if N anything - no "

XII. Environment Switching.

.ev N N=0 N=prev no EnVironment switched.

XIII. Insertions from the Standard Input Stream

.rd prompt - bell no ReaD insert.

.ex - - no EXit.

XIV. Input File Switching

.so filename - - no Switch SOurce file (push down).

.nx filename - no NeXt file.

XV. Miscellaneous

.tm mesg - - no Typewriter Message

.ig - - no IGnore.

.fl - - no FLush output buffer.

.ab - - no ABort.

- 3 -

-

OD (I) 1/15/73 OD (I)

NAME
od − octal dump

SYNOPSIS
od [−abcdho] [file] [[+] offset[.][b]]

DESCRIPTION
Od dumpsfile in one or more formats as selected by the first argument. If the first argument is
missing−o is default. The meanings of the format argument characters are:

a interprets words as PDP-11 instructions and dis-assembles the operation code. Unknown op-
eration codes print as ???.

b interprets bytes in octal.

c interprets bytes in ascii. Unknown ascii characters are printed as \?.

d interprets words in decimal.

h interprets words in hex.

o interprets words in octal.

The file argument specifies which file is to be dumped. If no file argument is specified, the stan-
dard input is used. Thusodcan be used as a filter.

The offset argument specifies the offset in the file where dumping is to commence. This argu-
ment is normally interpreted as octal bytes. If ‘.’ is appended, the offset is interpreted in deci-
mal. If ‘b’ is appended, the offset is interpreted in blocks. (A block is 512 bytes.) If the file ar-
gument is omitted, the offset argument must be preceded by ‘+’.

Dumping continues until end-of-file.

SEE ALSO
db(I)

BUGS

- 1 -

-

OPR (I) 1/15/73 OPR (I)

NAME
opr − off line print

SYNOPSIS
opr [−−] [−] [+] [+−]file ...

DESCRIPTION
Opr will arrange to have the 201 data phone daemon submit a job to the Honeywell 6070 to print
the file arguments. Normally, the output appears at the GCOS central site. If the first argument
is −−, the output is remoted to station R1, which has an IBM 1403 printer.

Normally, each file is printed in the state it is found when the data phone daemon reads it. If a
particular file argument is preceded by+, or a preceding argument of+ has been encountered,
thenopr will make a copy for the daemon to print. If the file argument is preceded by−, or a
preceding argument of− has been encountered, thenopr will unlink (remove) the file.

If there are no arguments except for the optional−−, then the standard input is read and off-line
printed. Thusopr may be used as a filter.

FILES
/usr/dpd/* spool area
/etc/passwd personal ident cards
/etc/dpd daemon

SEE ALSO
dpd(I), passwd(V)

BUGS
There should be a way to specify a general remote site.

- 1 -

-

PASSWD (I) 9/1/72 PASSWD (I)

NAME
passwd − set login password

SYNOPSIS
passwdname password

DESCRIPTION
The passwordis placed on the given login name. This can only be done by the person corre-
sponding to the login name or by the super-user. An explicit null argument ("") for the password
argument will remove any password from the login name.

FILES
/etc/passwd

SEE ALSO
login(I), passwd(V), crypt(III)

BUGS

- 1 -

-

PFE (I) 11/1/73 PFE (I)

NAME
pfe − print floating exception

SYNOPSIS
pfe

DESCRIPTION
Pfewill examine the floating point exception register and print a diagnostic for the last floating
point exception.

SEE ALSO
signal(II)

BUGS
Since there is but one floating point exception register and it cannot be saved and restored by the
system, the floating exception that is printed is the one that occured system wide. Floating ex-
ceptions are therefore volatile.

- 1 -

-

PLOT (I) 6/4/73 PLOT (I)

NAME
plot − make a graph

SYNOPSIS
plot [option] ...

DESCRIPTION
Plot takes pairs of numbers from the standard input as abscissas and ordinates of a graph. The
graph is plotted on the storage scope, /dev/vt0.

The following options are recognized, each as a separate argument.

a Supply abscissas automatically (they are missing from the input); spacing is given by the
next argument, or is assumed to be 1 if next argument is not a number.

c Place character string given by next argument at each point.

d Omit connections between points. (Disconnect.)

gn Grid style:
n=0, no grid
n=1, axes only
n=2, complete grid (default).

s Save screen, don’t erase before plotting.

x Next 1 (or 2) arguments are lower (and upper)x limits.

y Next 1 (or 2) arguments are lower (and upper)y limits.

Points are connected by straight line segments in the order they appear in input. If a specified
lower limit exceeds the upper limit, or if the automatic increment is negative, the graph is plotted
upside down. Automatic abscissas begin with the lowerx limit, or with 0 if no limit is specified.
Grid lines and automatically determined limits fall on round values, however roundness may be
subverted by giving an inappropriately rounded lower limit. Plotting symbols specified byc are
placed so that a small initial letter, such as + o x, will fall approximately on the plotting point.

FILES
/dev/vt0

SEE ALSO
spline(VI)

BUGS
A limit of 1000 points is enforced silently.

- 1 -

-

PR (I) 1/15/73 PR (I)

NAME
pr − print file

SYNOPSIS
pr [−h name] [−n] [+n] [file ...]

DESCRIPTION
Pr produces a printed listing of one or more files. The output is separated into pages headed by a
date, the name of the file or a header (if any), and the page number. If there are no file argu-
ments,pr prints the standard input file, and is thus usable as a filter.

Options apply to all following files but may be reset between files:

−n producen-column output

+n begin printing with pagen.

−h treat the next argument as a header

If there is a header in force, it is printed in place of the file name. Interconsole messages via
write(I) are forbidden during apr.

FILES
/dev/tty? to suspend messages.

SEE ALSO
cat(I), cp(I)

DIAGNOSTICS
none (files not found are ignored)

BUGS
It would be nice to be able to set the number of lines per page.

- 1 -

-

PROOF (I) 1/15/73 PROOF (I)

NAME
proof − compare two text files

SYNOPSIS
proof oldfile newfile

DESCRIPTION
Proof lists those lines ofnewfilethat differ from corresponding lines inoldfile. The line number
in newfileis given. When changes, insertions or deletions have been made the program attempts
to resynchronize the text in the two files by finding a sequence of lines in both files that again
agree.

SEE ALSO
cmp(I), comm(I)

DIAGNOSTICS
yes, but they are undecipherable, e.g. ‘?1’.

BUGS
This program has a long way to go before even a list of specific bugs is appropriate.

- 1 -

-

PS (I) 10/15/73 PS (I)

NAME
ps − process status

SYNOPSIS
ps [alx]

DESCRIPTION
Ps prints certain indicia about active processes. Thea flag asks for information about all pro-
cesses with teletypes (ordinarily only one’s own processes are displayed);x asks even about pro-
cesses with no typewriter;l asks for a long listing. Ordinarily only the typewriter number (if not
one’s own) and the process number are given.

The long listing is columnar and contains

A number encoding the state (last digit) and flags (first 1 or 2 digits) of the process.

The priority of the process; high numbers mean low priority.

A number related in some unknown way to the scheduling heuristic.

The last character of the control typewriter of the process.

The process unique number (as in certain cults it is possible to kill a process if you know
its true name).

The size in blocks of the core image of the process.

The last column if non-blank tells the core address in the system of the event which the
process is waiting for; if blank, the process is running.

Unfortunately if you have forgotten the number of a process you will have to guess which one it
is. Plainpswill tell you only a list of numbers.

FILES
/usr/sys/unix system namelist
/dev/mem resident system

SEE ALSO
kill(I)

BUGS
The ability to see, even if dimly, the name by which the process was invoked would be welcome.

- 1 -

-

REW (I) 1/15/73 REW (I)

NAME
rew − rewind tape

SYNOPSIS
rew [[m]digit]

DESCRIPTION
Rewrewinds DECtape or magtape drives. The digit is the logical tape number, and should range
from 0 to 7. if the digit is preceded bym, rew applies to magtape rather than DECtape. A miss-
ing digit indicates drive 0.

FILES
/dev/tap?
/dev/mt?

BUGS

- 1 -

-

RM (I) 1/20/73 RM (I)

NAME
rm − remove (unlink) files

SYNOPSIS
rm [−f] [−r] name ...

DESCRIPTION
Rmremoves the entries for one or more files from a directory. If an entry was the last link to the
file, the file is destroyed. Removal of a file requires write permission in its directory, but neither
read nor write permission on the file itself.

If there is no write permission to a file designated to be removed,rm will print the file name, its
mode and then read a line from the standard input. If the line begins withy, the file is removed,
otherwise it is not. The optional argument−f prevents this interaction.

If a designated file is a directory, an error comment is printed unless the optional argument−r
has been used. In that case,rm recursively deletes the entire contents of the specified directory.
To remove directoriesper sesee rmdir(I).

FILES
/etc/glob to implement the−r flag

SEE ALSO
rmdir(I)

BUGS
Whenrm removes the contents of a directory under the−r flag, full pathnames are not printed in
diagnostics.

- 1 -

-

RMDIR (I) 3/15/72 RMDIR (I)

NAME
rmdir − remove directory

SYNOPSIS
rmdir dir ...

DESCRIPTION
Rmdir removes (deletes) directories. The directory must be empty (except for the standard en-
tries ‘.’ and ‘..’, which rmdir itself removes). Write permission is required in the directory in
which the directory appears.

BUGS
Needs a−r flag. Actually, write permission in the directory’s parent isnot required.

- 1 -

-

ROFF (I) 6/12/72 ROFF (I)

NAME
roff − format text

SYNOPSIS
roff [+n] [−n] [−s] [−h] file ...

DESCRIPTION
Roff formats text according to control lines embedded in the text in the given files. Encountering
a nonexistent file terminates printing. Incoming interconsole messages are turned off during
printing. The optional flag arguments mean:

+n Start printing at the first page with numbern.

−n Stop printing at the first page numbered higher thann.

−s Stop before each page (including the first) to allow paper manipulation; resume on receipt
of an interrupt signal.

−h Insert tabs in the output stream to replace spaces whenever appropriate.

A Request Summary is attached.

FILES
/usr/lib/suftabsuffix hyphenation tables
/tmp/rtm?temporary

SEE ALSO
nroff (I), troff (I)

BUGS
Roff is the simplest of the runoff programs, but is virtually undocumented.

- 1 -

-

ROFF (I) 6/12/72 ROFF (I)

REQUEST SUMMARY

Request Break Initial Meaning
.ad yes yes Begin adjusting right margins.
.ar no arabic Arabic page numbers.
.br yes - Causes a line break − the filling of the current line is stopped.
.bl n yes - Insert of n blank lines, on new page if necessary.
.bp +n yes n=1 Begin new page and number it n; no n means ‘+1’.
.cc c no c=. Control character becomes ‘c’.
.ce n yes - Center the next n input lines, without filling.
.de xx no - Define macro named ‘xx’ (definition ends on line beginning ‘..’).
.ds yes no Double space; same as ‘.ls 2’.
.ef t no t=´´´´ Even foot title becomes t.
.eh t no t=´´´´ Even head title becomes t.
.fi yes yes Begin filling output lines.
.fo no t=´´´´ All foot titles are t.
.hc c no none Hyphenation character set to ‘c’.
.he t no t=´´´´ All head titles are t.
.hx no - Title lines are suppressed.
.hy n no n=1 Hyphenation is done, if n=1; and is not done, if n=0.
.ig no - Ignore input lines through a line beginning with ‘..’.
.in +n yes - Indent n spaces from left margin.
.ix +n no - Same as ‘.in’ but without break.
.li n no - Literal, treat next n lines as text.
.ll +n no n=65 Line length including indent is n characters.
.ls +n yes n=1 Line spacing set to n lines per output line.
.m1 n no n=2 Put n blank lines between the top of page and head title.
.m2 n no n=2 n blank lines put between head title and beginning of text on

page.
.m3 n no n=1 n blank lines put between end of text and foot title.
.m4 n no n=3 n blank lines put between the foot title and the bottom of page.
.na yes no Stop adjusting the right margin.
.ne n no - Begin new page, if n output lines cannot fit on present page.
.nn +n no - The next n output lines are not numbered.
.n1 no no Number output lines; start with 1 each page
.n2 n no no Number output lines; stop numbering if n=0.
.ni +n no n=0 Line numbers are indented n.
.nf yes no Stop filling output lines.
.nx filename - Change to input file ‘filename’.
.of t no t=´´´´ Odd foot title becomes t.
.oh t no t=´´´´ Odd head title becomes t.
.pa +n yes n=1 Same as ‘.bp’.
.pl +n no n=66 Total paper length taken to be n lines.
.po +n no n=0 Page offset. All lines are preceded by N spaces.
.ro no arabic Roman page numbers.
.sk n no - Produce n blank pages starting next page.
.sp n yes - Insert block of n blank lines.
.ss yes yes Single space output lines, equivalent to ‘.ls 1’.
.ta N M ... - Pseudotab settings. Initial tab settings are columns 9,17,25,...
.tc c no c=‘ ’ Tab replacement character becomes ‘c’.
.ti +n yes - Temporarily indent next output line n space.
.tr abcd.. no - Translate a into b, c into d, etc.
.ul n no - Underline the letters and numbers in the next n input lines.

- 2 -

-

SH (I) 4/18/73 SH (I)

NAME
sh − shell (command interpreter)

SYNOPSIS
sh [name [arg1 ... [arg9]]]

DESCRIPTION
Sh is the standard command interpreter. It is the program which reads and arranges the execu-
tion of the command lines typed by most users. It may itself be called as a command to interpret
files of commands. Before discussing the arguments to the Shell used as a command, the struc-
ture of command lines themselves will be given.

Commands. Each command is a sequence of non-blank command arguments separated by
blanks. The first argument specifies the name of a command to be executed. Except for certain
types of special arguments discussed below, the arguments other than the command name are
passed without interpretation to the invoked command.

If the first argument is the name of an executable file, it is invoked; otherwise the string ‘/bin/’ is
prepended to the argument. (In this way most standard commands, which reside in ‘/bin’, are
found.) If no such command is found, the string ‘/usr’ is further prepended (to give
‘/usr/bin/command’) and another attempt is made to execute the resulting file. (Certain lesser-
used commands live in ‘/usr/bin’.) If the ‘/usr/bin’ file exists, but is not executable, it is used by
the Shell as a command file. That is to say it is executed as though it were typed from the con-
sole. If all attempts fail, a diagnostic is printed.

Command lines. One or more commands separated by ‘ ’ or ‘ˆ’ constitute apipeline. The stan-
dard output of each command but the last in a pipeline is taken as the standard input of the next
command. Each command is run as a separate process, connected by pipes (see pipe(II)) to its
neighbors. A command line contained in parentheses ‘()’ may appear in place of a simple com-
mand as an element of a pipeline.

A command lineconsists of one or more pipelines separated, and perhaps terminated by ‘;’ or
‘&’. The semicolon designates sequential execution. The ampersand causes the preceding pipe-
line to be executed without waiting for it to finish. The process id of such a pipeline is reported,
so that it may be used if necessary for a subsequentwait or kill.

Termination Reporting. If a command (not followed by ‘&’) terminates abnormally, a mes-
sage is printed. (All terminations other than exit and interrupt are considered abnormal.) Termi-
nation reports for commands followed by ‘&’ are given upon receipt of the first command subse-
quent to the termination of the command, or when await is executed. The following is a list of
the abnormal termination messages:

Bus error
Trace/BPT trap
Illegal instruction
IOT trap
EMT trap
Bad system call
Quit
Floating exception
Memory violation
Killed

If a core image is produced, ‘− Core dumped’ is appended to the appropriate message.

Redirection of I/O. There are three character sequences that cause the immediately following
string to be interpreted as a special argument to the Shell itself. Such an argument may appear
anywhere among the arguments of a simple command, or before or after a parenthesized com-
mand list, and is associated with that command or command list.

An argument of the form ‘<arg’ causes the file ‘arg’ to be used as the standard input file of the
associated command.

- 1 -

-

SH (I) 4/18/73 SH (I)

An argument of the form ‘>arg’ causes file ‘arg’ to be used as the standard output file for the as-
sociated command. ‘Arg’ is created if it did not exist, and in any case is truncated at the outset.

An argument of the form ‘>>arg’ causes file ‘arg’ to be used as the standard output for the asso-
ciated command. If ‘arg’ did not exist, it is created; if it did exist, the command output is ap-
pended to the file.

For example, either of the command lines

ls >junk; cat tail >>junk
(ls; cat tail) >junk

creates, on file ‘junk’, a listing of the working directory, followed immediately by the contents
of file ‘tail’.

Either of the constructs ‘>arg’ or ‘>>arg’ associated with any but the last command of a pipeline
is ineffectual, as is ‘<arg’ in any but the first.

Generation of argument lists. If any argument contains any of the characters ‘?’, ‘*’ or ‘[’, it is
treated specially as follows. The current directory is searched for files whichmatchthe given ar-
gument.

The character ‘*’ in an argument matches any string of characters in a file name (including the
null string).

The character ‘?’ matches any single character in a file name.

Square brackets ‘[...]’ specify a class of characters which matches any single file-name character
in the class. Within the brackets, each ordinary character is taken to be a member of the class. A
pair of characters separated by ‘−’ places in the class each character lexically greater than or
equal to the first and less than or equal to the second member of the pair.

Other characters match only the same character in the file name.

For example, ‘*’ matches all file names; ‘?’ matches all one-character file names; ‘[ab]*.s’
matches all file names beginning with ‘a’ or ‘b’ and ending with ‘.s’; ‘?[zi−m]’ matches all two-
character file names ending with ‘z’ or the letters ‘i’ through ‘m’.

If the argument with ‘*’ or ‘?’ also contains a ‘/’, a slightly different procedure is used: instead
of the current directory, the directory used is the one obtained by taking the argument up to the
last ‘/’ before a ‘*’ or ‘?’. The matching process matches the remainder of the argument after
this ‘/’ against the files in the derived directory. For example: ‘/usr/dmr/a*.s’ matches all files
in directory ‘/usr/dmr’ which begin with ‘a’ and end with ‘.s’.

In any event, a list of names is obtained which match the argument. This list is sorted into alpha-
betical order, and the resulting sequence of arguments replaces the single argument containing
the ‘*’, ‘[’, or ‘?’. The same process is carried out for each argument (the resulting lists arenot
merged) and finally the command is called with the resulting list of arguments.

For example: directory /usr/dmr contains the files a1.s, a2.s, ..., a9.s. From any directory, the
command

as /usr/dmr/a?.s

callsaswith arguments /usr/dmr/a1.s, /usr/dmr/a2.s, ... /usr/dmr/a9.s in that order.

Quoting. The character ‘\’ causes the immediately following character to lose any special mean-
ing it may have to the Shell; in this way ‘<’, ‘>’, and other characters meaningful to the Shell
may be passed as part of arguments. A special case of this feature allows the continuation of
commands onto more than one line: a new-line preceded by ‘\’ is translated into a blank.

Sequences of characters enclosed in double (") or single (´) quotes are also taken literally. For
example:

ls pr −h "My directory"

causes a directory listing to be produced byls, and passed on topr to be printed with the heading
‘My directory’. Quotes permit the inclusion of blanks in the heading, which is a single argument

- 2 -

-

SH (I) 4/18/73 SH (I)

to pr.

Argument passing. When the Shell is invoked as a command, it has additional string process-
ing capabilities. Recall that the form in which the Shell is invoked is

sh [name [arg1 ... [arg9]]]

Thenameis the name of a file which will be read and interpreted. If not given, this subinstance
of the Shell will continue to read the standard input file.

In command lines in the file (not in command input), character sequences of the form ‘$n’,
wheren is a digit, are replaced by thenth argument to the invocation of the Shell (argn). ‘$0’ is
replaced byname.

End of file. An end-of-file in the Shell’s input causes it to exit. A side effect of this fact means
that the way to log out from UNIX is to type an EOT.

Special commands.The following commands are treated specially by the Shell.

chdir is done without spawning a new process by executingsys chdir(II).

login is done by executing /bin/login without creating a new process.

wait is done without spawning a new process by executingsys wait(II).

shift is done by manipulating the arguments to the Shell.

‘ :’ is simply ignored.

Command file errors; interrupts. Any Shell-detected error, or an interrupt signal, during the
execution of a command file causes the Shell to cease execution of that file.

Process that are created with a ‘&’ ignore interrupts. Also if such a process has not redirected its
input with a ‘<’, its input is automatically redirected to the zero length file /dev/null.

FILES
/etc/glob, which interprets ‘*’, ‘?’, and ‘[’.
/dev/null as a source of end-of-file.

SEE ALSO
‘The UNIX Time-sharing System’, which gives the theory of operation of the Shell.
chdir(I), login(I), wait(I), shift(I)

BUGS
When output is redirected, particularly to make a multicommand pipeline, diagnostics tend to be
sent down the pipe and are sometimes lost altogether. Not all components of a pipeline
swawned with ‘&’ ignore interrupts.

- 3 -

-

SHIFT (I) 8/21/73 SHIFT (I)

NAME
shift − adjust Shell arguments

SYNOPSIS
shift

DESCRIPTION
Shift is used in Shell command files to shift the argument list left by 1, so that old$2 can now be
referred to by$1 and so forth.Shift is useful to iterate over several arguments to a command
file. For example, the command file

: loop
if $1x = x exit
pr −3 $1
shift
goto loop

prints each of its arguments in 3-column format.

Shift is executed within the Shell.

SEE ALSO
sh (I)

BUGS

- 1 -

-

SIZE (I) 9/2/72 SIZE (I)

NAME
size − size of an object file

SYNOPSIS
size[object ...]

DESCRIPTION
The size, in bytes, of the object files are printed. If no file is given,a.out is default. The size is
printed in decimal for the text, data, and bss portions of each file. The sum of these is also print-
ed in octal and decimal.

BUGS

- 1 -

-

SLEEP (I) 11/1/73 SLEEP (I)

NAME
sleep − suspend execution for an interval

SYNOPSIS
sleeptime

DESCRIPTION
Sleepwill suspend execution fortime seconds. It is used to execute a command in a certain
amount of time as in:

(sleep 105; command)&

Or to execute a command every so often as in this shell command file:

: loop
command
sleep 37
goto loop

SEE ALSO
sleep(II)

BUGS
Timemust be less than 65536 seconds.

- 1 -

-

SNO (I) 2/9/73 SNO (I)

NAME
sno − Snobol interpreter

SYNOPSIS
sno [file]

DESCRIPTION
Snois a Snobol III (with slight differences) compiler and interpreter.Snoobtains input from the
concatenation offile and the standard input. All input through a statement containing the label
‘end’ is considered program and is compiled. The rest is available to ‘syspit’.

Snodiffers from Snobol III in the following ways.

There are no unanchored searches. To get the same effect:

a ** b unanchored search for b
a *x* b = x c unanchored assignment

There is no back referencing.

x = "abc"
a *x* x is an unanchored search for ‘abc’

Function declaration is different. The function declaration is done at compile time by the use of
the label ‘define’. Thus there is no ability to define functions at run time and the use of the name
‘define’ is preempted. There is also no provision for automatic variables other than the parame-
ters. For example:

definef()

or

define f(a,b,c)

All labels except ‘define’ (even ‘end’) must have a non-empty statement.

If ‘start’ is a label in the program, program execution will start there. If not, execution begins
with the first executable statement. ‘define’ is not an executable statement.

There are no builtin functions.

Parentheses for arithmetic are not needed. Normal precedence applies. Because of this, the
arithmetic operators ‘/’ and ‘*’ must be set off by space.

The right side of assignments must be non-empty.

Either ´ or " may be used for literal quotes.

The pseudo-variable ‘sysppt’ is not available.

SEE ALSO
Snobol III manual. (JACM; Vol. 11 No. 1; Jan 1964; pp 21)

BUGS

- 1 -

-

SORT (I) 5/7/73 SORT (I)

NAME
sort − sort a file

SYNOPSIS
sort [−anr] [+n] [−n] [input [output]]

DESCRIPTION
Sortsortsinput and writes the result onoutput. If the output file is not given, the standard output
is used. If the input file is missing, the standard input is used. Thussort may be used as a filter.
The input and output file may be the same.

The sort is line-by-line in increasing ASCII collating sequence, except that upper-case letters are
considered the same as the corresponding lower-case letters.

Sortunderstands several flag arguments.

−a Use strict ASCII collating sequence.

−n An initial numeric string is sorted by numerical value.

−r Output is in reverse order.

−n The firstn fields in each line are ignored. A field is defined as a string of non-space, non-
tab characters separated by tabs and spaces from its neighbors.

+n The firstn characters are ignored in the sort. Fields (with−n) are skipped before characters.

FILES
/tmp/stm?

BUGS
The largest file that can be sorted is about 128K bytes.

- 1 -

-

SPEAK (I) 8/15/73 SPEAK (I)

NAME
speak − word to voice translator

SYNOPSIS
speak[−epsv] [vocabulary [output]]

DESCRIPTION
Speakturns a stream of words into utterances and outputs them to a voice synthesizer, or to a
specified output file. It has facilities for maintaining a vocabulary. It receives, from the standard
input

− working lines: text of words separated by blanks
− phonetic lines: strings of phonemes for one word preceded and separated by commas. The

phonemes may be followed by comma-percent then a ‘replacement part’ − an ASCII string
with no spaces. The phonetic code is given in vsp(VII).

− empty lines
− command lines: beginning with!. The following command lines are recognized:

!r file replace coded vocabulary from file
!w file write coded vocabulary on file
!p print parsing for working word
!l list vocabulary on standard output with phonetics
!c word copy phonetics from working word to specified word
!d print phonetics for working word

Each working line replaces its predecessor. Its first word is the ‘working word’. Each phonetic
line replaces the phonetics stored for the working word. In particular, a phonetic line of comma
only deletes the entry for the working word. Each working line, phonetic line or empty line
causes the working line to be uttered. The process terminates at the end of input.

Unknown words are pronounced by rules, and failing that, are spelled. Spelling is done by tak-
ing each character of the word, prefixing it with *, and looking it up. Unspellable words burp.

Speakis initialized with a coded vocabulary stored in file /usr/lib/speak.m. The vocabulary op-
tion substitutes a different file for /usr/lib/speak.m.

A set of single letter options may appear in any order preceded by−. Their meanings are:

−e suppress English steps (4−8) below
−p suppress pronunciation by rule
−s suppress spelling
−v suppress voice output

The steps of pronunciation by rule are:

(1) If there were no lower case letters in the working line, fold all upper case letters to lower.
(2) Fold an initial cap to lower case, and try again.
(3) If word has only one letter, or has no lower case vowels, quit.
(4) If there is a finals,strip it.
(5) Replace final −ie by −y.
(6) If any changes have been made, try whole word again.
(7) Locate probable long vowels and capitalize them. Mark probable silente’s.
(8) Put back thes stripped in (4), if any.
(9) Place # before and after word.
(10) Prefix word with%, and look up longest initial match in the stored table of words; if none,

quit.
(11) Use phonemes from the stored phonetic string as pronunciation, and replace the matched

stuff by the replacement part of the phonetic string.
(12) If anything remains, go to (10).

Long vowels are located this way in step (7):

- 1 -

-

SPEAK (I) 8/15/73 SPEAK (I)

(1) A u appearing in context [ˆaeiou]u[ˆaeiouwxy][aieouy]. (The notation is just a regular ex-
pression à la ed(I).)(pustUlous)

(2) One of [aeo] appearing in the context [aeo][ˆaehiouwxy][ie][aou] or in the context
[aeo][ˆaehiouwxy]ien is assumed long. The digramth behaves as a single letter in this
test. (rAdium, facEtious, quOtient, carpAthian)

(3) If the first vowel in the word isi followed by one ofaou, it is assumed long.(Iodine, dI-
ameter, trIumph)

(4) If the only vowel in the word is finale, the vowel is assumed long.(bE, shE)
(5) If the only vowels in the word appear in the pattern [aeiouy][ˆaeiouwxy]S, where S is one

of the suffixes
−al −le −re −y

then the first vowel is assumed long.(glObal, tAble, lUcre, lAdy)
(6) If no suffix was found in (5), as many of these suffixes as possible are isolated from right

to left. Stripping stops whene has been stripped, nor ise stripped before a suffix begin-
ning with e. Each suffix is marked by inserting just before the first letter, or just aftere
in those suffixes that begin withe.

−able −ably −e −ed
−er −ery −est −ful
−ing −less −ment −ness

(care ful ly, maj or, fine ry, state , caree r)
(7) If the word, exclusive of suffixes, ends ini or y, and contains no earlier vowel, theni or y

is assumed long.(pY(from pie),crY ing, lIe d)
(8) If the first suffix begins with one of [aeio], then the vowel [aeiouy] in an immediately pre-

ceding pattern [ˆaeo][aeiouy][ˆaeiouwxy] is assumed long. The digramth behaves as a
single letter in this test.(cAre ful ly, bAthe d, mAj or, pOt able, port able)

(9) In these exceptional cases no long letter is assumed in the preceding step:
(i) beforeg, if there are any earlier vowels(postage , stAge , college)
(ii) e is not long beforel (travele d)

(10) If the first suffix begins with one of [aeio], and the word exclusive of suffixes ends in
[aeiouyAEIOUY]th, then digramth is capitalized.(breaTH ing, blITHe ly)

(11) An attempt is made to recognize silente in the middle of compound words. Such ane is
marked by a following , and preceding vowels, other thane, are assumed long as in step
(8). Silente is marked in the context [bdgmnprst][bdgpt]le[ˆaeioruy]S, where S is any
string that contains [aeiouy] but does not contain or the end of the word. Silente is also
marked in the context [ˆaeiu][aiou][ˆaeiouwxy]e[ˆaeinoruy]S.(simple ton, fAce guard,
cAve man, cavernous)

FILES
/usr/lib/speak.m

SEE ALSO
vs(VII), vs(IV)

DIAGNOSTICS
‘?’ for unknown command with!, or for unreadable or unwritable vocabulary file

BUGS
Vocabulary overflow is unchecked. Excessively long words cause dumps. Space is not
reclaimed from deleted entries.

- 2 -

-

SPLIT (I) 1/15/73 SPLIT (I)

NAME
split − split a file into pieces

SYNOPSIS
split [file1 [file2]]

DESCRIPTION
Split reads file1 and writes it in 1000-line pieces, as many as are necessary, onto a set of output
files. The name of the first output file is file2 with an ‘a’ appended, and so on through the alpha-
bet and beyond. If no output name is given, ‘x’ is default.

If no input file is given, or the first argument is ‘−’, then the standard input file is used.

BUGS
Watch out for 14-character file names. The number of lines per file should be an argument.

- 1 -

-

STRIP (I) 3/15/72 STRIP (I)

NAME
strip − remove symbols and relocation bits

SYNOPSIS
strip name ...

DESCRIPTION
Strip removes the symbol table and relocation bits ordinarily attached to the output of the assem-
bler and loader. This is useful to save space after a program has been debugged.

The effect ofstrip is the the same as use of the−s option ofld.

FILES
/tmp/stm? temporary file

SEE ALSO
ld(I), as(I)

BUGS

- 1 -

-

STTY (I) 6/12/72 STTY (I)

NAME
stty − set teletype options

SYNOPSIS
stty option ...

DESCRIPTION
Sttywill set certain I/O options on the current output teletype. The option strings are selected
from the following set:

even allow even parity
−even disallow even parity
odd allow odd parity
−odd disallow odd parity
raw raw mode input (no erase, kill, interrupt, quit, EOT; parity bit passed back)
−raw negate raw mode
−nl allow carriage return for new-line, and output CR-LF for carriage return or new-line
nl accept only new-line to end lines
echo echo back every character typed
−echo do not echo characters
lcase map upper case to lower case
−lcase do not map case
−tabs replace tabs by spaces in output
tabs preserve tabs
delay calculate cr, tab, and form-feed delays
−delay no cr/tab/ff delays
tdelay calculate tab delays
−tdelay no tab delays

SEE ALSO
stty(II)

BUGS
There should be ‘package’ options such asexecuport, 33,or terminet.

- 1 -

-

SUM (I) 3/15/72 SUM (I)

NAME
sum − sum file

SYNOPSIS
sum name ...

DESCRIPTION
Sumsums the contents of the bytes (mod 2ˆ16) of one or more files and prints the answer in oc-
tal. A separate sum is printed for each file specified, along with the number of whole or partial
512-byte blocks read.

In practice,sumis often used to verify that all of a special file can be read without error.

BUGS

- 1 -

-

TIME (I) 8/16/73 TIME (I)

NAME
time − time a command

SYNOPSIS
time command

DESCRIPTION
The given command is executed; after it is complete,time prints the elapsed time during the
command, the time spent in the system, and the time spent in execution of the command.

The execution time can depend on what kind of memory the program happens to land in; the
user time in MOS is often half what it is in core.

BUGS
Notice thattime x >y puts the timing information intoy. One can get around this bytime sh fol-
lowed byx >y.
Elapsed time is accurate to the second, while the CPU times are measured to the 60th second.
Thus the sum of the CPU times can be up to a second larger than the elapsed time.

- 1 -

-

TP (I) 10/15/73 TP (I)

NAME
tp − manipulate DECtape and magtape

SYNOPSIS
tp [key] [name ...]

DESCRIPTION
Tp saves and restores selected portions of the file system hierarchy on DECtape or mag tape. Its
actions are controlled by thekeyargument. The key is a string of characters containing at most
one function letter and possibly one or more function modifiers. Other arguments to the com-
mand are file or directory names specifying which files are to be dumped, restored, or listed.

The function portion of the key is specified by one of the following letters:

r The indicated files and directories, together with all subdirectories, are dumped onto
the tape. If files with the same names already exist, they are replaced. ‘Same’ is deter-
mined by string comparison, so ‘./abc’ can never be the same as ‘/usr/dmr/abc’ even if
‘/usr/dmr’ is the current directory. If no file argument is given, ‘.’ is the default.

u updates the tape.u is the same asr, but a file is replaced only if its modification date
is later than the date stored on the tape; that is to say, if it has changed since it was
dumped.u is the default command if none is given.

d deletes the named files and directories from the tape. At least one file argument must
be given. This function is not permitted on magtapes.

x extracts the named files from the tape to the file system. The owner, mode, and date-
modified are restored to what they were when the file was dumped. If no file argu-
ment is given, the entire contents of the tape are extracted.

t lists the names of all files stored on the tape which are the same as or are hierarchically
below the file arguments. If no file argument is given, the entire contents of the tape is
listed.

The following characters may be used in addition to the letter which selects the function desired.

m Specifies magtape as opposed to DECtape.

0,...,7 This modifier selects the drive on which the tape is mounted. For DECtape, ‘x’ is
default; for magtape ‘0’ is the default.

v Normally tp does its work silently. Thev (verbose) option causes it to type the
name of each file it treats preceded by the function letter. With thet function, v
gives more information about the tape entries than just the name.

c means a fresh dump is being created; the tape directory will be zeroed before begin-
ning. Usable only withr andu. This option is assumed with magtape since it is im-
possible to selectively overwrite magtape.

f causes new entries on tape to be ‘fake’ in that no data is present for these entries.
Such fake entries cannot be extracted. Usable only withr andu.

i Errors reading and writing the tape are noted, but no action is taken. Normally, er-
rors cause a return to the command level.

w causestp to pause before treating each file, type the indicative letter and the file
name (as with v) and await the user’s response. Responsey means ‘yes’, so the file
is treated. Null response means ‘no’, and the file does not take part in whatever is
being done. Responsex means ‘exit’; thetp command terminates immediately. In
thex function, files previously asked about have been extracted already. Withr, u,
andd no change has been made to the tape.

FILES
/dev/tap?
/dev/mt?

- 1 -

-

TP (I) 10/15/73 TP (I)

DIAGNOSTICS
Several; the non-obvious one is ‘Phase error’, which means the file changed after it was selected
for dumping but before it was dumped.

BUGS

- 2 -

-

TR (I) 9/24/73 TR (I)

NAME
tr − transliterate

SYNOPSIS
tr [−cds] [string1 [string2]]

DESCRIPTION
Tr copies the standard input to the standard output with substitution or deletion of selected char-
acters. Input characters found instring1 are mapped into the corresponding characters of
string2. If string2 is short, it is padded with corresponding characters fromstring1. Any combi-
nation of the options−cdsmay be used.−c complements the set of characters instring1with re-
spect to the universe of characters whose ascii codes are 001 through 377 octal.−d deletes all
input characters not instring1. −s squeezes all strings of repeated output characters that are in
string2 to single characters.

The following abbreviation conventions may be used to introduce ranges of characters or re-
peated characters into the strings:

[a−b] stands for the string of characters whose ascii codes run from charactera to characterb.

[a*n], wheren is an integer or empty, stands forn-fold repetition of charactera. n is taken to be
octal or decimal according as its first digit is or is not zero. A zero or missingn is taken to be
huge; this facility is useful for paddingstring2.

The escape character ‘\’ may be used as insh to remove special meaning from any character in a
string. In addition, ‘\’ followed by 1, 2 or 3 octal digits stands for the character whose ascii code
is given by those digits.

The following example creates a list of all the words in ‘file1’ one per line in ‘file2’, where a
word is taken to be a maximal string of alphabetics. The strings are quoted to protect the special
characters from interpretation by the Shell; 012 is the ascii code for newline.

tr −cs "[A−Z][a−z]" "[\012*]" <file1 >file2

SEE ALSO
sh(I), ed(I), ascii(VII)

BUGS
Won’t handle ascii NUL.
Also, Kernighan’s Lemma can really bite you; try looking for strings which have \ and * in them.

- 1 -

-

TROFF (I) 1/15/73 TROFF (I)

NAME
troff − format text

SYNOPSIS
troff [+n] [−n] [−t] [−f] [−w] [−i] [−a] files

DESCRIPTION
Troff formats text for a Graphic Systems phototypesetter according to control lines embedded in
the text files. Troff is based on nroff(I). The non-file option arguments are interpreted as fol-
lows:

+n Commence typesetting at the first page numberedn or larger.

−n Stop after pagen.

−t Place output on standard output instead of the phototypesetter.

−f Refrain from feeding out paper and stopping the phototypesetter at the end.

−w Wait until phototypsetter is available, if currently busy.

−i Read from standard input after the files have been exhausted.

−a Send a printable approximation of the results to the standard output.

A TROFF Guide is available [1] which can be used in conjunction with an NROFF Manual [2].

FILES
/usr/lib/suftabsuffix hyphenation tables
/tmp/rtm?temporary

SEE ALSO
[1] Preliminary TROFF Guide (unpublished).
[2] NROFF User’s Manual (internal memorandum).
TROFF Made Trivial (unpublished).
nroff(I), roff(I)

BUGS

- 1 -

-

TSS (I) 3/15/72 TSS (I)

NAME
tss − interface to MH-TSS

SYNOPSIS
tss

DESCRIPTION
Tsswill call the Honeywell 6070 on the 201 data phone. It will then go into direct access with
MH-TSS. Output generated by MH-TSS is typed on the standard output and input requested by
MH-TSS is read from the standard input with UNIX typing conventions.

An interrupt signal is transmitted as a ‘break’ to MH-TSS.

Input lines beginning with ‘!’ are interpreted as UNIX commands. Input lines beginning with
‘˜’ are interpreted as commands to the interface routine.

˜<file insert input from named UNIX file
˜>file deliver tss output to named UNIX file
˜p pop the output file
˜q disconnect from tss (quit)
˜r file receive from HIS routine csr/daccopy
˜s file send file to HIS routine csr/daccopy

Ascii files may be most efficiently transmitted using the HIS routine csr/daccopy in this fashion.
Bold face text comes from MH-TSS.Aftnameis the 6070 file to be dealt with;file is the UNIX
file.

SYSTEM? csr/daccopy (s)aftname
Send Encoded Filẽs file

SYSTEM? csr/daccopy (r)aftname
Receive Encoded Filẽr file

FILES
/dev/dn0, /dev/dp0, /etc/msh

DIAGNOSTICS
Most often, ‘Transmission error on last message.’

BUGS
When problems occur, and they often do,tssexits rather abruptly.

- 1 -

-

TTY (I) 3/15/72 TTY (I)

NAME
tty − get typewriter name

SYNOPSIS
tty

DESCRIPTION
Tty gives the name of the user’s typewriter in the form ‘ttyn’ for n a digit or letter. The actual
path name is then ‘/dev/ttyn’.

DIAGNOSTICS
‘not a tty’ if the standard input file is not a typewriter.

BUGS

- 1 -

-

TYPE (I) 6/12/72 TYPE (I)

NAME
type − type on 2741

SYNOPSIS
type file ...

DESCRIPTION
Typecopies its input files to the fixed output portttyc converting to 2741 EBCDIC output code.
Before each new page (66 lines) and before each new file,typestops and reads the 2741 before
continuing. This allows time for insertion of single sheet paper. To continue, push the ATTN
key on the 2741.

FILES
/dev/ttyc

BUGS
Since it is impossible to second guess a 2741, quite often it is necessary to print a # to put this
device in a state it might already be in.
The value of padding out a page with up to 66 carriage returns is doubtful.

- 1 -

-

TYPO (I) 1/15/73 TYPO (I)

NAME
typo − find possible typos

SYNOPSIS
typo [−] file1 ...

DESCRIPTION
Typohunts through a document for unusual words, typographic errors, andhapax legomenaand
prints them on the standard output.

The words used in the document are printed out in decreasing order of peculiarity along with an
index of peculiarity. An index of 10 or more is considered peculiar. Printing of certain very
common English words is suppressed.

The statistics for judging words are taken from the document itself, with some help from known
statistics of English. The ‘−’ option suppresses the help from English and should be used if the
document is written in, for example, Urdu.

Roff andnroff control lines are ignored. Upper case is mapped into lower case. Quote marks,
vertical bars, hyphens, and ampersands are stripped from within words. Words hyphenated
across lines are put back together.

FILES
/tmp/ttmp??, /usr/lib/salt, /usr/lib/w2006

BUGS
Because of the mapping into lower case and the stripping of special characters, words may be
hard to locate in the original text.

The expanded escape sequences oftroff are not correctly recognized.

- 1 -

-

UNIQ (I) 12/1/72 UNIQ (I)

NAME
uniq − report repeated lines in a file

SYNOPSIS
uniq [−udc [+n] [−n]] [input [output]]

DESCRIPTION
Uniq reads the input file comparing adjacent lines. In the normal case, the second and succeed-
ing copies of repeated lines are removed; the remainder is written on the output file. Note that
repeated lines must be adjacent in order to be found; see sort(I). If the−u flag is used, just the
lines that are not repeated in the original file are output. The−d option specifies that one copy of
just the repeated lines is to be written. The normal mode output is the union of the−u and−d
mode outputs.

The−c option supersedes−u and−d and generates an output report in the style of−ud but with
each line preceded by a count of the number of times it occurred.

Then arguments specify skipping an initial portion of each line in the comparison:

−n The firstn fields together with any blanks before each are ignored. A field is defined
as a string of non-space, non-tab characters separated by tabs and spaces from its
neighbors.

+n The firstn characters are ignored. Fields are skipped before characters.

SEE ALSO
sort(I), comm(I)

BUGS

- 1 -

-

WAIT (I) 4/9/73 WAIT (I)

NAME
wait − await completion of process

SYNOPSIS
wait

DESCRIPTION
Wait until all processes started with& have completed, and report on abnormal terminations.

Becausesys waitmust be executed in the parent process, the shell itself executeswait, without
creating a new process

SEE ALSO
sh(I)

BUGS
After executingwait there is no way to interrupt the processes waited on. This is because inter-
rupts were set to be ignored when the process was created. The only out (if the process does not
terminate) is tokill the process from another terminal or to hangup.

- 1 -

-

WC (I) 3/15/72 WC (I)

NAME
wc − get (English) word count

SYNOPSIS
wc files

DESCRIPTION
Wcprovides a count of the words, text lines, and control lines for each argument file. If no files
are provided,wc reads the standard input.

A text line is a sequence of characters not beginning with ‘.’, ‘!’ or ‘´’ and ended by a new-line.
A control line is a line beginning with ‘.’, ‘!’ or ‘´’. A word is a sequence of characters bounded
by the beginning of a line, by the end of a line, or by a blank or a tab.

When there is more than one input file, a grand total is also printed.

DIAGNOSTICS
none; arguments not found are ignored.

BUGS

- 1 -

-

WHO (I) 3/15/72 WHO (I)

NAME
who − who is on the system

SYNOPSIS
who [who-file]

DESCRIPTION
Who,without an argument, lists the name, typewriter channel, and login time for each current
UNIX user.

Without an argument,who examines the /tmp/utmp file to obtain its information. If a file is
given, that file is examined. Typically the given file will be /tmp/wtmp, which contains a record
of all the logins since it was created. Thenwho will list logins, logouts, and crashes since the
creation of the wtmp file.

Each login is listed with user name, typewriter name (with ‘/dev/’ suppressed), and date and
time. When an argument is given, logouts produce a similar line without a user name. Reboots
produce a line with ‘x’ in the place of the device name, and a fossil time indicative of when the
system went down.

FILES
/tmp/utmp

SEE ALSO
login(I), init(VII)

BUGS

- 1 -

-

WRITE (I) 8/5/73 WRITE (I)

NAME
write − write to another user

SYNOPSIS
write user [ttyno]

DESCRIPTION
Write copies lines from your typewriter to that of another user. When first called, it sends the
message

message from yourname...

The recipient of the message should write back at this point. Communication continues until an
end of file is read from the typewriter or an interrupt is sent. At that pointwrite writes ‘EOT’ on
the other terminal and exits.

If you want to write to a user who is logged in more than once, thettynoargument may be used
to indicate the last character of the appropriate typewriter name.

Permission to write may be denied or granted by use of themesgcommand. At the outset writ-
ing is allowed. Certain commands, in particularroff andpr, disallow messages in order to pre-
vent messy output.

If the character ‘!’ is found at the beginning of a line,write calls the mini-shellmshto execute
the rest of the line as a command.

The following protocol is suggested for usingwrite: when you first write to another user, wait
for him to write back before starting to send. Each party should end each message with a dis-
tinctive signal ((o) for ‘over’ is conventional) that the other may reply.(oo) (for ‘over and out’)
is suggested when conversation is about to be terminated.

FILES
/tmp/utmp to find user
/etc/msh to execute ‘!’

SEE ALSO
mesg(I), who(I)

BUGS

- 1 -

-

INTRO (II) 11/5/73 INTRO (II)

INTRODUCTION TO SYSTEM CALLS

Section II of this manual lists all the entries into the system. In most cases two calling sequences are
specified, one of which is usable from assembly language, and the other from C. Most of these calls have
an error return. From assembly language an erroneous call is always indicated by turning on the c-bit of
the condition codes. The presence of an error is most easily tested by the instructionsbes and bec
(‘‘branch on error set (or clear)’’). These are synonyms for thebcsandbcc instructions.

From C, an error condition is indicated by an otherwise impossible returned value. Almost always this is
−1; the individual sections specify the details.

In both cases an error number is also available. In assembly language, this number is returned in r0 on er-
roneous calls. From C, the external variableerrno is set to the error number.Errno is not cleared on suc-
cesful calls, so it should be tested only after an error has occurred. There is a table of messages associated
with each error, and a routine for printing the message. Seeperror (III).

The possible error numbers are not recited with each writeup in section II, since many errors are possible
for most of the calls. Here is a list of the error numbers, their names inside the system (for the benefit of
system-readers), and the messages available usingperror. A short explanation is also provided.

0 − (unused)

1 EPERM Not owner and not super-user
Typically this error indicates an attempt to modify a file in some way forbidden except to its own-
er. It is also returned for attempts by ordinary users to do things allowed only to the super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should exist but doesn’t, or when one
of the directories in a path name does not exist.

3 ESRCH No such process
The process whose number was given tosignaldoes not exist, or is already dead.

4 − (unused)

5 EIO I/O error
Some physical I/O error occurred during areador write. This error may in some cases occur on a
call following the one to which it actually applies.

6 ENXIO No such device or address
I/O on a special file refers to a subdevice which does not exist, or beyond the limits of the device.
It may also occur when, for example, a tape drive is not dialled in or no disk pack is loaded on a
drive.

7 E2BIG Arg list too long
An argument list longer than 512 bytes (counting the null at the end of each argument) is pre-
sented toexec.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the appropriate permissions, does not
start with one of the magic numbers 407 or 410.

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read (resp. write) request is made to a file which
is open only for writing (resp. reading).

- 1 -

-

INTRO (II) 11/5/73 INTRO (II)

10 ECHILD No children
Wait and the process has no living or unwaited-for children.

11 EAGAIN No more processes
In a fork, the system’s process table is full and no more processes can for the moment be created.

12 ENOMEM Not enough core
During anexecor break,a program asks for more core than the system is able to supply. This is
not a temporary condition; the maximum core size is a system parameter. The error may also oc-
cur if the arrangement of text, data, and stack segments is such as to require more than the existing
8 segmentation registers.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by the protection system.

14 − (unused)

15 ENOTBLK Block device required
A plain file was mentioned where a block device was required, e.g. inmount.

16 EBUSY Mount device busy
An attempt was made to dismount a device on which there is an open file or some process’s cur-
rent directory.

17 EEXIST File exists
In existing file was mentioned in a context in which it should not have, e.g.link.

18 EXDEV Cross-device link
A link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate system call to a device; e.g. read a write-only de-
vice.

20 ENOTDIR Not a directory
A non-directory was specified where a directory is required, for example in a path name or as an
argument tochdir.

21 EISDIR Is a directory
An attempt to write on a directory.

22 EINVAL Invalid argument
Some invalid argument: currently, dismounting a non-mounted device, mentioning an unknown
signal insignal,and giving an unknown request instty to the TIU special file.

23 ENFILE File table overflow
The system’s table of open files is full, and temporarily no moreopenscan be accepted.

24 EMFILE Too many open files
Only 10 files can be open per process; this error occurs when the eleventh is opened.

25 ENOTTY Not a typewriter
The file mentioned instty or gtty is not a typewriter or one of the other devices to which these
calls apply.

26 ETXTBSY Text file busy
An attempt to execute a pure-procedure program which is currently open for writing (or reading!).

- 2 -

-

INTRO (II) 11/5/73 INTRO (II)

27 EFBIG File too large
An attempt to make a file larger than the maximum of 2048 blocks.

28 ENOSPC No space left on device
During awrite to an ordinary file, there is no free space left on the device.

29 ESPIPE Seek on pipe
A seekwas issued to a pipe. This error should also be issued for other non-seekable devices.

- 3 -

-

BREAK (II) 8/5/73 BREAK (II)

NAME
break − set program break

SYNOPSIS
(break = 17.)
sys break; addr

char *sbrk(incr)

DESCRIPTION
Breaksets the system’s idea of the lowest location not used by the program toaddr (rounded up
to the next multiple of 64 bytes). Locations not less thanaddr and below the stack pointer are
not in the address space and will thus cause a memory violation if accessed.

From C, the calling sequence is different;incr more bytes are added to the program’s data space
and a pointer to the start of the new area is returned.

When a program begins execution viaexecthe break is set at the highest location defined by the
program and data storage areas. Ordinarily, therefore, only programs with growing data areas
need to usebreak.

SEE ALSO
exec(II)

DIAGNOSTICS
The c-bit is set if the program requests more memory than the system limit (currently 20K
words), or if more than 8 segmentation registers would be required to implement the break.
From C, −1 is returned for these errors.

- 1 -

-

CHDIR (II) 8/5/73 CHDIR (II)

NAME
chdir − change working directory

SYNOPSIS
(chdir = 12.)
sys chdir; dirname

chdir(dirname)
char *dirname;

DESCRIPTION
Dirname is the address of the pathname of a directory, terminated by a null byte.Chdir causes
this directory to become the current working directory.

SEE ALSO
chdir(I)

DIAGNOSTICS
The error bit (c-bit) is set if the given name is not that of a directory or is not readable. From C,
a −1 returned value indicates an error, 0 indicates success.

- 1 -

-

CHMOD (II) 8/5/73 CHMOD (II)

NAME
chmod − change mode of file

SYNOPSIS
(chmod = 15.)
sys chmod; name; mode

chmod(name, mode)
char *name;

DESCRIPTION
The file whose name is given as the null-terminated string pointed to bynamehas its mode
changed tomode.Modes are constructed by ORing together some combination of the following:

4000 set user ID on execution
2000 set group ID on execution
0400 read by owner
0200 write by owner
0100 execute by owner
0070 read, write, execute by group
0007 read, write, execute by others

Only the owner of a file (or the super-user) may change the mode.

SEE ALSO
chmod(I)

DIAGNOSTIC
Error bit (c-bit) set ifnamecannot be found or if current user is neither the owner of the file nor
the super-user. From C, a −1 returned value indicates an error, 0 indicates success.

- 1 -

-

CHOWN (II) 8/5/73 CHOWN (II)

NAME
chown − change owner

SYNOPSIS
(chmod = 16.)
sys chown; name; owner

chown(name, owner)
char *name;

DESCRIPTION
The file whose name is given by the null-terminated string pointed to bynamehas its owner
changed toowner (a numerical user ID). Only the present owner of a file (or the super-user)
may donate the file to another user. Changing the owner of a file removes the set-user-ID pro-
tection bit unless it is done by the super user or the real user ID is the new owner.

SEE ALSO
chown(I), uids(V)

DIAGNOSTICS
The error bit (c-bit) is set on illegal owner changes. From C a−1 returned value indicates error,
0 indicates success.

- 1 -

-

CLOSE (II) 8/5/73 CLOSE (II)

NAME
close − close a file

SYNOPSIS
(close = 6.)
(file descriptor in r0)
sys close

close(fildes)

DESCRIPTION
Given a file descriptor such as returned from anopen, creat,or pipecall, closecloses the associ-
ated file. A close of all files is automatic onexit,but since processes are limited to 10 simultane-
ously open files,closeis necessary for programs which deal with many files.

SEE ALSO
creat(II), open(II), pipe(II)

DIAGNOSTICS
The error bit (c-bit) is set for an unknown file descriptor. From C a−1 indicates an error, 0 indi-
cates success.

- 1 -

-

CREAT (II) 8/5/73 CREAT (II)

NAME
creat − create a new file

SYNOPSIS
(creat = 8.)
sys creat; name; mode
(file descriptor in r0)

creat(name, mode)
char *name;

DESCRIPTION
Creatcreates a new file or prepares to rewrite an existing file calledname,given as the address
of a null-terminated string. If the file did not exist, it is given modemode.See chmod(II) for the
construction of themodeargument.

If the file did exist, its mode and owner remain unchanged but it is truncated to 0 length.

The file is also opened for writing, and its file descriptor is returned (in r0).

Themodegiven is arbitrary; it need not allow writing. This feature is used by programs which
deal with temporary files of fixed names. The creation is done with a mode that forbids writing.
Then if a second instance of the program attempts acreat,an error is returned and the program
knows that the name is unusable for the moment.

SEE ALSO
write(II), close(II), stat(II)

DIAGNOSTICS
The error bit (c-bit) may be set if: a needed directory is not searchable; the file does not exist and
the directory in which it is to be created is not writable; the file does exist and is unwritable; the
file is a directory; there are already 10 files open.

From C, a −1 return indicates an error.

- 1 -

-

CSW (II) 8/5/73 CSW (II)

NAME
csw − read console switches

SYNOPSIS
(csw = 38.; not in assembler)
sys csw

getcsw()

DESCRIPTION
The setting of the console switches is returned (in r0).

- 1 -

-

DUP (II) 8/5/73 DUP (II)

NAME
dup − duplicate an open file descriptor

SYNOPSIS
(dup = 41.; not in assembler)
(file descriptor in r0)
sys dup

dup(fildes)
int fildes;

DESCRIPTION
Given a file descriptor returned from anopen, pipe,or creat call, dup will allocate another file
descriptor synonymous with the original. The new file descriptor is returned in r0.

Dup is used more to reassign the value of file descriptors than to genuinely duplicate a file de-
scriptor. Since the algorithm to allocate file descriptors returns the lowest available value be-
tween 0 and 9, combinations ofdupandclosecan be used to manipulate file descriptors in a gen-
eral way. This is handy for manipulating standard input and/or standard output.

SEE ALSO
creat(II), open(II), close(II), pipe(II)

DIAGNOSTICS
The error bit (c-bit) is set if: the given file descriptor is invalid; there are already 10 open files.
From C, a −1 returned value indicates an error.

- 1 -

-

EXEC (II) 8/5/73 EXEC (II)

NAME
exec − execute a file

SYNOPSIS
(exec = 11.
sys exec; name; args
...
name: <...\0>
...
args: arg1; arg2; ...; 0
arg1: <...\0>
arg2: <...\0>

...

execl(name, arg1, arg2, ..., argn, 0)
char *name, *arg1, *arg2, ..., *argn;

execv(name, argv)
char *name;
char *argv[];

DESCRIPTION
Execoverlays the calling process with the named file, then transfers to the beginning of the core
image of the file. There can be no return from the file; the calling core image is lost.

Files remain open acrossexeccalls. Ignored signals remain ignored acrossexec,but signals that
are caught are reset to their default values.

Each user has areal user ID and group ID and aneffectiveuser ID and group ID (The real ID
identifies the person using the system; the effective ID determines his access privileges.)Exec
changes the effective user and group ID to the owner of the executed file if the file has the ‘‘set-
user-ID’’ or ‘‘set-group-ID’’ modes. The real user ID is not affected.

The form of this call differs somewhat depending on whether it is called from assembly language
or C; see below for the C version.

The first argument toexecis a pointer to the name of the file to be executed. The second is the
address of a null-terminated list of pointers to arguments to be passed to the file. Convention-
ally, the first argument is the name of the file. Each pointer addresses a string terminated by a
null byte.

Once the called file starts execution, the arguments are available as follows. The stack pointer
points to a word containing the number of arguments. Just above this number is a list of pointers
to the argument strings. The arguments are placed as high as possible in core.

sp� nargs
arg1
...
argn

arg1: <arg1\0>
...

argn: <argn\0>

From C, two intefaces are available.execlis useful when a known file with known arguments is
being called; the arguments toexeclare the character strings constituting the file and the argu-
ments; as in the basic call, the first argument is conventionally the same as the file name (or its
last component). A 0 argument must end the argument list.

The execvversion is useful when the number of arguments is unknown in advance; the argu-
ments toexecvare the name of the file to be executed and a vector of strings containing the argu-
ments. The last argument string must be followed by a 0 pointer.

- 1 -

-

EXEC (II) 8/5/73 EXEC (II)

When a C program is executed, it is called as follows:

main(argc, argv)
int argc;
char *argv[];

whereargc is the argument count andargv is an array of character pointers to the arguments
themselves. As indicated,argc is conventionally at least one and the first member of the array
points to a string containing the name of the file.

Argv is not directly usable in anotherexecv,sinceargv[argc] is −1 and not 0.

SEE ALSO
fork(II)

DIAGNOSTICS
If the file cannot be found, if it is not executable, if it does not have a valid header (407 or 410
octal as first word), if maximum memory is exceeded, or if the arguments require more than 512
bytes a return fromexecconstitutes the diagnostic; the error bit (c-bit) is set. From C the re-
turned value is −1.

BUGS
Only 512 characters of arguments are allowed.

- 2 -

-

EXIT (II) 8/5/73 EXIT (II)

NAME
exit − terminate process

SYNOPSIS
(exit = 1.)
(status in r0)
sys exit

exit(status)
int status;

DESCRIPTION
Exit is the normal means of terminating a process.Exit closes all the process’ files and notifies
the parent process if it is executing await. The low byte of r0 (resp. the argument toexit) is
available as status to the parent process.

This call can never return.

SEE ALSO
wait(II)

DIAGNOSTICS
None.

- 1 -

-

FORK (II) 8/5/73 FORK (II)

NAME
fork − spawn new process

SYNOPSIS
(fork = 2.)
sys fork
(new process return)
(old process return)

fork()

DESCRIPTION
Fork is the only way new processes are created. The new process’s core image is a copy of that
of the caller offork. The only distinction is the return location and the fact that r0 in the old
(parent) process contains the process ID of the new (child) process. This process ID is used by
wait.

From C, the returned value is 0 in the child process, non-zero in the parent process; however, a
return of −1 indicates inability to create a new process.

SEE ALSO
wait(II), exec(II)

DIAGNOSTICS
The error bit (c-bit) is set in the old process if a new process could not be created because of lack
of process space. From C, a return of −1 (not just negative) indicates an error.

- 1 -

-

FSTAT (II) 8/5/73 FSTAT (II)

NAME
fstat − get status of open file

SYNOPSIS
(fstat = 28.)
(file descriptor in r0)
sys fstat; buf

fstat(fildes, buf)
struct inode buf;

DESCRIPTION
This call is identical tostat,except that it operates on open files instead of files given by name.
It is most often used to get the status of the standard input and output files, whose names are un-
known.

SEE ALSO
stat(II)

DIAGNOSTICS
The error bit (c-bit) is set if the file descriptor is unknown; from C, a−1 return indicates an error,
0 indicates success.

- 1 -

-

GETGID (II) 8/5/73 GETGID (II)

NAME
getgid − get group identification

SYNOPSIS
(getgid = 47.; not in assembler)
sys getgid

getgid()

DESCRIPTION
Getgidreturns the real group ID of the current process. The real group ID identifies the group of
the person who is logged in, in contradistinction to the effective group ID, which determines his
access permission at the moment. It is thus useful to programs which operate using the ‘‘set
group ID’’ mode, to find out who invoked them.

SEE ALSO
setgid(II)

DIAGNOSTICS
−

- 1 -

-

GETUID (II) 8/5/73 GETUID (II)

NAME
getuid − get user identification

SYNOPSIS
(getuid = 24.)
sys getuid

getuid()

DESCRIPTION
Getuidreturns the real user ID of the current process. The real user ID identifies the person who
is logged in, in contradistinction to the effective user ID, which determines his access permission
at the moment. It is thus useful to programs which operate using the ‘‘set user ID’’ mode, to
find out who invoked them.

SEE ALSO
setuid(II)

DIAGNOSTICS
−

- 1 -

-

GTTY (II) 8/5/73 GTTY (II)

NAME
gtty − get typewriter status

SYNOPSIS
(gtty = 32.)
(file descriptor in r0)
sys gtty; arg
... arg: .=.+6

gtty(fildes, arg)
int arg[3];

DESCRIPTION
Gtty stores in the three words addressed byarg the status of the typewriter whose file descriptor
is given in r0 (resp. given as the first argument). The format is the same as that passed bystty.

SEE ALSO
stty(II)

DIAGNOSTICS
Error bit (c-bit) is set if the file descriptor does not refer to a typewriter. From C, a−1 value is
returned for an error, 0, for a successful call.

- 1 -

-

INDIR (II) 8/5/73 INDIR (II)

NAME
indir − indirect system call

SYNOPSIS
(indir = 0.; not in assembler)
sys indir; syscall

DESCRIPTION
The system call at the locationsyscallis executed. Execution resumes after theindir call.

The main purpose ofindir is to allow a program to store arguments in system calls and execute
them out of line in the data segment. This preserves the purity of the text segment.

If indir is executed indirectly, it is a no-op.

SEE ALSO
−

DIAGNOSTICS
−

- 1 -

-

KILL (II) 8/5/73 KILL (II)

NAME
kill − send signal to a process

SYNOPSIS
(kill = 37.; not in assembler)
(process number in r0)
sys kill; sig

DESCRIPTION
Kill sends the signalsig to the process specified by the process number in r0. See signal(II) for a
list of signals.

The sending and receiving processes must have the same controlling typewriter, otherwise this
call is restricted to the super-user.

SEE ALSO
signal(II), kill(I)

DIAGNOSTICS
The error bit (c-bit) is set if the process does not have the same controlling typewriter and the
user is not super-user, or if the process does not exist.

BUGS
Equality between the controlling typewriters of the sending and receiving process is neither a
necessary nor sufficient condition for allowing the sending of a signal. The correct condition is
equality of user IDs.

- 1 -

-

LINK (II) 8/5/73 LINK (II)

NAME
link − link to a file

SYNOPSIS
(link = 9.)
sys link; name1; name2

link(name1, name2)
char *name1, *name2;

DESCRIPTION
A link to name1is created; the link has the namename2.Either name may be an arbitrary path
name.

SEE ALSO
link(I), unlink(II)

DIAGNOSTICS
The error bit (c-bit) is set whenname1cannot be found; whenname2already exists; when the
directory ofname2cannot be written; when an attempt is made to link to a directory by a user
other than the super-user; when an attempt is made to link to a file on another file system. From
C, a −1 return indicates an error, a 0 return indicates success.

- 1 -

-

MKNOD (II) 8/5/73 MKNOD (II)

NAME
mknod − make a directory or a special file

SYNOPSIS
(mknod = 14.; not in assembler)
sys mknod; name; mode; addr

mknod(name, mode, addr)
char *name;

DESCRIPTION
Mknod creates a new file whose name is the null-terminated string pointed to byname. The
mode of the new file (including directory and special file bits) is initialized frommode. The first
physical address of the file is initialized fromaddr. Note that in the case of a directory,addr
should be zero. In the case of a special file,addrspecifies which special file.

Mknodmay be invoked only by the super-user.

SEE ALSO
mkdir(I), mknod(I), fs(V)

DIAGNOSTICS
Error bit (c-bit) is set if the file already exists or if the user is not the super-user. From C, a−1
value indicates an error.

- 1 -

-

MOUNT (II) 8/5/73 MOUNT (II)

NAME
mount − mount file system

SYNOPSIS
(mount = 21.)
sys mount; special; name

DESCRIPTION
Mount announces to the system that a removable file system has been mounted on the block-
structured special filespecial;from now on, references to filenamewill refer to the root file on
the newly mounted file system.Specialandnameare pointers to null-terminated strings contain-
ing the appropriate path names.

Namemust exist already. Its old contents are inaccessible while the file system is mounted.

SEE ALSO
mount(I), umount(II)

DIAGNOSTICS
Error bit (c-bit) set if:specialis inaccessible or not an appropriate file;namedoes not exist;spe-
cial is already mounted; there are already too many file systems mounted.

- 1 -

-

NICE (II) 8/5/73 NICE (II)

NAME
nice − set program priority

SYNOPSIS
(nice = 34.)
(priority in r0)
sys nice

nice(priority)

DESCRIPTION
The schedulingpriority of the process is changed to the argument. Positive priorities get less
service than normal; 0 is default. Only the super-user may specify a negative priority. The valid
range ofpriority is 20 to−220. The value of 16 is recommended to users who wish to execute
long-running programs without flak from the administration.

The effect of this call is passed to a child process by thefork system call. The effect can be can-
celled by another call tonicewith apriority of 0.

SEE ALSO
nice(I)

DIAGNOSTICS
The error bit (c-bit) is set if the user requests apriority outside the range of 0 to 20 and is not the
super-user.

- 1 -

-

OPEN (II) 8/5/73 OPEN (II)

NAME
open − open for reading or writing

SYNOPSIS
(open = 5.)
sys open; name; mode

open(name, mode)
char *name;

DESCRIPTION
Openopens the filenamefor reading (ifmodeis 0), writing (if modeis 1) or for both reading
and writing (if modeis 2). Nameis the address of a string of ASCII characters representing a
path name, terminated by a null character.

The returned file descriptor should be saved for subsequent calls toread, write,andclose.

SEE ALSO
creat(II), read(II), write(II), close(II)

DIAGNOSTICS
The error bit (c-bit) is set if the file does not exist, if one of the necessary directories does not ex-
ist or is unreadable, if the file is not readable (resp. writable), or if 10 files are open. From C, a
−1 value is returned on an error.

- 1 -

-

PIPE (II) 8/5/73 PIPE (II)

NAME
pipe − create a pipe

SYNOPSIS
(pipe = 42.)
sys pipe
(read file descriptor in r0)
(write file descriptor in r1)

pipe(fildes)
int fildes[2];

DESCRIPTION
The pipe system call creates an I/O mechanism called a pipe. The file descriptors returned can
be used in read and write operations. When the pipe is written using the descriptor returned in r1
(resp. fildes[1]), up to 4096 bytes of data are buffered before the writing process is suspended. A
read using the descriptor returned in r0 (resp. fildes[0]) will pick up the data.

It is assumed that after the pipe has been set up, two (or more) cooperating processes (created by
subsequentfork calls) will pass data through the pipe withreadandwrite calls.

The shell has a syntax to set up a linear array of processes connected by pipes.

Read calls on an empty pipe (no buffered data) with only one end (all write file descriptors
closed) return an end-of-file. Write calls under similar conditions are ignored.

SEE ALSO
sh(I), read(II), write(II), fork(II)

DIAGNOSTICS
The error bit (c-bit) is set if more than 8 files are already open. From C, a−1 returned value in-
dicates an error.

- 1 -

-

READ (II) 8/5/73 READ (II)

NAME
read − read from file

SYNOPSIS
(read = 3.)
(file descriptor in r0)
sys read; buffer; nbytes

read(fildes, buffer, nbytes)
char *buffer;

DESCRIPTION
A file descriptor is a word returned from a successfulopen, creat,or pipecall. Buffer is the loca-
tion of nbytescontiguous bytes into which the input will be placed. It is not guaranteed that all
nbytesbytes will be read; for example if the file refers to a typewriter at most one line will be re-
turned. In any event the number of characters read is returned (in r0).

If the returned value is 0, then end-of-file has been reached.

SEE ALSO
open(II), creat(II), pipe(II)

DIAGNOSTICS
As mentioned, 0 is returned when the end of the file has been reached. If the read was otherwise
unsuccessful the error bit (c-bit) is set. Many conditions can generate an error: physical I/O er-
rors, bad buffer address, preposterousnbytes,file descriptor not that of an input file. From C, a
−1 return indicates the error.

- 1 -

-

SEEK (II) 8/5/73 SEEK (II)

NAME
seek − move read/write pointer

SYNOPSIS
(seek = 19.)
(file descriptor in r0)
sys seek; offset; ptrname

seek(fildes, offset, ptrname)

DESCRIPTION
The file descriptor refers to a file open for reading or writing. The read (resp. write) pointer for
the file is set as follows:

if ptrnameis 0, the pointer is set tooffset.

if ptrnameis 1, the pointer is set to its current location plusoffset.

if ptrnameis 2, the pointer is set to the size of the file plusoffset.

if ptrnameis 3, 4 or 5, the meaning is as above for 0, 1 and 2 except that the offset is multi-
plied by 512.

If ptrnameis 0 or 3,offsetis unsigned, otherwise it is signed.

SEE ALSO
open(II), creat(II)

DIAGNOSTICS
The error bit (c-bit) is set for an undefined file descriptor. From C, a −1 return indicates an error.

- 1 -

-

SETGID (II) 8/5/73 SETGID (II)

NAME
setgid − set process group ID

SYNOPSIS
(setgid = 46.; not in assembler)
(group ID in r0)
sys setgid

setgid(gid)

DESCRIPTION
The group ID of the current process is set to the argument. Both the effective and the real group
ID are set. This call is only permitted to the super-user or if the argument is the real group ID.

SEE ALSO
getgid(II)

DIAGNOSTICS
Error bit (c-bit) is set as indicated; from C, a −1 value is returned.

- 1 -

-

SETUID (II) 8/5/73 SETUID (II)

NAME
setuid − set process user ID

SYNOPSIS
(setuid = 23.)
(user ID in r0)
sys setuid

setuid(uid)

DESCRIPTION
The user ID of the current process is set to the argument. Both the effective and the real user ID
are set. This call is only permitted to the super-user or if the argument is the real user ID.

SEE ALSO
getuid(II)

DIAGNOSTICS
Error bit (c-bit) is set as indicated; from C, a −1 value is returned.

- 1 -

-

SIGNAL (II) 8/5/73 SIGNAL (II)

NAME
signal − catch or ignore signals

SYNOPSIS
(signal = 48.)
sys signal; sig; value

signal(sig, func)
int (*func)();

DESCRIPTION
When the signal defined bysig is sent to the current process, it is to be treated according to
value. The following is the list of signals:

1 hangup
2 interrupt
3* quit
4* illegal instruction
5* trace trap
6* IOT instruction
7* EMT instruction
8* floating point exception
9 kill (cannot be caught or ignored)
10* bus error
11* segmentation violation
12* bad argument to sys call

If value is 0, the default system action applies to the signal. This is processes termination with
or without a core dump. Ifvalueis odd, the signal is ignored. Any other evenvaluespecifies an
address in the process where an interrupt is simulated. An RTI instruction will return from the
interrupt. As a signal is caught, it is reset to 0. Thus if it is desired to catch every such signal,
the catching routine must issue anothersignalcall.

The starred signals in the list above cause core images if not caught and not ignored. In C, if
func is 0 or 1, the action is as described above. Iffunc is even, it is assumed to be the address of
a function entry point. When the signal occurs, the function will be called. A return from the
function will simulate the RTI.

After a fork, the child inherits all signals. Theexeccall resets all caught signals to default action.

SEE ALSO
kill (I, II)

DIAGNOSTICS
The error bit (c-bit) is set if the given signal is out of range. In C, a−1 indicates an error; 0 indi-
cates success.

- 1 -

-

SLEEP (II) 8/5/73 SLEEP (II)

NAME
sleep − stop execution for interval

SYNOPSIS
(sleep = 35.; not in assembler)
(seconds in r0)
sys sleep

sleep(seconds)

DESCRIPTION
The current process is suspended from execution for the number of seconds specified by the ar-
gument.

SEE ALSO
sleep (I)

DIAGNOSTICS
−

- 1 -

-

STAT (II) 8/5/73 STAT (II)

NAME
stat − get file status

SYNOPSIS
(stat = 18.)
sys stat; name; buf

stat(name, buf)
char *name;
struct inode *buf;

DESCRIPTION
Namepoints to a null-terminated string naming a file;buf is the address of a 36(10) byte buffer
into which information is placed concerning the file. It is unnecessary to have any permissions
at all with respect to the file, but all directories leading to the file must be readable. Afterstat,
buf has the following structure (starting offset given in bytes):

struct {
char minor; /* +0: minor device of i-node */
char major; /* +1: major device */
int inumber /* +2 */
int flags; /* +4: see below */
char nlinks; /* +6: number of links to file */
char uid; /* +7: user ID of owner */
char gid; /* +8: group ID of owner */
char size0; /* +9: high byte of 24-bit size */
int size1; /* +10: low word of 24-bit size */
int addr[8]; /* +12: block numbers or device number */
int actime[2]; /* +28: time of last access */
int modtime[2]; /* +32: time of last modification */

};

The flags are as follows:

100000 i-node is allocated
060000 2-bit file type:

000000 plain file
040000 directory
020000 character-type special file
060000 block-type special file.

010000 large file
004000 set user-ID on execution
002000 set group-ID on execution
000400 read (owner)
000200 write (owner)
000100 execute (owner)
000070 read, write, execute (group)
000007 read, write, execute (others)

SEE ALSO
stat(I), fstat(II), fs(V)

DIAGNOSTICS
Error bit (c-bit) is set if the file cannot be found. From C, a −1 return indicates an error.

- 1 -

-

STIME (II) 8/5/73 STIME (II)

NAME
stime − set time

SYNOPSIS
(stime = 25.) (time in r0-r1)
sys stime

stime(tbuf)
int tbuf[2];

DESCRIPTION
Stimesets the system’s idea of the time and date. Time is measured in seconds from 0000 GMT
Jan 1 1970. Only the super-user may use this call.

SEE ALSO
date(I), time(II), ctime(III)

DIAGNOSTICS
Error bit (c-bit) set if user is not the super-user.

- 1 -

-

STTY (II) 8/5/73 STTY (II)

NAME
stty − set mode of typewriter

SYNOPSIS
(stty = 31.)
(file descriptor in r0)
sys stty; arg
...
arg: speed; 0; mode

stty(fildes, arg)
int arg[3];

DESCRIPTION
Sttysets mode bits and character speeds for the typewriter whose file descriptor is passed in r0
(resp. is the first argument to the call). First, the system delays until the typewriter is quiescent.
Then the speed and general handling of the input side of the typewriter is set from the low byte
of the first word of thearg, and the speed of the output side is set from the high byte of the first
word of thearg. The speeds are selected from the following table. This table corresponds to the
speeds supported by the DH-11 interface. The starred entries are those speeds actually supported
by the DC-11 interfaces actually present; if a non-starred speed is selected, it will be ignored and
the present speed left unchanged.

0 (turn off device)
1 50 baud
2 75 baud
3 110 baud
4* 134.5 baud
5* 150 baud
6 200 baud
7* 300 baud
8 600 baud
9* 1200 baud
10 1800 baud
11 2400 baud
12 4800 baud
13 9600 baud
14 External A
15 External B

In the current configuration, only 150 and 300 baud are really supported, in that the code conver-
sion and line control required for 2741’s (134.5 baud) must be implemented by the user’s pro-
gram, and the half-duplex line discipline required for the 202 dataset (1200 baud) is not supplied.

The second word of thearg is currently unused and is available for expansion.

The third word of thearg sets themode. It contains several bits which determine the system’s
treatment of the typewriter:

10000no delays after tabs (e.g. TN 300)
200 even parity allowed on input (e. g. for M37s)
100 odd parity allowed on input
040 raw mode: wake up on all characters
020 map CR into LF; echo LF or CR as CR-LF
010 echo (full duplex)
004 map upper case to lower on input (e. g. M33)
002 echo and print tabs as spaces
001 inhibit all function delays (e. g. CRTs)

Characters with the wrong parity, as determined by bits 200 and 100, are ignored.

- 1 -

-

STTY (II) 8/5/73 STTY (II)

In raw mode, every character is passed back immediately to the program. No erase or kill pro-
cessing is done; the end-of-file character (EOT), the interrupt character (DELETE) and the quit
character (FS) are not treated specially.

Mode 020 causes input carriage returns to be turned into new-lines; input of either CR or LF
causes LF-CR both to be echoed (used for GE TermiNet 300’s and other terminals without the
newline function).

SEE ALSO
stty(I), gtty(II)

DIAGNOSTICS
The error bit (c-bit) is set if the file descriptor does not refer to a typewriter. From C, a negative
value indicates an error.

- 2 -

-

SYNC (II) 8/5/73 SYNC (II)

NAME
sync − update super-block

SYNOPSIS
(sync = 36.; not in assembler)
sys sync

DESCRIPTION
Synccauses all information in core memory that should be on disk to be written out. This in-
cludes modified super blocks, modified i-nodes, and delayed block I/O.

It should be used by programs which examine a file system, for examplecheck, df,etc. It is
mandatory before a boot.

SEE ALSO
sync (VIII), update (VIII)

DIAGNOSTICS
−

- 1 -

-

TIME (II) 8/5/73 TIME (II)

NAME
time − get date and time

SYNOPSIS
(time = 13.)
sys time

time(tvec)
int tvec[2];

DESCRIPTION
Time returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in seconds. Fromas, the
high order word is in the r0 register and the low order is in r1. From C, the user-supplied vector
is filled in.

SEE ALSO
date(I), stime(II), ctime(III)

DIAGNOSTICS
none

- 1 -

-

TIMES (II) 8/5/73 TIMES (II)

NAME
times − get process times

SYNOPSIS
(times = 43.; not in assembler)
sys times; buffer

times(buffer)
struct tbuffer *buffer;

DESCRIPTION
Timesreturns time-accounting information for the current process and for the terminated child
processes of the current process. All times are in 1/60 seconds.

After the call, the buffer will appear as follows:

struct tbuffer {
int proc_user_time;
int proc_system_time;
int child_user_time[2];
int child_system_time[2];

};

The children times are the sum of the children’s process times and their children’s times.

SEE ALSO
time(I)

DIAGNOSTICS
−

BUGS
The process times should be 32 bits as well.

- 1 -

-

UMOUNT (II) 8/5/73 UMOUNT (II)

NAME
umount − dismount file system

SYNOPSIS
(umount = 22.)
sys umount; special

DESCRIPTION
Umountannounces to the system that special filespecialis no longer to contain a removable file
system. The file associated with the special file reverts to its ordinary interpretation (seemount
).

SEE ALSO
umount(I), mount(II)

DIAGNOSTICS
Error bit (c-bit) set if no file system was mounted on the special file or if there are still active
files on the mounted file system.

- 1 -

-

UNLINK (II) 8/5/73 UNLINK (II)

NAME
unlink − remove directory entry

SYNOPSIS
(unlink = 10.)
sys unlink; name

unlink(name)
char *name;

DESCRIPTION
Namepoints to a null-terminated string.Unlink removes the entry for the file pointed to by
namefrom its directory. If this entry was the last link to the file, the contents of the file are freed
and the file is destroyed. If, however, the file was open in any process, the actual destruction is
delayed until it is closed, even though the directory entry has disappeared.

SEE ALSO
rm(I), rmdir(I), link(II)

DIAGNOSTICS
The error bit (c-bit) is set to indicate that the file does not exist or that its directory cannot be
written. Write permission is not required on the file itself. It is also illegal to unlink a directory
(except for the super-user). From C, a −1 return indicates an error.

- 1 -

-

WAIT (II) 8/5/73 WAIT (II)

NAME
wait − wait for process to die

SYNOPSIS
(wait = 7.)
sys wait

wait(status)
int *status;

DESCRIPTION
Wait causes its caller to delay until one of its child processes terminates. If any child has died
since the lastwait, return is immediate; if there are no children, return is immediate with the er-
ror bit set (resp. with a value of−1 returned). In the case of several children severalwait calls
are needed to learn of all the deaths.

If no error is indicated on return, the r1 high byte (resp. the high byte stored intostatus) contains
the low byte of the child process r0 (resp. the argument ofexit) when it terminated. The r1
(resp. status) low byte contains the termination status of the process. See signal(II) for a list of
termination statuses (signals); 0 status indicates normal termination. If the 040 bit of the termi-
nation status is set, a core image of the process was produced by the system.

SEE ALSO
exit(II), fork(II), signal(II)

DIAGNOSTICS
The error bit (c-bit) on if no children not previously waited for. From C, a returned value of−1
indicates an error.

- 1 -

-

WRITE (II) 8/5/73 WRITE (II)

NAME
write − write on a file

SYNOPSIS
(write = 4.)
(file descriptor in r0)
sys write; buffer; nbytes

write(fildes, buffer, nbytes)
char *buffer;

DESCRIPTION
A file descriptor is a word returned from a successfulopen, creator pipecall.

Buffer is the address ofnbytescontiguous bytes which are written on the output file. The num-
ber of characters actually written is returned (in r0). It should be regarded as an error if this is
not the same as requested.

Writes which are multiples of 512 characters long and begin on a 512-byte boundary are more
efficient than any others.

SEE ALSO
creat(II), open(II), pipe(II)

DIAGNOSTICS
The error bit (c-bit) is set on an error: bad descriptor, buffer address, or count; physical I/O er-
rors. From C, a returned value of −1 indicates an error.

- 1 -

-

ATAN (III) 4/30/73 ATAN (III)

NAME
atan − arc tangent function

SYNOPSIS
jsr r5,atan[2]

double atan(x)
double x;

double atan2(x, y)
double x, y;

DESCRIPTION
Theatanentry returns the arc tangent of fr0 in fr0; from C, the arc tangent ofx is returned. The
range is −π/2 to π/2. Theatan2entry returns the arc tangent of fr0/fr1 in fr0; from C, the arc tan-
gent ofx/y is returned. The range is −πto π.

DIAGNOSTIC
There is no error return.

BUGS

- 1 -

-

ATOF (III) 4/30/73 ATOF (III)

NAME
atof − ascii to floating

SYNOPSIS
double atof(nptr)
char *nptr;

DESCRIPTION
Atof converts a string to a floating number.Nptr should point to a string containing the number;
the first unrecognized character ends the number.

The only numbers recognized are: an optional minus sign followed by a string of digits option-
ally containing one decimal point, then followed optionally by the lettere followed by a signed
integer.

DIAGNOSTICS
There are none; overflow results in a very large number and garbage characters terminate the
scan.

BUGS
The routine should accept initial+, initial blanks, andE for e. Overflow should be signalled.

- 1 -

-

COMPAR (III) 1/15/73 COMPAR (III)

NAME
compar − default comparison routine for qsort

SYNOPSIS
jsr pc,compar

DESCRIPTION
Comparis the default comparison routine called byqsort and is separated out so that the user
can supply his own comparison.

The routine is called with the width (in bytes) of an element in r3 and it compares byte-by-byte
the element pointed to by r0 with the element pointed to by r4.

Return is via the condition codes, which are tested by the instructions ‘‘blt’’ and ‘‘bgt’’. That is,
in the absence of overflow, the condition (r0) < (r4) should leave the Z-bit off and N-bit on while
(r0) > (r4) should leave Z and N off. Still another way of putting it is that for elements of length
1 the instruction

cmpb (r0),(r4)

suffices.

Only r0 is changed by the call.

SEE ALSO
qsort (III)

BUGS
It could be recoded to run faster.

- 1 -

-

CRYPT (III) 4/30/73 CRYPT (III)

NAME
crypt − password encoding

SYNOPSIS
mov $key,r0
jsr pc,crypt

char *crypt(key)
char *key;

DESCRIPTION
On entry, r0 should point to a string of characters terminated by an ASCII NULL. The routine
performs an operation on the key which is difficult to invert (i.e. encrypts it) and leaves the re-
sulting eight bytes of ASCII alphanumerics in a global cell called ‘‘word’’.

From C, thekeyargument is a string and the value returned is a pointer to the eight-character en-
crypted password.

Login uses this result as a password.

SEE ALSO
passwd(I), passwd(V), login(I)

BUGS

- 1 -

-

CTIME (III) 10/15/73 CTIME (III)

NAME
ctime − convert date and time to ASCII

SYNOPSIS
char *ctime(tvec)
int tvec[2];

[from Fortran]
double precision ctime
... = ctime(dummy)

int *localtime(tvec)
int tvec[2];

int *gmtime(tvec)
int tvec[2];

DESCRIPTION
Ctimeconverts a time in the vectortvecsuch as returned by time (II) into ASCII and returns a
pointer to a character string in the form

Sun Sep 16 01:03:52 1973\n\0

All the fields have constant width.

Once the time has been placed intot andt+2, this routine is callable from assembly language as
follows:

mov $t,−(sp)
jsr pc,_ctime
tst (sp)+

and a pointer to the string is available in r0.

The localtimeandgmtimeentries return integer vectors to the broken-down time.Localtimecor-
rects for the time zone and possible daylight savings time;gmtimeconverts directly to GMT,
which is the time UNIX uses. The value is a pointer to an array whose components are

0 seconds
1 minutes
2 hours
3 day of the month (1-31)
4 month (0-11)
5 year − 1900
6 day of the week (Sunday = 0)
7 day of the year (0-365)
8 Daylight Saving Time flag if non-zero

The external variabletimezonecontains the difference, in seconds, between GMT and local stan-
dard time (in EST, is 5*60*60); the external variabledaylight is non-zero iff the standard U.S.A.
Daylight Saving Time conversion should be applied between the last Sundays in April and Octo-
ber. The external variablenixonflg if non-zero supersedesdaylight and causes daylight time all
year round.

A routine namedctime is also available from Fortran. Actually it more resembles thetime (II)
system entry in that it returns the number of seconds since the epoch 0000 GMT Jan. 1, 1970 (as
a floating-point number).

SEE ALSO
time(II)

BUGS

- 1 -

-

ECVT (III) 4/30/73 ECVT (III)

NAME
ecvt − output conversion

SYNOPSIS
jsr pc,ecvt

jsr pc,fcvt

char *ecvt(value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *fcvt(value, ndigit, decpt, sign)
...

DESCRIPTION
Ecvt is called with a floating point number in fr0.

On exit, the number has been converted into a string of ascii digits in a buffer pointed to by r0.
The number of digits produced is controlled by a global variable_ndigits.

Moreover, the position of the decimal point is contained in r2: r2=0 means the d.p. is at the left
hand end of the string of digits; r2>0 means the d.p. is within or to the right of the string.

The sign of the number is indicated by r1 (0 for +; 1 for −).

The low order digit has suffered decimal rounding (i. e. may have been carried into).

From C, thevalue is converted and a pointer to a null-terminated string ofndigit digits is re-
turned. The position of the decimal point is stored indirectly throughdecpt(negative means to
the left of the returned digits). If the sign of the result is negative, the word pointed to bysign is
non-zero, otherwise it is zero.

Fcvt is identical toecvt, except that the correct digit has had decimal rounding for F-style output
of the number of digits specified by_ndigits.

SEE ALSO
printf(III)

BUGS

- 1 -

-

EXP (III) 4/30/73 EXP (III)

NAME
exp − exponential function

SYNOPSIS
jsr r5,exp

double exp(x)
double x;

DESCRIPTION
The exponential of fr0 is returned in fr0. From C, the exponential ofx is returned.

DIAGNOSTICS
If the result is not representable, the c-bit is set and the largest positive number is returned.
From C, no diagnostic is available.

Zero is returned if the result would underflow.

BUGS

- 1 -

-

FPTRAP (III) 11/18/73 FPTRAP (III)

NAME
fptrap − floating point interpreter

SYNOPSIS
sys signal; 4; fptrap

DESCRIPTION
Fptrap is a simulator of the 11/45 FP11-B floating point unit. It works by intercepting illegal in-
struction faults and examining the offending operation codes for possible floating point.

FILES
found in /lib/libu.a; a fake version is in /lib/liba.a

DIAGNOSTICS
A break point trap is given when a real illegal instruction trap occurs.

SEE ALSO
signal(II)

BUGS
Rounding mode is not interpreted. Its slow.

- 1 -

-

GERTS (III) 3/15/72 GERTS (III)

NAME
gerts − Gerts communication over 201

SYNOPSIS
jsr r5,connect
(error return)
...

jsr r5,gerts; fc; oc; ibuf; obuf
(error return)
...

other entry points:gcset, gout

DESCRIPTION
The GCOS GERTS interface is so painful that a description here is inappropriate. Anyone need-
ing to use this interface should seek divine guidance.

SEE ALSO
dn(IV), dp(IV), HIS documentation

FILES
found in /lib/libg.a

BUGS

- 1 -

-

GETARG (III) 11/24/73 GETARG (III)

NAME
getarg − get command arguments from Fortran

SYNOPSIS
call getarg (i, iarray, [, isize])

... = iargc(dummy)

DESCRIPTION
Thegetargentry fills in iarray (which is considered to beinteger)with the Hollerith string rep-
resenting thei th argument to the command in which it it is called. If noisizeargument is speci-
fied, at least one blank is placed after the argument, and the last word affected is blank padded.
The user should make sure that the array is big enough.

If the isizeargument is given, the argument will be followed by blanks to fill upisizewords, but
even if the argument is long no more than that many words will be filled in.

The blank-padded array is suitable for use as an argument to setfil (III).

The iargc entry returns the number of arguments to the command, counting the first (file-name)
argument.

SEE ALSO
exec (II), setfil (III)

BUGS

- 1 -

-

GETC (III) 4/30/72 GETC (III)

NAME
getc − buffered input

SYNOPSIS
mov $filename,r0
jsr r5,fopen; iobuf

fopen(filename, iobuf)
char *filename;
struct buf *iobuf;

jsr r5,getc; iobuf
(character in r0)

getc(iobuf)
struct buf *iobuf;

jsr r5,getw; iobuf
(word in r0)

[getw not available in C]

DESCRIPTION
These routines provide a buffered input facility.Iobuf is the address of a 518(10) byte buffer
area whose contents are maintained by these routines. Its format is:

ioptr: .=.+2 / file descriptor
.=.+2 / characters left in buffer
.=.+2 / ptr to next character
.=.+512. / the buffer

Or in C,

struct buf {
int fildes;
int nleft;
char *nextp;
char buffer[512];

};

Fopenmay be called initially to open the file. On return, the error bit (c-bit) is set if the open
failed. If fopenis never called,get will read from the standard input file. From C, the value is
negative if the open failed.

Getcreturns the next byte from the file in r0. The error bit is set on end of file or a read error.
From C, the character is returned; it is −1 on end-of-file or error.

Getwreturns the next word in r0.Getcandgetwmay be used alternately; there are no odd/even
problems.Getwis not available from C.

Iobufmust be provided by the user; it must be on a word boundary.

To reuse the same buffer for another file, it is sufficient to close the original file and callfopen
again.

SEE ALSO
open(II), read(II), putc(III)

DIAGNOSTICS
c-bit set on EOF or error;
from C, negative return indicates error or EOF.

BUGS

- 1 -

-

GETCHAR (III) 4/7/73 GETCHAR (III)

NAME
getchar − read character

SYNOPSIS
getchar()

DESCRIPTION
Getcharprovides the simplest means of reading characters from the standard input for C pro-
grams. It returns successive characters until end-of-file, when it returns ‘‘\0’’.

Associated with this routine is an external variable calledfin, which is a structure containing a
buffer such as described undergetc(III).

Normally input viagetcharis unbuffered, but if the file-descriptor (first) word offin is non-zero,
getcharcallsgetcwith fin as argument. This means that

fin = open(...)

makesgetcharreturn (buffered) input from the opened file; also

fin = dup(0);

causes the standard input to be buffered.

Generally speaking,getcharshould be used only for the simplest applications;getc is better
when there are multiple input files.

SEE ALSO
getc (III)

DIAGNOSTICS
Null character returned on EOF or error.

BUGS
−1 should be returned on EOF; null is a legitimate character.

- 1 -

-

GETPW (III) 4/7/73 GETPW (III)

NAME
getpw − get name from UID

SYNOPSIS
getpw(uid, buf)
char *buf;

DESCRIPTION
Getpwsearches the password file for the (numerical)uid, and fills in buf with the corresponding
line; it returns non-zero ifuid could not be found. The line is null-terminated.

FILES
/etc/passwd

SEE ALSO
passwd(V)

DIAGNOSTICS
non-zero return on error.

BUGS
It disturbs buffered input viagetchar(III).

- 1 -

-

HMUL (III) 4/7/73 HMUL (III)

NAME
hmul − high-order product

SYNOPSIS
hmul(x, y)

DESCRIPTION
Hmul returns the high-order 16 bits of the product ofx andy. (The binary multiplication opera-
tor generates the low-order 16 bits of a product.)

BUGS

- 1 -

-

HYPOT (III) 6/12/72 HYPOT (III)

NAME
hypot − calculate hypotenuse

SYNOPSIS
jsr r5,hypot

DESCRIPTION
The square root of fr0*fr0 + fr1*fr1 is returned in fr0. The calculation is done in such a way that
overflow will not occur unless the answer is not representable in floating point.

DIAGNOSTICS
The c-bit is set if the result cannot be represented.

BUGS

- 1 -

-

IERROR (III) 10/29/73 IERROR (III)

NAME
ierror − catch Fortran errors

SYNOPSIS
if (ierror (errno) .ne. 0) gotolabel

DESCRIPTION
Ierror provides a way of detecting errors during the running of a Fortran program. Its argument
is a run-time error number such as enumerated infc (I).

When ierror is called, it returns a 0 value; thus thegoto statement in the synopsis is not exe-
cuted. However, the routine stores inside itself the call point and invocation level. If and when
the indicated error occurs, areturn is simulated fromierror with a non-zero value; thus thegoto
(or other statement) is executed. It is a ghastly error to callierror from a subroutine which has
already returned when the error occurs.

This routine is essentially tailored to catching end-of-file situations. Typically it is called just
before the start of the loop which reads the input file, and thegoto jumps to a graceful termina-
tion of the program.

There is a limit of 5 on the number of different error numbers which can be caught.

SEE ALSO
fc (I)

BUGS
There is no way to ignore errors.

- 1 -

-

LDIV (III) 5/7/73 LDIV (III)

NAME
ldiv − long division

SYNOPSIS
ldiv(hidividend, lodividend, divisor)

lrem(hidividend, lodividend, divisor)

DESCRIPTION
The concatenation of the signed 16-bithidividendand the unsigned 16-bitlodividendis divided
by divisor. The 16-bit signed quotient is returned byldiv and the 16-bit signed remainder is re-
turned bylrem. Divide check and erroneous results will occur unless the magnitude of the divi-
sor is greater than that of the high-order dividend.

An integer division of an unsigned dividend by a signed divisor may be accomplished by

quo = ldiv(0, dividend, divisor);

and similarly for the remainder operation.

Often both the quotient and the remainder are wanted. Thereforeldiv leaves a remainder in the
external cellldivr.

BUGS
No divide check check.

- 1 -

-

LOG (III) 4/30/72 LOG (III)

NAME
log − natural logarithm

SYNOPSIS
jsr r5,log

double log(x)
double x;

DESCRIPTION
The natural logarithm of fr0 is returned in fr0. From C, the natural logarithm ofx is returned.

DIAGNOSTICS
The error bit (c-bit) is set if the input argument is less than or equal to zero and the result is a
negative number very large in magnitude. From C, there is no error indication.

BUGS

- 1 -

-

MESG (III) 3/15/72 MESG (III)

NAME
mesg − write message on typewriter

SYNOPSIS
jsr r5,mesg; <Now is the time\0>; .even

DESCRIPTION
Mesgwrites the string immediately following its call onto the standard output file. The string
must be terminated by an ASCII NULL byte.

BUGS

- 1 -

-

NARGS (III) 5/10/73 NARGS (III)

NAME
nargs − argument count

SYNOPSIS
nargs()

DESCRIPTION
Nargs returns the number of actual parameters supplied by the caller of the routine which calls
nargs.

The argument count is accurate only when none of the actual parameters isfloat or double. Such
parameters count as four arguments instead of one.

BUGS
As indicated.

- 1 -

-

NLIST (III) 6/12/72 NLIST (III)

NAME
nlist − get entries from name list

SYNOPSIS
jsrr5,nlist; file; list
...

file: <file name\0>; .even
list: <name1xxx>; type1; value1

<name2xxx>; type2; value2
...
0

nlist(filename, nl)
char *filename;
struct {

char name[8];
int type;
int value;

} nl[];

DESCRIPTION
Nlist examines the name list in the given executable output file and selectively extracts a list of
values. The name list consists of a list of 8-character names (null padded) each followed by two
words. The list is terminated with a null name. Each name is looked up in the name list of the
file. If the name is found, the type and value of the name are placed in the two words following
the name. If the name is not found, the type entry is set to −1.

This subroutine is useful for examining the system name list kept in the file/usr/sys/unix. In
this way programs can obtain system addresses that are up to date.

SEE ALSO
a.out(V)

DIAGNOSTICS
All type entries are set to −1 if the file cannot be found or if it is not a valid namelist.

BUGS

- 1 -

-

PERROR (III) 11/5/73 PERROR (III)

NAME
perror − system error messages

SYNOPSIS
perror(s)
char *s;

int sys_nerr;
char *sys_errlist[];

int errno;

DESCRIPTION
Perror produces a short error message describing the last error encountered during a call to the
system from a C program. First the argument strings is printed, then a colon, then the message
and a new-line. Most usefully, the argument string is the name of the program which incurred
the error. The error number is taken from the external variableerrno, which is set when errors
occur but not cleared when non-erroneous calls are made.

To simplify variant formatting of messages, the vector of message stringssys_errlist is provided;
errno can be used as an index in this table to get the message string without the newline.
Sys_nerr is the largest message number provided for in the table; it should be checked because
new error codes may be added to the system before they are added to the table.

SEE ALSO
Introduction to System Calls

BUGS

- 1 -

-

POW (III) 4/30/73 POW (III)

NAME
pow − floating exponentiation

SYNOPSIS
movf x,fr0
movf y,fr1
jsr pc,pow

double pow(x,y)
double x, y;

DESCRIPTION
Powreturns the value ofxy (in fr0). Pow(0, y)is 0 for anyy. Pow(−x, y)returns a result only ify
is an integer.

SEE ALSO
exp(III), log(III)

DIAGNOSTICS
The carry bit is set on return in case of overflow,pow(0, 0),or pow(−x, y) for non-integraly.
From C there is no diagnostic.

BUGS

- 1 -

-

PRINTF (III) 9/17/73 PRINTF (III)

NAME
printf − formatted print

SYNOPSIS
printf(format, arg 1, ...);
char *format;

DESCRIPTION
Printf converts, formats, and prints its arguments after the first under control of the first argu-
ment. The first argument is a character string which contains two types of objects: plain charac-
ters, which are simply copied to the output stream, and conversion specifications, each of which
causes conversion and printing of the next successive argument toprintf.

Each conversion specification is introduced by the character% . Following the% , there may be

− an optional minus sign ‘−’ which specifiesleft adjustmentof the converted argument in
the indicated field;

− an optional digit string specifying afield width; if the converted argument has fewer
characters than the field width it will be blank-padded on the left (or right, if the left-
adjustment indicator has been given) to make up the field width;

− an optional period ‘‘.’’ which serves to separate the field width from the next digit string;

− an optional digit string(precision)which specifies the number of digits to appear after
the decimal point, for e- and f-conversion, or the maximum number of characters to be
printed from a string;

− a character which indicates the type of conversion to be applied.

The conversion characters and their meanings are

d The argument is converted to decimal notation.

o The argument is converted to octal notation. ‘‘0’’ will always appear as the first digit.

f The argument is converted to decimal notation in the style ‘‘[−]ddd.ddd’’ where the num-
ber of d’s after the decimal point is equal to the precision specification for the argument.
If the precision is missing, 6 digits are given; if the precision is explicitly 0, no digits and
no decimal point are printed. The argument should befloat or double.

e The argument is converted in the style ‘‘[−]d.ddde±dd’’ where there is one digit before
the decimal point and the number after is equal to the precision specification for the argu-
ment; when the precision is missing, 6 digits are produced. The argument should be a
float or doublequantity.

c The argument character or character-pair is printed if non-null.

s The argument is taken to be a string (character pointer) and characters from the string are
printed until a null character or until the number of characters indicated by the precision
specification is reached; however if the precision is 0 or missing all characters up to a
null are printed.

l The argument is taken to be an unsigned integer which is converted to decimal and print-
ed (the result will be in the range 0 to 65535).

If no recognizable character appears after the% , that character is printed; thus% may be printed
by use of the string%% . In no case does a non-existent or small field width cause truncation of
a field; padding takes place only if the specified field width exceeds the actual width. Characters
generated byprintf are printed by callingputchar.

SEE ALSO
putchar (III)

- 1 -

-

PRINTF (III) 9/17/73 PRINTF (III)

BUGS
Very wide fields (>128 characters) fail.

- 2 -

-

PUTC (III) 6/12/72 PUTC (III)

NAME
putc − buffered output

SYNOPSIS
mov $filename,r0
jsr r5,fcreat; iobuf

fcreat(file, iobuf)
char *file;
struct buf *iobuf;

(get byte in r0)
jsr r5,putc; iobuf

putc(c, iobuf)
int c;
struct buf *iobuf;

(get word in r0)
jsr r5,putw; iobuf

[putw not available from C]

jsr r5,flush; iobuf

fflush(iobuf)
struct buf *iobuf;

DESCRIPTION
Fcreatcreates the given file (mode 666) and sets up the bufferiobuf (size 518 bytes);putc and
putwwrite a byte or word respectively onto the file;flush forces the contents of the buffer to be
written, but does not close the file. The format of the buffer is:

iobuf: .=.+2 / file descriptor
.=.+2 / characters unused in buffer
.=.+2 / ptr to next free character
.=.+512. / buffer

Or in C,

struct buf {
int fildes;
int nunused;
char *nxtfree;
char buff[512];

};

Fcreatsets the error bit (c-bit) if the file creation failed (from C, returns−1); none of the other
routines returns error information.

Before terminating, a program should callflush to force out the last of the output(fflush from C).

The user must supplyiobuf,which should begin on a word boundary.

To write a new file using the same buffer, it suffices to call[f]flush, close the file, and callfcreat
again.

SEE ALSO
creat(II), write(II), getc(III)

DIAGNOSTICS
error bit possible onfcreatcall.

BUGS

- 1 -

-

PUTCHAR (III) 5/10/73 PUTCHAR (III)

NAME
putchar − write character

SYNOPSIS
putchar(ch)

flush()

DESCRIPTION
Putcharwrites out its argument and returns it unchanged. The low-order byte of the argument is
always written; the high-order byte is written only if it is non-null. Unless other arrangements
have been made,putcharwrites in unbuffered fashion on the standard output file.

Associated with this routine is an external variablefout which has the structure of a buffer dis-
cussed under putc (III). If the file descriptor part of this structure (first word) is not 1, output via
putcharis buffered. To achieve buffered output one may say, for example,

fout = dup(1); or
fout = fcreat(...);

In such a caseflush must be called before the program terminates in order to flush out the buf-
fered output.Flushmay be called at any time.

SEE ALSO
putc(III)

BUGS
Thefout notion is kludgy.

- 1 -

-

QSORT (III) 6/12/72 QSORT (III)

NAME
qsort − quicker sort

SYNOPSIS
(end+1 of data in r2)
(element width in r3)
jsr pc,qsort

qsort(base, nel, width, compar)
char *base;
int (*compar)();

DESCRIPTION
Qsort is an implementation of the quicker-sort algorithm. The assembly-language version is de-
signed to sort equal length elements. Registers r1 and r2 delimit the region of core containing
the array of byte strings to be sorted: r1 points to the start of the first string, r2 to the first loca-
tion above the last string. Register r3 contains the length of each string. r2−r1 should be a mul-
tiple of r3. On return, r0, r1, r2, r3 are destroyed.

The routine compar (q.v.) is called to compare elements and may be replaced by the user.

The C version has somewhat different arguments and the user must supply a comparison routine.
The first argument is to the base of the data; the second is the number of elements; the third is
the width of an element in bytes; the last is the name of the comparison routine. It is called with
two arguments which are pointers to the elements being compared. The routine must return a
negative integer if the first element is to be considered less than the second, a positive integer if
the second element is smaller than the first, and 0 if the elements are equal.

SEE ALSO
compar (III)

BUGS

- 1 -

-

RAND (III) 1/15/73 RAND (III)

NAME
rand − random number generator

SYNOPSIS
(seed in r0)
jsr pc,srand /to initialize

jsr pc,rand /to get a random number

srand(seed)
int seed;

rand()

DESCRIPTION
Randuses a multiplicative congruential random number generator to return successive pseudo-
random numbers (in r0) in the range from 1 to 215−1.

The generator is reinitialized by callingsrandwith 1 as argument (in r0). It can be set to a ran-
dom starting point by callingsrandwith whatever you like as argument, for example the low-
order word of the time.

WARNING
The author of this routine has been writing random-number generators for many years and has
never been known to write one that worked.

BUGS
The low-order bits are not very random.

- 1 -

-

RESET (III) 5/10/73 RESET (III)

NAME
reset − execute non-local goto

SYNOPSIS
setexit()

reset()

DESCRIPTION
These routines are useful for dealing with errors discovered in a low-level subroutine of a pro-
gram.

Setexitis typically called just at the start of the main loop of a processing program. It stores cer-
tain parameters such as the call point and the stack level.

Resetis typically called after diagnosing an error in some subprocedure called from the main
loop. Whenresetis called, it pops the stack appropriately and generates a non-local return from
the last call tosetexit.

It is erroneous, and generally disastrous, to callresetunlesssetexithas been called in a routine
which is an ancestor ofreset.

BUGS

- 1 -

-

SETFIL (III) 10/29/73 SETFIL (III)

NAME
setfil − specify Fortran file name

SYNOPSIS
call setfil (unit, hollerith-string)

DESCRIPTION
Setfilprovides a primitive way to associate an integer I/Ounit number with a file named by the
hollerith-string. The end of the file name is indicated by a blank. Subsequent I/O on this unit
number will refer to file whose name is specified by the string.

Setfil should be called only before any I/O has been done on theunit, or just after doing a
rewind or endfile. It is ineffective for unit numbers 5 and 6.

SEE ALSO
fc (I)

BUGS
There is still no way to receive a file name or other argument from the command line. Also, the
exclusion of units 5 and 6 is unwarranted.

- 1 -

-

SIN (III) 3/15/72 SIN (III)

NAME
sin − sine, cosine

SYNOPSIS
jsr r5,sin (cos)

double sin(x)
double x;

double cos(x)
double x;

DESCRIPTION
The sine (cosine) of fr0 (resp.x), measured in radians, is returned (in fr0).

The magnitude of the argument should be checked by the caller to make sure the result is mean-
ingful.

BUGS

- 1 -

-

SQRT (III) 3/15/72 SQRT (III)

NAME
sqrt − square root function

SYNOPSIS
jsr r5,sqrt

double sqrt(x)
double x;

DESCRIPTION
The square root of fr0 (resp.x) is returned (in fr0).

DIAGNOSTICS
The c-bit is set on negative arguments and 0 is returned. There is no error return for C programs.

BUGS
No error return from C.

- 1 -

-

SWITCH (III) 3/15/72 SWITCH (III)

NAME
switch − switch on value

SYNOPSIS
(switch value in r0)
jsrr5,switch; swtab
(not-found return)
...

swtab: val1; lab1;
...
valn;labn
..; 0

DESCRIPTION
Switchcompares the value of r0 against each of the vali; if a match is found, control is trans-
ferred to the corresponding labi (after popping the stack once). If no match has been found by
the time a null labi occurs,switchreturns.

BUGS

- 1 -

-

TTYN (III) 1/15/73 TTYN (III)

NAME
ttyn − return name of current typewriter

SYNOPSIS
jsr pc,ttyn

ttyn(file)

DESCRIPTION
Ttyn hunts up the last character of the name of the typewriter which is the standard input (from
as) or is specified by the argumentfile descriptor (from C). Ifn is returned, the typewriter name
is then ‘‘/dev/ttyn’’.

x is returned if the indicated file does not correspond to a typewriter.

BUGS

- 1 -

-

VT (III) 6/4/73 VT (III)

NAME
vt − display (vt01) interface

SYNOPSIS
openvt()

erase()

label(s)
char s[];

line(x,y)

circle(x,y,r)

arc(x,y,x0,y0,x1,y1)

dot(x,y,dx,n,pattern)
int pattern[];

move(x,y)

DESCRIPTION
C interface routines to perform similarly named functions described in vt(IV).Openvtmust be
used before any of the others to open the storage scope for writing.

FILES
/dev/vt0, found in /lib/libp.a

SEE ALSO
vt (IV)

BUGS

- 1 -

-

CAT (IV) 10/27/73 CAT (IV)

NAME
cat − phototypesetter interface

DESCRIPTION
Cat provides the interface to a Graphic Systems C/A/T phototypesetter. Bytes written on the file
specify font, size, and other control information as well as the characters to be flashed. The cod-
ing will not be described here.

Only one process may have this file open at a time. It is write-only.

FILES
/dev/cat

SEE ALSO
troff (I), Graphic Systems specification (available on request)

BUGS

- 1 -

-

DA (IV) 10/28/73 DA (IV)

NAME
da − voice response unit

DESCRIPTION
Bytes written on this file control a Cognitronics optical drum voice response unit which can gen-
erate up to 31 fixed half-second utterances. Bytes read correspond to Touch-Tone® signals re-
ceived via a 403 dataset.

The specifics of the interface will not be described. Consult M. E. Lesk for more information.

FILES
/dev/da

BUGS

- 1 -

-

DC (IV) 8/22/73 DC (IV)

NAME
dc − DC-11 communications interface

DESCRIPTION
The special files /dev/tty0, /dev/tty1, ... refer to the DC11 asynchronous communications inter-
faces. At the moment there are 12 of them, but the number is subject to change.

When one of these files is opened, it causes the process to wait until a connection is established.
In practice user’s programs seldom open these files; they are opened byinit and become a user’s
input and output file. The very first typewriter file open in a process becomes thecontrol type-
writer for that process. The control typewriter plays a special role in handling quit or interrupt
signals, as discussed below. The control typewriter is inherited by a child process during afork.

A terminal associated with one of these files ordinarily operates in full-duplex mode. Characters
may be typed at any time, even while output is occurring, and are only lost when the system’s
character input buffers become completely choked, which is rare, or when the user has accumu-
lated the maximum allowed number of input characters which have not yet been read by some
program. Currently this limit is 256 characters. When the input limit is reached all the saved
characters are thrown away without notice.

When first opened, the interface mode is 150 baud; either parity accepted; 10 bits/character (one
stop bit); and newline action character. The system delays transmission after sending certain
function characters. Delays for horizontal tab, newline, and form feed are calculated for the
Teletype Model 37; the delay for carriage return is calculated for the GE TermiNet 300. Most of
these operating states can be changed by using the system call stty(II). In particular the follow-
ing hardware states are program settable independently for input and output (see DC11 manual):
134.5, 150, 300, or 1200 baud; one or two stop bits on output; and 5, 6, 7, or 8 data
bits/character. In addition, the following software modes can be invoked: acceptance of even
parity, odd parity, or both; a raw mode in which all characters may be read one at a time; a car-
riage return (CR) mode in which CR is mapped into newline on input and either CR or line feed
(LF) cause echoing of the sequence LF-CR; mapping of upper case letters into lower case; sup-
pression of echoing; suppression of delays after function characters; and the printing of tabs as
spaces. See getty(VII) for the way that terminal speed and type are detected.

Normally, typewriter input is processed in units of lines. This means that a program attempting
to read will be suspended until an entire line has been typed. Also, no matter how many
characters are requested in the read call, at most one line will be returned. It is not however nec-
essary to read a whole line at once; any number of characters may be requested in a read, even
one, without losing information.

During input, erase and kill processing is normally done. The character ‘#’ erases the last
character typed, except that it will not erase beyond the beginning of a line or an EOT. The
character ‘@’ kills the entire line up to the point where it was typed, but not beyond an EOT.
Both these characters operate on a keystroke basis independently of any backspacing or tabbing
that may have been done. Either ‘@’ or ‘#’ may be entered literally by preceding it by ‘\’; the
erase or kill character remains, but the ‘\’ disappears.

In upper-case mode, all upper-case letters are mapped into the corresponding lower-case letter.
The upper-case letter may be generated by preceding it by ‘\’. In addition, the following escape
sequences are generated on output and accepted on input:

for use
` \´
 \!
˜ \ˆ
{ \(
} \)

It is possible to use raw mode in which the program reading is awakened on each character. In
raw mode, no erase or kill processing is done; and the EOT, quit and interrupt characters are not
treated specially.

- 1 -

-

DC (IV) 8/22/73 DC (IV)

The ASCII EOT character may be used to generate an end of file from a typewriter. When an
EOT is received, all the characters waiting to be read are immediately passed to the program,
without waiting for a new-line. Thus if there are no characters waiting, which is to say the EOT
occurred at the beginning of a line, zero characters will be passed back, and this is the standard
end-of-file signal. The EOT is not passed on except in raw mode.

When the carrier signal from the dataset drops (usually because the user has hung up his termi-
nal) a hangupsignal is sent to all processes with the typewriter as control typewriter. Unless
other arrangements have been made, this signal causes the processes to terminate. If the hangup
signal is ignored, any read returns with an end-of-file indication. Thus programs which read a
typewriter and test for end-of-file on their input can terminate appropriately when hung up on.

Two characters have a special meaning when typed. The ASCII DEL character (sometimes
called ‘rubout’) is not passed to a program but generates aninterrupt signal which is sent to all
processes with the associated control typewriter. Normally each such process is forced to termi-
nate, but arrangements may be made either to ignore the signal or to reveive a simulated trap to
an agreed-upon location. See signal (II).

The ASCII character FS generates thequit signal. Its treatment is identical to the interrupt signal
except that unless a receiving process has made other arrangements it will not only be terminated
but a core image file will be generated. See signal (II).

Output is prosaic compared to input. When one or more characters are written, they are actually
transmitted to the terminal as soon as previously-written characters have finished typing. Input
characters are echoed by putting them in the output queue as they arrive. When a process pro-
duces characters more rapidly than they can be typed, it will be suspended when its output queue
exceeds some limit. When the queue has drained down to some threshold the program is re-
sumed. Even-parity is always generated on output. The EOT character is not transmitted (ex-
cept in raw mode) to prevent terminals which respond to it from hanging up.

FILES
/dev/tty[01234567abcd] 113B Dataphones

SEE ALSO
kl (IV), getty (VII), stty (I, II), gtty (I, II), signal (II)

BUGS

- 2 -

-

DN (IV) 8/24/73 DN (IV)

NAME
dn − dn11 ACU interface

DESCRIPTION
Thedn? files are write-only. The permissible codes are:

0-9 dial 0-9
: dial *
; dial #
= end-of-number

The entire telephone number must be presented in a singlewrite system call.

It is recommended that an end-of-number code be given even though only one of the ACU’s
(113C) actually requires it.

FILES
/dev/dn0connected to 801 with dp0
/dev/dn1connected to 113C with ttyc
/dev/dn2not currently connected

SEE ALSO
dp(IV), dc(IV), write(II)

BUGS
It needs a delay character to handle second dial tone.

- 1 -

-

DP (IV) 8/24/73 DP (IV)

NAME
dp − dp11 201 data-phone interface

DESCRIPTION
The dp0 file is a 201 data-phone interface.Readandwrite calls to dp0 are limited to a maxi-
mum of 512 bytes. Each write call is sent as a single record. Seven bits from each byte are writ-
ten along with an eighth odd parity bit. The sync must be user supplied. Each read call returns
characters received from a single record. Seven bits are returned unaltered; the eighth bit is set if
the byte was not received in odd parity. A 10 second time out is set and a zero-byte record is re-
turned if nothing is received in that time.

FILES
/dev/dp0

SEE ALSO
dn(IV), gerts(III)

BUGS

- 1 -

-

KL (IV) 8/24/73 KL (IV)

NAME
kl − KL-11/TTY-33 console typewriter

DESCRIPTION
Tty (as distinct fromtty?) refers to the console typewriter hard-wired to the PDP-11 via a KL-
11 interface. The disciplines involved in dealing withtty are identical to those fortty? and sec-
tion DC(I) should be consulted. The following differences are salient:

The system callssttyandgtty apply, and the bits in the mode word have the same meanings, but
the speed-select word is ignored. The quit signal is generated by the key marked ‘alt mode.’

By appropriate console switch settings, it is possible to cause UNIX to come up as a single-user
system with I/O on this device.

FILES
/dev/tty
/dev/tty8synonym for /dev/tty
/dev/tty9second console

SEE ALSO
dc(IV), init(VII)

BUGS

- 1 -

-

MEM (IV) 8/24/73 MEM (IV)

NAME
mem − core memory

DESCRIPTION
Mem is a special file that is an image of the core memory of the computer. It may be used, for
example, to examine, and even to patch the system using the debugger.

A memory address is an 18-bit quantity which is used directly as a UNIBUS address. Refer-
ences to non-existent locations cause errors to be returned.

Examining and patching device registers is likely to lead to unexpected results when read-only or
write-only bits are present.

FILES
/dev/mem

BUGS
There should be anothermemfile that looks at core using the system’s address map.

- 1 -

-

PC (IV) 10/15/73 PC (IV)

NAME
pc − PC-11 paper tape reader/punch

DESCRIPTION
Ppt refers to the PC-11 paper tape reader or punch, depending on whether it is read or written.

Whenppt is opened for writing, a 100-character leader is punched. Thereafter each byte written
is punched on the tape. No editing of the characters is performed. When the file is closed, a
100-character trailer is punched.

Whenppt is opened for reading, the process waits until tape is placed in the reader and the reader
is on-line. Then requests to read cause the characters read to be passed back to the program,
again without any editing. This means that several null leader characters will usually appear at
the beginning of the file. Likewise several nulls are likely to appear at the end. End-of-file is
generated when the tape runs out.

Seek calls for this file are meaningless.

FILES
/dev/ppt

BUGS

- 1 -

-

RF (IV) 10/15/73 RF (IV)

NAME
rf − RF11/RS11 fixed-head disk file

DESCRIPTION
This file refers to the concatenation of all RS-11 disks.

Each disk contains 1024 256-word blocks. The length of the combined RF file is 1024×(mi-
nor+1) blocks. That is minor device zero is 1024 blocks long; minor device one is 2048, etc.

FILES
/dev/rf0

BUGS

- 1 -

-

RK (IV) 10/15/73 RK (IV)

NAME
rk − RK-11/RK03 (or RK05) disk

DESCRIPTION
Rk? refers to an entire RK03 disk as a single sequentially-addressed file. Its 256-word blocks
are numbered 0 to 4871.

Drive numbers (minor devices) of eight and greater are treated specially. Drive 8+x is thex+1
way interleaving of devices rk0 to rkx. Thus blocks on rk10 are distributed alternately among
rk0, rk1, and rk2.

FILES
/dev/rk?

BUGS
Care should be taken in using the interleaved files. First, the same drive should not be accessed
simultaneously using the ordinary name and as part of an interleaved file, because the same
physical blocks have in effect two different names; this fools the system’s buffering strategy.
Second, the combined files cannot be used for swapping.

- 1 -

-

RP (IV) 10/15/73 RP (IV)

NAME
rp − RP-11/RP03 moving-head disk

DESCRIPTION
The filesrp0 ... rp7refer to sections of RP disk drive 0. The filesrp8 ... rp15refer to drive 1 etc.
This is done since the size of a full RP drive is 81200 blocks and internally the system is only ca-
pable of addressing 65536 blocks. Also since the disk is so large, this allows it to be broken up
into more manageable pieces.

The origin and size of the pseudo-disks on each drive are as follows:

disk start length
0 0 40600
1 40600 40600
2 0 3200
3 3200 39000
4 42200 39000
5-7 unassigned

FILES
/dev/rp?

BUGS

- 1 -

-

TC (IV) 10/15/73 TC (IV)

NAME
tc − TC-11/TU56 DECtape

DESCRIPTION
The filestap0 ... tap7refer to the TC-11/TU56 DECtape drives 0 to 7.

The 256-word blocks on a standard DECtape are numbered 0 to 577.

FILES
/dev/tap?

SEE ALSO
tp(I)

BUGS
Since reading is synchronous, only one block is picked up per tape reverse.

- 1 -

-

TIU (IV) 10/28/73 TIU (IV)

NAME
tiu − Spider interface

DESCRIPTION
Spider is a fast digital switching network.Tiu is a directory which contains files each referring
to a Spider control or data channel. The file /dev/tiu/dn refers to data channeln, likewise
/dev/tiu/cn refers to control channeln.

The precise nature of the UNIX interface has not been defined yet.

FILES
/dev/tiu/d?, /dev/tiu/c?

BUGS

- 1 -

-

TM (IV) 10/15/73 TM (IV)

NAME
tm − TM-11/TU-10 magtape interface

DESCRIPTION
The filesmt0, ..., mt7refer to the DEC TU10/TM11 magtape. When opened for reading or writ-
ing, the magtape is rewound. A tape consists of a series of 512 byte records terminated by an
end-of-file. When the magtape is closed after writing, an end-of-file is written.

The magtape can only be opened once at any instant.

FILES
/dev/mt?

SEE ALSO
tp(I)

BUGS
If you hit the EOF mark or get other non-data errors it refuses to do anything more until closed.
There has to be some reasonable way to deal with multi-file tapes.

- 1 -

-

VS (IV) 10/28/73 VS (IV)

NAME
vs − voice synthesizer interface

DESCRIPTION
Bytes written onvsdrive a Federal Screw Works Votrax® voice synthesizer. The upper two bits
encode an inflection, the other 6 specify a phoneme. The code is given in section vs (VII).

Touch-Tone® signals sent by a caller will be picked up during aread as the ASCII characters
{0123456789#*}.

FILES
/dev/vs

SEE ALSO
speak (I), vs (VII)

BUGS

- 1 -

-

VT (IV) 10/22/73 VT (IV)

NAME
vt − 11/20 (vt01) interface

DESCRIPTION
The filevt0provides the interface to a PDP 11/20 which runs a VT01A-controlled Tektronix 611
storage display. The inter-computer interface is a pair of DR-11C word interfaces.

Although the display has essentially only two commands, namely ‘‘erase screen’’ and ‘‘display
point’’, the 11/20 program will draw points, lines, and arcs, and print text on the screen. The
11/20 can also type information on the attached 33 TTY.

This special file operates in two basic modes. If the first byte written of the file cannot be inter-
preted as one of the codes discussed below, the rest of the transmitted information is assumed to
ASCII and written on the screen. The screen has 33 lines (1/2 a standard page). The file simu-
lates a 37 TTY: the control characters NL, CR, BS, and TAB are interpreted correctly. It also in-
terprets the usual escape sequences for forward and reverse half-line motion and for full-line re-
verse. Greek is not available yet. Normally, when the screen is full (i.e. the 34th line is started)
the screen is erased before starting a new page. To allow perusal of the displayed text, it is usual
to assert bit 0 of the console switches. This causes the program to pause before erasing until this
bit is lowered.

If the first byte written is recognizable, the display runs in graphic mode. In this case bytes writ-
ten on the file are interpreted as display commands. Each command consists of a single byte
usually followed by parameter bytes. Often the parameter bytes represent points in the plotting
area. Each point coordinate consists of 2 bytes interpreted as a 2’s complement 16-bit number.
The plotting area itself measures (±03777)×(±03777) (numbers in octal); that is, 12 bits of preci-
sion. Attempts to plot points outside the screen limits are ignored.

The graphic commands follow.

order (1); 1 parameter byte
The parameter indicates a subcommand, possibly followed by subparameter bytes,
as follows:

erase (1)
The screen is erased. The program will wait until bit 0 of the console
switches is down.

label (3); several subparameter bytes
The following bytes up to a null byte are printed as ASCII text on the screen.
The origin of the text is the last previous point plotted; or the upper left hand
of the screen if there were none.

point (2); 4 parameter bytes
The 4 parameter bytes are taken as a pair of coordinates representing a point to be
plotted.

line (3); 8 parameter bytes
The parameter bytes are taken as 2 pairs of coordinates representing the ends of a
line segment which is plotted. Only the portion lying within the screen is displayed.

frame (4); 1 parameter byte
The parameter byte is taken as a number of sixtieths of a second; an externally-
available lead is asserted for that time. Typically the lead is connected to an auto-
matic camera which advances its film and opens the shutter for the specified time.

circle (5); 6 parameter bytes
The parameter bytes are taken as a coordinate pair representing the origin, and a
word representing the radius of a circle. That portion of the circle which lies within
the screen is plotted.

arc (6); 12 parameter bytes
The first 4 parameter bytes are taken to be a coordinate-pair representing the center
of a circle. The next 4 represent a coordinate-pair specifying a point on this circle.

- 1 -

-

VT (IV) 10/22/73 VT (IV)

The last 4 should represent another point on the circle. An arc is drawn counter-
clockwise from the first circle point to the second. If the two points are the same,
the whole circle is drawn. For the second point, only the smaller in magnitude of its
two coordinates is significant; the other is used only to find the quadrant of the end
of the arc. In any event only points within the screen limits are plotted.

dot-line (7); at least 6 parameter bytes
The first 4 parameter bytes are taken as a coordinate-pair representing the origin of a
dot-line. The next byte is taken as a signed x-increment. The next byte is an un-
signed word-count, with ‘0’ meaning ‘256’. The indicated number of words is
picked up. For each bit in each word a point is plotted which is visible if the bit is
‘1’, invisible if not. High-order bits are plotted first. Each successive point (or
non-point) is offset rightward by the given x-increment.

Asserting bit 3 of the console switches causes the display processor to throw away everything
written on it. This sometimes helps if the display seems to be hung up.

FILES
/dev/vt0

BUGS

- 2 -

-

A.OUT (V) 9/9/73 A.OUT (V)

NAME
a.out − assembler and link editor output

DESCRIPTION
A.outis the output file of the assemblerasand the link editorld. Both programs makea.outexe-
cutable if there were no errors and no unresolved external references.

This file has four sections: a header, the program and data text, a symbol table, and relocation
bits (in that order). The last two may be empty if the program was loaded with the ‘‘−s’’ option
of ld or if the symbols and relocation have been removed bystrip.

The header always contains 8 words:

1 A magic number (407 or 410(8))
2 The size of the program text segment
3 The size of the initialized portion of the data segment
4 The size of the uninitialized (bss) portion of the data segment
5 The size of the symbol table
6 The entry location (always 0 at present)
7 Unused
8 A flag indicating relocation bits have been suppressed

The sizes of each segment are in bytes but are even. The size of the header is not included in any
of the other sizes.

When a file produced by the assembler or loader is loaded into core for execution, three logical
segments are set up: the text segment, the data segment (with uninitialized data, which starts off
as all 0, following initialized), and a stack. The text segment begins at 0 in the core image; the
header is not loaded. If the magic number (word 0) is 407, it indicates that the text segment is
not to be write-protected and shared, so the data segment is immediately contiguous with the text
segment. If the magic number is 410, the data segment begins at the first 0 mod 8K byte bound-
ary following the text segment, and the text segment is not writable by the program; if other pro-
cesses are executing the same file, they will share the text segment.

The stack will occupy the highest possible locations in the core image: from 177776(8) and
growing downwards. The stack is automatically extended as required. The data segment is only
extended as requested by thebreaksystem call.

The start of the text segment in the file is 20(8); the start of the data segment is 20+St (the size of
the text) the start of the relocation information is 20+St+Sd; the start of the symbol table is
20+2(St+Sd) if the relocation information is present, 20+St+Sd if not.

The symbol table consists of 6-word entries. The first four words contain the ASCII name of the
symbol, null-padded. The next word is a flag indicating the type of symbol. The following val-
ues are possible:

00 undefined symbol
01 absolute symbol
02 text segment symbol
03 data segment symbol
37 file name symbol (produced by ld)
04 bss segment symbol
40 undefined external (.globl) symbol
41 absolute external symbol
42 text segment external symbol
43 data segment external symbol
44 bss segment external symbol

Values other than those given above may occur if the user has defined some of his own instruc-
tions.

The last word of a symbol table entry contains the value of the symbol.

- 1 -

-

A.OUT (V) 9/9/73 A.OUT (V)

If the symbol’s type is undefined external, and the value field is non-zero, the symbol is inter-
preted by the loaderld as the name of a common region whose size is indicated by the value of
the symbol.

The value of a word in the text or data portions which is not a reference to an undefined external
symbol is exactly that value which will appear in core when the file is executed. If a word in the
text or data portion involves a reference to an undefined external symbol, as indicated by the re-
location bits for that word, then the value of the word as stored in the file is an offset from the as-
sociated external symbol. When the file is processed by the link editor and the external symbol
becomes defined, the value of the symbol will be added into the word in the file.

If relocation information is present, it amounts to one word per word of program text or initial-
ized data. There is no relocation information if the ‘‘suppress relocation’’ flag in the header is
on.

Bits 3-1 of a relocation word indicate the segment referred to by the text or data word associated
with the relocation word:

00 indicates the reference is absolute
02 indicates the reference is to the text segment
04 indicates the reference is to initialized data
06 indicates the reference is to bss (uninitialized data)
10 indicates the reference is to an undefined external symbol.

Bit 0 of the relocation word indicates ifon that the reference is relative to the pc (e.g. ‘‘clr x’’); if
off, that the reference is to the actual symbol (e.g., ‘‘clr *$x’’).

The remainder of the relocation word (bits 15-4) contains a symbol number in the case of exter-
nal references, and is unused otherwise. The first symbol is numbered 0, the second 1, etc.

SEE ALSO
as(I), ld(I), strip(I), nm(I)

- 2 -

-

ARCHIVE (V) 9/10/73 ARCHIVE (V)

NAME
ar − archive (library) file format

DESCRIPTION
The archive commandar is used to combine several files into one. Archives are used mainly as
libraries to be searched by the link-editorld.

A file produced byar has a magic number at the start, followed by the constituent files, each pre-
ceded by a file header. The magic number is 177555(8) (it was chosen to be unlikely to occur
anywhere else). The header of each file is 16 bytes long:

0-7 file name, null padded on the right
8-11 modification time of the file
12 user ID of file owner
13 file mode
14-15 file size

If the file is an odd number of bytes long, it is padded with a null byte, but the size in the header
is correct.

Notice there is no provision for empty areas in an archive file.

SEE ALSO
ar (I), ld (I)

BUGS
Names are only 8 characters, not 14. More important, there isn’t enough room to store the prop-
er mode, soar always extracts in mode 666.

- 1 -

-

CORE (V) 9/10/73 CORE (V)

NAME
core − format of core image file

DESCRIPTION
UNIX writes out a core image of a terminated process when any of various errors occur. See
signal (II) for the list of reasons; the most common are memory violations, illegal instructions,
bus errors, and user-generated quit signals. The core image is called ‘‘core’’ and is written in the
process’s working directory (provided it can be; normal access controls apply).

The first 512 bytes of the core image are a copy of the system’s per-user data for the process, in-
cluding the registers as they were at the time of the fault. The remainder represents the actual
contents of the user’s core area when the core image was written. At the moment, if the text seg-
ment is write-protected and shared, it is not dumped; otherwise the entire address space is
dumped.

The actual format of the information in the first 512 bytes is complicated. A guru will have to be
consulted if enlightenment is required. In general the debuggerdb (I) should be used to deal
with core images.

SEE ALSO
db(I), signal(II)

- 1 -

-

DIRECTORY (V) 9/10/73 DIRECTORY (V)

NAME
dir − format of directories

DESCRIPTION
A directory behaves exactly like an ordinary file, save that no user may write into a directory.
The fact that a file is a directory is indicated by a bit in the flag word of its i-node entry. Direc-
tory entries are 16 bytes long. The first word is the i-number of the file represented by the entry,
if non-zero; if zero, the entry is empty.

Bytes 2-15 represent the (14-character) file name, null padded on the right. These bytes are not
cleared for empty slots.

By convention, the first two entries in each directory are for ‘‘.’’ and ‘‘ ..’’. The first is an entry
for the directory itself. The second is for the parent directory. The meaning of ‘‘..’’ is modified
for the root directory of the master file system and for the root directories of removable file sys-
tems. In the first case, there is no parent, and in the second, the system does not permit off-
device references. Therefore in both cases ‘‘..’’ has the same meaning as ‘‘.’’.

SEE ALSO
file system (V)

- 1 -

-

FILE SYSTEM (V) 9/7/73 FILE SYSTEM (V)

NAME
fs − format of file system volume

DESCRIPTION
Caution: this information applies only to the latest versions of the UNIX system.

Every file system storage volume (e.g. RF disk, RK disk, RP disk, DECtape reel) has a common
format for certain vital information. Every such volume is divided into a certain number of 256
word (512 byte) blocks. Block 0 is unused and is available to contain a bootstrap program, pack
label, or other information.

Block 1 is thesuper block.Starting from its first word, the format of a super-block is

struct {
int isize;
int fsize;
int nfree;
int free[100];
int ninode;
int inode[100];
char flock;
char ilock;
char fmod;
int time[2];

};

Isizeis the number of blocks devoted to the i-list, which starts just after the super-block, in block
2. Fsizeis the first block not potentially available for allocation to a file. This number is unused
by the system, but is used by programs likecheck (I)to test for bad block numbers. The free list
for each volume is maintained as follows. Thefreearray contains, infree[1], ... , free[nfree−1],
up to 99 numbers of free blocks.Free[0] is the block number of the head of a chain of blocks
constituting the free list. The first word in each free-chain block is the number (up to 100) of
free-block numbers listed in the next 100 words of this chain member. The first of these 100
blocks is the link to the next member of the chain. To allocate a block: decrementnfree,and the
new block isfree[nfree]. If the new block number is 0, there are no blocks left, so give an error.
If nfreebecame 0, read in the block named by the new block number, replacenfreeby its first
word, and copy the block numbers in the next 100 words into thefree array. To free a block,
check if nfree is 100; if so, copynfreeand thefreearray into it, write it out, and setnfreeto 0.
In any event setfree[nfree]to the freed block’s number and incrementnfree.

Ninodeis the number of free i-numbers in theinodearray. To allocate an i-node: ifninode is
greater than 0, decrement it and returninode[ninode]. If it was 0, read the i-list and place the
numbers of all free inodes (up to 100) into theinodearray, then try again. To free an i-node,
providedninodeis less than 100, place its number intoinode[ninode]and incrementninode. If
ninodeis already 100, don’t bother to enter the freed i-node into any table. This list of i-nodes is
only to speed up the allocation process; the information as to whether the inode is really free or
not is maintained in the inode itself.

Flock and ilock are flags maintained in the core copy of the file system while it is mounted and
their values on disk are immaterial. The value offmodon disk is likewise immaterial; it is used
as a flag to indicate that the super-block has changed and should be copied to the disk during the
next periodic update of file system information.

Time is the last time the super-block of the file system was changed, and is a double-precision
representation of the number of seconds that have elapsed since 0000 Jan. 1 1970 (GMT). Dur-
ing a reboot, thetimeof the super-block for the root file system is used to set the system’s idea
of the time.

I-numbers begin at 1, and the storage for i-nodes begins in block 2. Also, i-nodes are 32 bytes
long, so 16 of them fit into a block. Therefore, i-nodei is located in block (i + 31) / 16, and be-
gins 32.((i + 31) (mod 16) bytes from its start. I-node 1 is reserved for the root directory of the

- 1 -

-

FILE SYSTEM (V) 9/7/73 FILE SYSTEM (V)

file system, but no other i-number has a built-in meaning. Each i-node represents one file. The
format of an i-node is as follows.

struct {
int flags; /* +0: see below */
char nlinks; /* +2: number of links to file */
char uid; /* +3: user ID of owner */
char gid; /* +4: group ID of owner */
char size0; /* +5: high byte of 24-bit size */
int size1; /* +6: low word of 24-bit size */
int addr[8]; /* +8: block numbers or device number */
int actime[2]; /* +24: time of last access */
int modtime[2]; /* +28: time of last modification */

};

The flags are as follows:

100000 i-node is allocated
060000 2-bit file type:

000000 plain file
040000 directory
020000 character-type special file
060000 block-type special file.

010000 large file
004000 set user-ID on execution
002000 set group-ID on execution
000400 read (owner)
000200 write (owner)
000100 execute (owner)
000070 read, write, execute (group)
000007 read, write, execute (others)

Special files are recognized by their flags and not by i-number. A block-type special file is basi-
cally one which can potentially be mounted as a file system; a character-type special file cannot,
though it is not necessarily character-oriented. For special files the high byte of the first address
word specifies the type of device; the low byte specifies one of several devices of that type. The
device type numbers of block and character special files overlap.

The address words of ordinary files and directories contain the numbers of the blocks in the file
(if it is small) or the numbers of indirect blocks (if the file is large).

Byte numbern of a file is accessed as follows.N is divided by 512 to find its logical block num-
ber (sayb) in the file. If the file is small (flag 010000 is 0), thenb must be less than 8, and the
physical block number isaddr[b].

If the file is large,b is divided by 256 to yieldi, andaddr[i] is the physical block number of the
indirect block. The remainder from the division yields the word in the indirect block which con-
tains the number of the block for the sought-for byte.

For blockb in a file to exist, it is not necessary that all blocks less thanb exist. A zero block
number either in the address words of the i-node or in an indirect block indicates that the corre-
sponding block has never been allocated. Such a missing block reads as if it contained all zero
words.

SEE ALSO
check (VIII)

- 2 -

-

PASSWD (V) 9/10/73 PASSWD (V)

NAME
passwd − password file

DESCRIPTION
Passwdcontains for each user the following information:

name (login name, contains no upper case)
encrypted password
numerical user ID
GCOS job number and box number
initial working directory
program to use as Shell

This is an ASCII file. Each field within each user’s entry is separated from the next by a colon.
The job and box numbers are separated by a comma. Each user is separated from the next by a
new-line. If the password field is null, no password is demanded; if the Shell field is null, the
Shell itself is used.

This file resides in directory /etc. Because of the encrypted passwords, it can and does have gen-
eral read permission and can be used, for example, to map numerical user ID’s to names.

SEE ALSO
login(I), crypt(III), passwd(I)

- 1 -

-

TP (V) 9/10/73 TP (V)

NAME
tp − DEC/mag tape formats

DESCRIPTION
The commandtp dumps and extracts files to and DECtape and magtape. The formats of these
tapes are the same except that magtapes have larger directories.

Block zero contains a copy of a stand-alone bootstrap program. See boot procedures (VIII).

Blocks 1 through 24 for DECtape (1 through 62 for magtape) contain a directory of the tape.
There are 192 (resp. 496) entries in the directory; 8 entries per block; 64 bytes per entry. Each
entry has the following format:

path name 32 bytes
mode 2 bytes
uid 1 byte
gid 1 byte
unused 1 byte
size 3 bytes
time modified 4 bytes
tape address 2 bytes
unused 16 bytes
check sum 2 bytes

The path name entry is the path name of the file when put on the tape. If the pathname starts
with a zero word, the entry is empty. It is at most 32 bytes long and ends in a null byte. Mode,
uid, gid, size and time modified are the same as described under i-nodes (file system (V)). The
tape address is the tape block number of the start of the contents of the file. Every file starts on a
block boundary. The file occupies (size+511)/512 blocks of continuous tape. The checksum en-
try has a value such that the sum of the 32 words of the directory entry is zero.

Blocks 25 (resp. 63) on are available for file storage.

A fake entry (see tp(I)) has a size of zero.

SEE ALSO
file system(V), tp(I)

- 1 -

-

UTMP (V) 9/10/73 UTMP (V)

NAME
utmp − user information

DESCRIPTION
This file allows one to discover information about who is currently using UNIX. The file is bi-
nary; each entry is 16(10) bytes long. The first eight bytes contain a user’s login name or are
null if the table slot is unused. The low order byte of the next word contains the last character of
a typewriter name. The next two words contain the user’s login time. The last word is unused.

This file resides in directory /tmp.

SEE ALSO
/etc/init, which maintains the file; who(I), which interprets it.

- 1 -

-

WTMP (V) 9/10/73 WTMP (V)

NAME
wtmp − user login history

DESCRIPTION
This file records all logins and logouts. Its format is exactly like utmp(V) except that a null user
name indicates a logout on the associated typewriter, and the typewriter name ‘x’ indicates that
UNIX was rebooted at that point.

Wtmp is maintained by login(I) and init(VII). Neither of these programs creates the file, so if it
is removed record-keeping is turned off.

This file resides in directory /tmp.

SEE ALSO
init(VII), login(I)

- 1 -

-

AZEL (VI) 9/22/73 AZEL (VI)

NAME
azel − obtain satellite predictions

SYNOPSIS
azelsatellite ...

DESCRIPTION
Azelpredicts, in convenient form, the apparent trajectories of Earth satellites whose orbital ele-
ments are given in the argument files. If a given satellite name cannot be read, an attempt is
made to find it in a directory of satellites maintained by the programs’s author.

For each satellite given the program types its full name, the date, and a sequence of lines each
containing a time, an azimuth, an elevation, a distance, and a visual magnitude. Each such line
indicates that: at the indicated time, the satellite may be seen from Murray Hill at the indicated
azimuth and elevation, and that its distance and apparent magnitude are as given. Predictions are
printed only when the sky is dark (sun more than 5 degrees below the horizon) and when the
satellite is not eclipsed by the earth’s shadow. Satellites which have not been seen and verified
will not have had their visual magnitude level set correctly.

All times input and output byazelare GMT (Universal Time).

The satellites for which elements are maintained are:

sla, ... sll Skylab A through Skylab L. Skylabs A and B are the laboratory and its rocket re-
spectively; the remainder are various other objects attendant upon its launch and
subsequent activities. A, B, and probably K have been sighted and verified.

cop Copernicus I. Never verified.

oao Orbiting Astronomical Observatory. Seen and verified.

pag Pageos I. Seen and verified; fairly dim (typically 2nd-3rd magnitude), but elements
are extremely accurate.

exp19 Explorer 19; seen and verified, but quite dim (4th-5th magnitude) and fast-moving.

c103b, c156b, c184b, c206b, c220b, c461b, c500b
Various of the USSR Cosmos series; none seen.

7276a Unnamed (satellite # 72-76A); not seen.

The element files used byazelcontain five lines. The first line gives a year, month number, day,
hour, and minute at which the program begins its consideration of the satellite, followed by a
number of minutes and an interval in minutes. If the year, month, and day are 0, they are taken
to be the current date (taken to change at 6 A.M. local time). The output report starts at the indi-
cated epoch and prints the position of the satellite for the indicated number of minutes at times
separated by the indicated interval. This line is ended by two numbers which specify options to
the program governing the completeness of the report; they are ordinarily both ‘‘1’’. The first
option flag suppresses output when the sky is not dark; the second supresses output when the
satellite is eclipsed by the earth’s shadow. The next line of an element file is the full name of the
satellite. The next three are the elements themselves (including certain derivatives of the ele-
ments). The author should be consulted for more information.

FILES
/usr/jfo/el/* − orbital element files

SEE ALSO
sky (VI)

AUTHOR
J. F. Ossanna

BUGS

- 1 -

-

BJ (VI) 3/15/72 BJ (VI)

NAME
bj − the game of black jack

SYNOPSIS
/usr/games/bj

DESCRIPTION
Bj is a serious attempt at simulating the dealer in the game of black jack (or twenty-one) as
might be found in Reno. The following rules apply:

The bet is $2 every hand.

A player ‘natural’ (black jack) pays $3. A dealer natural loses $2. Both dealer and player
naturals is a ‘push’ (no money exchange).

If the dealer has an ace up, the player is allowed to make an ‘insurance’ bet against the
chance of a dealer natural. If this bet is not taken, play resumes as normal. If the bet is
taken, it is a side bet where the player wins $2 if the dealer has a natural and loses $1 if the
dealer does not.

If the player is dealt two cards of the same value, he is allowed to ‘double’. He is allowed
to play two hands, each with one of these cards. (The bet is doubled also; $2 on each
hand.)

If a dealt hand has a total of ten or eleven, the player may ‘double down’. He may double
the bet ($2 to $4) and receive exactly one more card on that hand.

Under normal play, the player may ‘hit’ (draw a card) as long as his total is not over
twenty-one. If the player ‘busts’ (goes over twenty-one), the dealer wins the bet.

When the player ‘stands’ (decides not to hit), the dealer hits until he attains a total of sev-
enteen or more. If the dealer busts, the player wins the bet.

If both player and dealer stand, the one with the largest total wins. A tie is a push.

The machine deals and keeps score. The following questions will be asked at appropriate times.
Each question is answered byy followed by a new line for ‘yes’, or just new line for ‘no’.

? (means, ‘‘do you want a hit?’’)
Insurance?
Double down?

Every time the deck is shuffled, the dealer so states and the ‘action’ (total bet) and ‘standing’ (to-
tal won or lost) is printed. To exit, hit the interrupt key (DEL) and the action and standing will
be printed.

BUGS
Be careful of the random number generator.

- 1 -

-

CAL (VI) 11/1/73 CAL (VI)

NAME
cal − print calendar

SYNOPSIS
cal [month] year

DESCRIPTION
Cal will print a calendar for the specified year. If a month is also specified, a calendar just for
that month is printed.Yearcan be between 1 and 9999. Themonthis a number between 1 and
12. The calendar produced is that for England and her colonies.

Try September 1752.

BUGS
The year is always considered to start in January even though this is historically naive.

- 1 -

-

CHESS (VI) 11/1/73 CHESS (VI)

NAME
chess − the game of chess

SYNOPSIS
/usr/games/chess

DESCRIPTION
Chessis a computer program that plays class D chess. Moves may be given either in standard
(descriptive) notation or in algebraic notation. The symbol ‘+’ is used to specify check and is
not required; ‘o-o’ and ‘o-o-o’ specify castling. To play black, type ‘first’; to print the board,
type an empty line.

Each move is echoed in the appropriate notation followed by the program’s reply and the elapsed
time in seconds.

FILES
/usr/lib/book opening ‘book’

DIAGNOSTICS
The most cryptic diagnostic is ‘eh?’ which means that the input was syntactically incorrect.

WARNING
Over-use of this program has been known to cause it to go away.

AUTHOR
K. Thompson

BUGS
Pawns may be promoted only to queens.

- 1 -

-

CUBIC (VI) 11/1/73 CUBIC (VI)

NAME
cubic − three dimensional tic-tac-toe

SYNOPSIS
/usr/games/cubic

DESCRIPTION
Cubicplays the game of three dimensional 4×4×4 tic-tac-toe. Moves are given by the three dig-
its (each 1-4) specifying the coordinate of the square to be played.

WARNING
Too much playing of the game will cause it to disappear.

BUGS

- 1 -

-

FACTOR (VI) 1/15/73 FACTOR (VI)

NAME
factor − discover prime factors of a number

SYNOPSIS
factor

DESCRIPTION
Whenfactor is invoked, it types out ‘Enter:’ at you. If you type in a positive number less than
256 (about 7.2×1016) it will repeat the number back at you and then its prime factors each one
printed the proper number of times. Then it says ‘Enter:’ again. To exit, feed it an EOT or a
delete.

Maximum time to factor is proportional to�n and occurs whenn is prime. It takes 1 minute to
factor a prime near 1013.

DIAGNOSTICS
‘Ouch.’ for input out of range or for garbage input.

BUGS

- 1 -

-

HYPHEN (VI) 1/15/73 HYPHEN (VI)

NAME
hyphen − find hyphenated words

SYNOPSIS
hyphen file ...

DESCRIPTION
It finds all of the words in a document which are hyphenated across lines and prints them back at
you in a convenient format.

If no arguments are given, the standard input is used. Thushyphenmay be used as a filter.

BUGS
Yes, it gets confused, but with no ill effects other than spurious extra output.

- 1 -

-

M6 (VI) 11/15/72 M6 (VI)

NAME
m6 − general purpose macro processor

SYNOPSIS
m6 [−d arg1] [arg2 [arg3]]

DESCRIPTION
M6 takes input from file arg2 (or standard input if arg2 is missing) and places output on file arg3
(or standard output). A working file of definitions, ‘‘m.def’’, is initialized from file arg1 if that
is supplied.M6 differs from the standard [1] in these respects:

#trace:, #source: and #end: are not defined.

#meta,arg1,arg2: transfers the role of metacharacter arg1 to character arg2. If two metacharacters
become identical thereby, the outcome of further processing is not guaranteed. For example, to
make []{} play the roles of #:<> type

\#meta,<\#>,[:
[meta,<:>,]:
[meta,[substr,<<>>,1,1;,{]
[meta,[substr,{{>>,2,1;,}]

#del,arg1: deletes the definition of macro arg1.

#save: and #rest: save and restore the definition table together with the current metacharacters on
file m.def.

#def,arg1,arg2,arg3: works as in the standard with the extension that an integer may be supplied
to arg3 to cause the new macro to perform the action of a specified builtin before its replacement
text is evaluated. Thus all builtins except #def: can be retrieved even after deletion. Codes for
arg3 are:

0 − no function
1,2,3,4,5,6 − gt,eq,ge,lt,ne,le
7,8 − seq,sne
9,10,11,12,13 − add,sub,mpy,div,exp
20 − if
21,22 − def,copy
23 − meta
24 − size
25 − substr
26,27 − go,gobk
28 − del
29 − dnl
30,31 − save,rest

FILES
m.def working file of definitions
/usr/lang/mdir/m6a m6 processor proper (/usr/bin/m6 is only an initializer)
/usr/lang/mdir/m6b default initialization for m.def
/bin/cp used for copying initial value of m.def

SEE ALSO
[1] A. D. Hall, The M6 Macroprocessor, Bell Telephone Laboratories, 1969

DIAGNOSTICS
‘‘err’’ − a bug, an unknown builtin or a bad definition table
‘‘oprd’’ −can’t open input or initial definitions
‘‘opwr’’ −can’t open output
‘‘ova’’ − overflow of nested arguments
‘‘ovc’’ − overflow of calls
‘‘ovd’’ − overflow of definitions

- 1 -

-

M6 (VI) 11/15/72 M6 (VI)

‘‘Try again’’ − no process available for copying m.def

AUTHOR
M. D. McIlroy

BUGS
Characters in internal tables are stored one per word. They really should be packed to improve
capacity. For want of space (and because of unpacked formats) no file arguments have been pro-
vided to #save: or #rest:, and no check is made on the actual opening of file m.def. Again to
save space, garbage collection makes calls on #save: and #rest: and so overwrites m.def.

Since the program is written in the defunct language B it is currently unavailable. Expressions
of interest may make a C version appear.

- 2 -

-

MAZE (VI) 11/1/73 MAZE (VI)

NAME
maze − generate a maze problem

SYNOPSIS
maze

DESCRIPTION
Mazewill ask a few questions and then print out a maze.

BUGS
Some mazes (especially small ones) have no solutions.

- 1 -

-

MOO (VI) 11/1/73 MOO (VI)

NAME
moo − guessing game

SYNOPSIS
/usr/games/moo

DESCRIPTION
Moo is a guessing game imported from England. The computer picks a number consisting of
four distinct decimal digits. The player guesses four distinct digits being scored on each guess.
A ‘cow’ is a correct digit in an incorrect position. A ‘bull’ is a correct digit in a correct position.
The game continues until the player guesses the number (a score of four bulls).

BUGS
Watch out for the random number generator.

- 1 -

-

OV (VI) 6/12/72 OV (VI)

NAME
ov − overlay pages

SYNOPSIS
ov [file]

DESCRIPTION
Ov is a postprocessor for producing double column formatted text when using nroff(I).Ov liter-
ally overlays successive pairs of 66-line pages.

If the file argument is missing, the standard input is used. Thusovmay be used as a filter.

SEE ALSO
nroff(I), pr(I)

BUGS

- 1 -

-

PTX (VI) 10/15/73 PTX (VI)

NAME
ptx − permuted index

SYNOPSIS
ptx [−t] input [output]

DESCRIPTION
Ptx generates a permuted index from fileinput on file output. It has three phases: the first does
the permutation, generating one line for each keyword in an input line. The keyword is rotated
to the front. The permuted file is then sorted. Finally the sorted lines are rotated so the keyword
comes at the middle of the page.

Input should be edited to remove useless lines. The following words are suppressed: ‘a’, ‘an’,
‘and’, ‘as’, ‘is’, ‘for’, ‘of’, ‘on’, ‘or’, ‘the’, ‘to’, ‘up’.

The optional argument−t causesptx to prepare its output for the phototypesetter.

The index for this manual was generated usingptx.

FILES
/bin/sort

- 1 -

-

SFS (VI) 6/25/73 SFS (VI)

NAME
sfs − structured file scanner

SYNOPSIS
sfsfilename [−]

DESCRIPTION
Sfsprovides an interactive program for scanning and pactching a structured file. If the second ar-
gument is supplied, the file is block addressed.

Some features ofsfsinclude.
1. It provides interactive and preprogramed operation.
2. It provides expression evaluation (32 bit precision) and branching.
3. It provides the ability to assimulate a large set of heirarchical structure definitions.
4. It provides the ability to locate, to dump, and to patch specific instances of structure in the

file. Furthermore, in the dump and patch operations the external form of the structure is
selected by the user.

5. It provides the ability to escape to the UNIX command level to allow the use of other
UNIX debugging aids.

SEE ALSO
‘‘SFS reference manual’’ (internal memorandum)

BUGS

- 1 -

-

SKY (VI) 9/22/73 SKY (VI)

NAME
sky − obtain ephemerides

SYNOPSIS
sky

DESCRIPTION
Skypredicts the apparent locations of the Sun, the Moon, the planets out to Saturn, stars of mag-
nitude at least 2.5, and certain other celestial objects including comet Kohoutek and M31.Sky
reads the standard input to obtain a GMT time typed on one line with blanks separating year,
month number, day, hour, and minute; if the year is missing the current year is used. If a blank
line is typed the current time is used. The program prints the azimuth, elevation, and magnitude
of objects which are above the horizon at the ephemeris location of Murray Hill at the indicated
time.

Placing a ‘‘1’’ input after the minute entry causes the program to print out the Greenwich Side-
real Time at the indicated moment and to print for each body its right ascension and declination
as well as its azimuth and elevation. Also, instead of the magnitude, the geocentric distance of
the body, in units the program considers convenient, is printed. (For planets the unit is essen-
tially A. U.)

The magnitudes of Solar System bodies are not calculated and are given as 0. The effects of at-
mospheric extinction are not included; the mean magnitudes of variable stars are marked with
‘‘*’’.

For all bodies, the program takes into account precession and nutation of the equinox, annual
(but not diurnal) aberration, diurnal parallax, and the proper motion of stars (but not annual par-
allax). In no case is refraction included.

The program takes into account perturbations of the Earth due to the Moon, Venus, Mars, and
Jupiter. The expected accuracies are: for the Sun and other stellar bodies a few tenths of seconds
of arc; for the Moon (on which particular care is lavished) likewise a few tenths of seconds. For
the Sun, Moon and stars the accuracy is sufficient to predict the circumstances of eclipses and
occultations to within a few seconds of time. The planets may be off by several minutes of arc.

Information about the program may be obtained from its author.

FILES
/usr/lib/startab, /usr/lib/moontab

SEE ALSO
azel (VI)
American Ephemeris and Nautical Almanac,for the appropriate years; also, theExplanatory
Supplement to the American Ephemeris and Nautical Almanac.

AUTHOR
R. Morris

- 1 -

-

SPLINE (VI) 10/20/73 SPLINE (VI)

NAME
spline − interpolate smooth curve

SYNOPSIS
spline [option] ...

DESCRIPTION
Splinetakes pairs of numbers from the standard input as abcissas and ordinates of a function. It
produces a similar set, which is approximately equally spaced and includes the input set, on the
standard output. The cubic spline output (R. W. Hamming,Numerical Methods for Engineers
and Scientists,2nd ed., 349ff) has two continuous derivatives, and sufficiently many points to
look smooth when plotted, for example byplot (I).

The following options are recognized, each as a separate argument.

a Supply abscissas automatically (they are missing from the input); spacing is given by the
next argument, or is assumed to be 1 if next argument is not a number.

n Output approximatelyn points, wheren is given by the next argument. (Defaultn = 100.)

p Make output periodic, i.e. match derivatives at ends. First and last input values should
normally agree.

x Next 1 (or 2) arguments are lower (and upper)x limits.

SEE ALSO
plot(I)

AUTHOR
M. D. McIlroy

BUGS
A limit of 1000 input points is enforced silently.

- 1 -

-

TMG (VI) 10/21/72 TMG (VI)

NAME
tmg − compiler-compiler

SYNOPSIS
tmg name

DESCRIPTION
Tmgproduces a translator for the language whose parsing and translation rules are described in
file name.t. The new translator appears in a.out and may be used thus:

a.out input [output]

Except in rare cases input must be a randomly addressable file. If no output file is specified, the
standard output file is assumed.

FILES
/sys/tmg/tmgl.o the compiler-compiler
/sys/tmg[abc] libraries
alloc.d table storage

SEE ALSO
A Manual for the Tmg Compiler-writing Language, internal memorandum.

DIAGNOSTICS
Syntactic errors result in "???" followed by the offending line.
Situations such as space overflow with which the Tmg processor or a Tmg-produced processor
can not cope result in a descriptive comment and a dump.

AUTHOR
M. D. McIlroy

BUGS
9.2 footnote 1 is not enforced, causing trouble.
Restrictions (7.) against mixing bundling primitives should be lifted.
Certain hidden reserved words exist: gpar, classtab, trans.
Octal digits include 8=10 and 9=11.

- 1 -

-

TTT (VI) 11/1/73 TTT (VI)

NAME
ttt − tic-tac-toe

SYNOPSIS
/usr/games/ttt

DESCRIPTION
Ttt is the X and O game popular in the first grade. This is a learning program that never makes
the same mistake twice.

Although it learns, it learns slowly. It must lose nearly 80 games to completely know the game.

FILES
ttt.k learning file

BUGS

- 1 -

-

WUMP (VI) 11/25/73 WUMP (VI)

NAME
wump − hunt the wumpus

SYNOPSIS
/usr/games/wump

DESCRIPTION
Wumpplays the game of ‘‘Hunt the Wumpus.’’ A Wumpus is a creature that lives in a cave with
several rooms connected by tunnels. You wander among the rooms, trying to shoot the Wumpus
with an arrow, meanwhile avoiding being eaten by the Wumpus and falling into Bottomless Pits.
There are also Super Bats which are likely to pick you up and drop you in some random room.

The program asks various questions which you answer one per line; it will give a more detailed
description if you want.

This program is based on one described inPeople’s Computer Company, 2,2 (November 1973).

BUGS
It will never replace Space War.

- 1 -

-

YACC (VI) 6/6/73 YACC (VI)

NAME
yacc − yet another compiler-compiler

SYNOPSIS
yacc[grammar]

DESCRIPTION
Yaccconverts a context-free grammar into a set of tables for a simple automaton which executes
an LR(1) parsing algorithm.

For complete information, see the author.

SEE ALSO
"LR Parsing", by A. V. Aho and S. C. Johnson.

AUTHOR
S. C. Johnson

BUGS

- 1 -

-

ASCII (VII) 6/12/72 ASCII (VII)

NAME
ascii − map of ASCII character set

SYNOPSIS
cat /usr/pub/ascii

DESCRIPTION
Ascii is a map of the ASCII character set, to be printed as needed. It contains:

 000 nu l 001 soh 002 s t x 003 e t x 004 eo t 005 enq 006 ack 007 be l
 010 bs 011 h t 012 n l 013 v t 014 np 015 c r 016 so 017 s i
 020 d l e 021 dc1 022 dc2 023 dc3 024 dc4 025 nak 026 syn 027 e t b
 030 can 031 em 032 sub 033 esc 034 f s 035 gs 036 r s 037 us
 040 sp 041 ! 042 " 043 # 044 $ 045 % 046 & 047 ´
 050 (051) 052 * 053 + 054 , 055 − 056 . 057 /
 060 0 061 1 062 2 063 3 064 4 065 5 066 6 067 7
 070 8 071 9 072 : 073 ; 074 < 075 = 076 > 077 ?
 100 @ 101 A 102 B 103 C 104 D 105 E 106 F 107 G
 110 H 111 I 112 J 113 K 114 L 115 M 116 N 117 O
 120 P 121 Q 122 R 123 S 124 T 125 U 126 V 127 W
 130 X 131 Y 132 Z 133 [134 \ 135] 136 ˆ 137 _
 140 ` 141 a 142 b 143 c 144 d 145 e 146 f 147 g
 150 h 151 i 152 j 153 k 154 l 155 m 156 n 157 o
 160 p 161 q 162 r 163 s 164 t 165 u 166 v 167 w
 170 x 171 y 172 z 173 { 174 175 } 176 ˜ 177 de l

FILES
found in /usr/pub

- 1 -

-

DPD (VII) 3/15/72 DPD (VII)

NAME
dpd − spawn data phone daemon

SYNOPSIS
/etc/dpd

DESCRIPTION
Dpd is the 201 data phone daemon. It is designed to submit jobs to the Honeywell 6070 com-
puter via the GRTS interface.

Dpd uses the directory/usr/dpd. The file lock in that directory is used to prevent two daemons
from becoming active. After the daemon has successfully set the lock, it forks and the main path
exits, thus spawning the daemon. The directory is scanned for files beginning withdf. Each
such file is submitted as a job. Each line of a job file must begin with a key character to specify
what to do with the remainder of the line.

S directsdpd to generate a unique snumb card. This card is generated by incrementing the
first word of the file /usr/dpd/snumband converting that to three-digit octal concatenated
with the station ID.

L specifies that the remainder of the line is to be sent as a literal.

B specifies that the rest of the line is a file name. That file is to be sent as binary cards.

F is the same asB except a form feed is prepended to the file.

U specifies that the rest of the line is a file name. After the job has been transmitted, the file
is unlinked.

Any error encountered will cause the daemon to drop the call, wait up to 20 minutes and start
over. This means that an improperly constructeddf file may cause the same job to be submitted
every 20 minutes.

While waiting, the daemon checks to see that thelock file still exists. If it is gone, the daemon
will exit.

FILES
/dev/dn0, /dev/dp0, /usr/dpd/*

SEE ALSO
opr(I)

- 1 -

-

GETTY (VII) 9/19/73 GETTY (VII)

NAME
getty − set typewriter mode

SYNOPSIS
/etc/getty

DESCRIPTION
Gettyis invoked byinit (VII) immediately after a typewriter is opened following a dial-up. The
user’s login name is read and the login(I) command is called with this name as an argument.
While reading this namegettyattempts to adapt the system to the speed and type of terminal be-
ing used.

Getty initially sets the speed of the interface to 150 baud, specifies that raw mode is to be used
(break on every character), that echo is to be suppressed, and either parity allowed. It types the
‘‘login:’’ message (which includes the characters which put the 37 Teletype terminal into full-
duplex and unlock its keyboard). Then the user’s name is read, a character at a time. If a null
character is received, it is assumed to be the result of the user pushing the ‘‘break’’ (‘‘interrupt’’)
key. The speed is then changed to 300 baud and the ‘‘login:’’ is typed again, this time with the
appropriate sequence which puts a GE TermiNet 300 into full-duplex. This sequence is accept-
able to other 300 baud terminals also. If a subsequent null character is received, the speed is
changed back to 150 baud.

The user’s name is terminated by a new-line or carriage-return character. The latter results in the
system being set to to treat carriage returns appropriately (see stty(II)).

The user’s name is scanned to see if it contains any lower-case alphabetic characters; if not, and
if the name is nonempty, the system is told to map any future upper-case characters into the cor-
responding lower-case characters. Thus UNIX is usable from upper-case-only terminals.

Finally, login is called with the user’s name as argument.

SEE ALSO
init(VII), login(I), stty(II)

- 1 -

-

GLOB (VII) 9/19/73 GLOB (VII)

NAME
glob − generate command arguments

SYNOPSIS
/etc/globcommand [arguments]

DESCRIPTION
Glob is used to expand arguments to the shell containing ‘‘*’’, ‘‘[’’, or ‘‘?’’. It is passed the ar-
gument list containing the metacharacters;glob expands the list and calls the indicated com-
mand. The actions ofglob are detailed in the Shell writeup.

SEE
sh(I)

BUGS
Glob gives the ‘‘No match’’ diagnostic only if no arguments at all result. This is never the case
if there is any argument without a metacharacter.

- 1 -

-

GREEK (VII) 10/31/72 GREEK (VII)

NAME
greek − graphics for extended ascii type-box

SYNOPSIS
cat /usr/pub/greek

DESCRIPTION
Greekgives the mapping from ascii to the ‘‘shift out’’ graphics in effect between SO and SI on
model 37 Teletypes with a 128-character type-box. It contains:

alpha α A beta β B gamma γ \
GAMMA Γ G delta ∆ D DELTA ∆ W
epsilon ε S zeta ζ Q eta η N
theta θ T THETA Θ O lambda λ L
LAMBDA Λ E mu µ M nu ν @
xi ξ X pi π J PI Π P
rho ρ K sigma σ Y SIGMA Σ R
tau τ I phi φ U PHI Φ F
psi ψ V PSI Ψ H omega ω C
OMEGA Ω Z nabla � [not ¬ _
partial �] integral + ˆ

SEE ALSO
ascii (VII)

- 1 -

-

INIT (VII) 6/15/72 INIT (VII)

NAME
init − process control initialization

SYNOPSIS
/etc/init

DESCRIPTION
Init is invoked inside UNIX as the last step in the boot procedure. Generally its role is to create
a process for each typewriter on which a user may log in.

First, init checks to see if the console switches contain 173030. (This number is likely to vary
between systems.) If so, the console typewritertty is opened for reading and writing and the
shell is invoked immediately. This feature is used to bring up a single-user system. When the
system is brought up in this way, thegettyand login routines mentioned below and described
elsewhere are not needed.

Otherwise,init invokes a Shell, with input taken from the file/etc/rc. This command file per-
forms housekeeping like removing temporary files, mounting file systems, and starting the data-
phone daemon.

Then init forks several times to create a process for each typewriter mentioned in an internal
table. Each of these processes opens the appropriate typewriter for reading and writing. These
channels thus receive file descriptors 0 and 1, the standard input and output. Opening the type-
writer will usually involve a delay, since theopenis not completed until someone is dialled up
and carrier established on the channel. Then the process executes the program/etc/getty(q.v.).
Gettywill read the user’s name and invokelogin (q.v.) to log in the user and execute the shell.

Ultimately the shell will terminate because of an end-of-file either typed explicitly or generated
as a result of hanging up. The main path ofinit, which has been waiting for such an event,
wakes up and removes the appropriate entry from the fileutmp, which records current users, and
makes an entry inwtmp, which maintains a history of logins and logouts. Then the appropriate
typewriter is reopened andgettyis reinvoked.

FILES
/dev/tty, /dev/tty?, /tmp/utmp, /tmp/wtmp,

SEE ALSO
login(I), getty(VII), sh(I)

- 1 -

-

MSH (VII) 6/15/72 MSH (VII)

NAME
msh − mini-shell

SYNOPSIS
/etc/msh

DESCRIPTION
Msh is a heavily simplified version of the Shell. It reads one line from the standard input file, in-
terprets it as a command, and calls the command.

The mini-shell supports few of the advanced features of the Shell; none of the following charac-
ters is special:

> < $ \ ; & ˆ

However, ‘‘*’’, ‘‘[’’, and ‘‘?’’ are recognized andglob is called. The main use ofmshis to pro-
vide a command-executing facility for various interactive sub-systems.

SEE ALSO
sh(I), glob(VII)

- 1 -

-

TABS (VII) 6/15/72 TABS (VII)

NAME
tabs − set tab stops

SYNOPSIS
cat /usr/pub/tabs

DESCRIPTION
When printed on a suitable terminal, this file will set tab stops every 8 columns. Suitable termi-
nals include the Teletype model 37 and the GE TermiNet 300.

These tab stop settings are desirable because UNIX assumes them in calculating delays.

- 1 -

-

TMHEADER (VII) 10/20/73 TMHEADER (VII)

NAME
tmheader − TM cover sheet

SYNOPSIS
ed /usr/pub/tmheader

DESCRIPTION
/usr/pub/tmheadercontains a prototype for making atroff(I) formatted cover sheet for a techni-
cal memorandum. Parameters to be filled in by the user are marked by self-explanatory names
beginning with ‘‘---’’.

BUGS
God help you on two-page abstracts. Try to write less.

- 1 -

-

VS (VII) 9/4/73 VS (VII)

NAME
vs − voice synthesizer code

DESCRIPTION
The octal codes below are understood by the Votrax® voice synthesizer. Inflection and
phonemes are or-ed together. The mnemonics in the first column are used byspeak(I); the up-
per case mnemonics are used by the manufacturer.

0 300 4−strong inflection u0 014 UH−but
1 200 3 u1 015 UH1−uncle
2 100 2 u2 016 UH2−stirrup
3 000 1−weak inflection u3 034 UH3−app_le ab_le

yu 027 U−use
a0 033 AH−contact iu 010 U1−unite(,y1,iu,...)
a1 052 AH1−connect ju 011 IU−new
aw 002 AW−law(,l,u2,aw) b 061 B
au 054 AW1−fault d 041 D
ae 021 AE−cat f 042 F
ea 020 AE1−antenna g 043 G
ai 037 A−name(,n,ai,y0,m) h 044 H
aj 071 A1−namely k 046 K
e0 004 EH−met enter l 047 L
e1 076 EH1−seven m 063 M
e2 077 EH2−seven n 062 N
er 005 ER−weather p 032 P
eu 073 OOH−Goethe cheveux q 075 Q
eh 067 EHH−lecheveux r 024 R
y0 023 EE−three s 040 S
y1 026 Y−sixty t 025 T
y2 035 Y1−yes v 060 V
ay 036 AY−may w 022 W
i0 030 I−six z 055 Z
i1 064 I1−ineptinside sh 056 SH−show ship
i2 065 I2−static zh 070 ZH−pleasure
iy 066 IY−cry(,k,r,a0,iy) j 045 J−edge
ie 003 IE−zero ch 057 CH−batch
ih 072 IH−station th 006 TH−thin
o0 031 O−only no dh 007 THV−then
o1 012 O1−hello ng 053 NG−long ink
o2 013 O2−notice −0 017 PA2−long pause
ou 051 OO1−good should −1 001 PA1
oo 050 OO−look −2 074 PA0−short pause

SEE ALSO
speak(I), vs(IV)

- 1 -

-

20BOOT (VIII) 10/31/73 20BOOT (VIII)

NAME
20boot − install new 11/20 system

SYNOPSIS
20boot

DESCRIPTION
This shell command file copies the current version of the 11/20 program used to run the VT01
display onto the /dev/vt0 file. The 11/20 should have been started at its ROM location 773000.

FILES
/dev/vt0, /usr/mdec/20.o (11/20 program)

SEE ALSO
vt (IV)

- 1 -

-

BOOT PROCEDURES (VIII) 11/1/73 BOOT PROCEDURES (VIII)

NAME
boot procedures − UNIX startup

DESCRIPTION
The advent of the new system has changed the boot procedures.These procedures apply only to
C-language systems.

How to start UNIX. UNIX is started by placing it in core starting at location zero and transfer-
ring to zero. There are various ways to do this. If UNIX is still intact after it has been running,
the most obvious method is simply to transfer to zero.

The tp command places a bootstrap program on the otherwise unused block zero of the tape.
The DECtape version of this program is calledtboot, the magtape versionmboot. If tboot or
mbootis read into location zero and executed there, it will type ‘=’ on the console, read in atp
entry name, load that entry into core, and transfer to zero. Thus the next easiest way to run
UNIX is to maintain the UNIX code on a tape usingtp. Then when a boot is required, execute
(somehow) a program which reads in and jumps to the first block of the tape. In response to the
‘=’ prompt, type the entry name of the system on the tape (we use plain ‘unix’). It is strongly
recommended that a current version of the system be maintained in this way, even if the first or
third methods of booting the system are usually used.

The standard DEC ROM which loads DECtape is sufficient to read intboot, but the magtape
ROM loads block one, not zero. If no suitable ROM is available, magtape and DECtape pro-
grams are presented below which may be manually placed in core and executed.

A third method of rebooting the system involves the otherwise unused block zero of each UNIX
file system. The single-block programubootwill read a UNIX pathname from the console, find
the corresponding file on a device, load that file into core location zero, and transfer to it. The
current version of this boot program reads a single character (eitherp or k for RP or RK, both
drive 0) to specify which device is to be searched.Ubootoperates under very severe space con-
straints. It supplies no prompts, except that it echos a carriage return and line feed after thep or
k. No diagnostic is provided if the indicated file cannot be found, nor is there any means of cor-
recting typographical errors in the file name except to start the program over.Ubootcan reside
on any of the standard file systems or may be loaded from atp tape as described above.

The standard DEC disk ROMs will load and executeubootfrom block zero.

The switches. The console switches play an important role in the use and especially the booting
of UNIX. During operation, the console switches are examined 60 times per second, and the
contents of the address specified by the switches are displayed in the display register. (This is
not true on the 11/40 since there is no display register on that machine.) If the switch address is
even, the address is interpreted in kernel (system) space; if odd, the rounded-down address is in-
terpreted in the current user space.

If any diagnostics are produced by the system, they are printed on the console only if the
switches are non-zero. Thus it is wise to have a non-zero value in the switches at all times.

During the startup of the system, theinit program (VIII) reads the switches and will come up
single-user if the switches are set to 173030.

It is unwise to have a non-existent address in the switches. This causes a bus error in the system
(displayed as 177777) at the rate of 60 times per second. If there is a transfer of more than 16ms
duration on a device with a data rate faster than the bus error timeout (approx 10µs) then a per-
manent disk non-existent-memory error will occur.

ROM programs. Here are some programs which are suitable for installing in read-only memo-
ries, or for manual keying into core if no ROM is present. Each program is position-independent
but should be placed well above location 0 so it will not be overwritten. Each reads a block from
the beginning of a device into core location zero. The octal words constituting the program are
listed on the left.

- 1 -

-

BOOT PROCEDURES (VIII) 11/1/73 BOOT PROCEDURES (VIII)

DECtape (drive 0) from endzone:
012700 mov $tcba,r0
177346
010040 mov r0,-(r0) / use tc addr for wc
012710 mov $3,(r0) / read bn forward
000003
105710 1: tstb (r0) / wait for ready
002376 bge 1b
112710 movb $5,(r0) / read (forward)
000005
000777 br . / loop; now halt and start at 0

DECtape (drive 0) with search:
012700 1: mov $tcba,r0
177346
010040 mov r0,-(r0) / use tc addr for wc
012740 mov $4003,-(r0) / read bn reverse
004003
005710 2: tst (r0)
002376 bge 2b / wait for error
005760 tst -2(r0) / loop if not end zone
177776
002365 bge 1b
012710 mov $3,(r0) / read bn forward
000003
105710 2: tstb (r0) / wait for ready
002376 bge 2b
112710 movb $5,(r0) / read (forward)
000005
105710 2: tstb (r0) / wait for ready
002376 bge 2b
005007 clr pc / transfer to zero

Caution: both of these DECtape programs will (literally) blow a fuse if 2 drives are dialed to
zero.

Magtape from load point:
012700 mov $mtcma,r0
172526
010040 mov r0,-(r0) / usr mt addr for wc
012740 mov $60003,-(r0) / read 9-track
060003
000777 br . / loop; now halt and start at 0

RK (drive 0):
012700 mov $rkmr,r0
177414
005040 clr -(r0)
005040 clr -(r0)
010040 mov r0,-(r0)
012740 mov $5,-(r0)
000005
105710 1: tstb (r0)
002376 bge 1b
005007 clr pc

RP (drive 0)
012700 mov $rpmr,r0
176726
005040 clr -(r0)

- 2 -

-

BOOT PROCEDURES (VIII) 11/1/73 BOOT PROCEDURES (VIII)

005040 clr -(r0)
005040 clr -(r0)
010040 mov r0,-(r0)
012740 mov $5,-(r0)
000005
105710 1: tstb (r0)
002376 bge 1b
005007 clr pc

FILES
/usr/sys/unix − UNIX code
/usr/mdec/mboot − tp magtape bootstrap
/usr/mdec/tboot − tp DECtape bootstrap
/usr/mdec/uboot − file system bootstrap

SEE ALSO
tp(I), init(VII)

- 3 -

-

CHECK (VIII) 8/31/73 CHECK (VIII)

NAME
check − file system consistency check

SYNOPSIS
check[−lsib [numbers]] [filesystem]

DESCRIPTION
Checkexamines a file system, builds a bit map of used blocks, and compares this bit map against
the free list maintained on the file system. It also reads directories and compares the link-count
in each i-node with the number of directory entries by which it is referenced. If the file system is
not specified, a check of a default file system is performed. The normal output ofcheckincludes
a report of

The number of blocks missing; i.e. not in any file nor in the free list,
The number of special files,
The total number of files,
The number of large files,
The number of directories,
The number of indirect blocks,
The number of blocks used in files,
The highest-numbered block appearing in a file,
The number of free blocks.

The−l flag causescheckto produce as part of its output report a list of the all the path names of
files on the file system. The list is in i-number order; the first name for each file gives the i-
number while subsequent names (i.e. links) have the i-number suppressed. The entries ‘‘.’’ and
‘‘ ..’’ for directories are also suppressed.

The−s flag causescheckto ignore the actual free list and reconstruct a new one by rewriting the
super-block of the file system. The file system should be dismounted while this is done; if this is
not possible (for example if the root file system has to be salvaged) care should be taken that the
system is quiescent and that it is rebooted immediately afterwards so that the old, bad in-core
copy of the super-block will not continue to be used. Notice also that the words in the super-
block which indicate the size of the free list and of the i-list are believed. If the super-block has
been curdled these words will have to be patched. The−s flag causes the normal output reports
to be suppressed.

The occurrence ofi n times in a flag argument−ii...i causescheckto store away the nextn argu-
ments which are taken to be i-numbers. When any of these i-numbers is encountered in a direc-
tory a diagnostic is produced, as described below, which indicates among other things the entry
name.

Likewise, n appearances ofb in a flag like −bb...b cause the nextn arguments to be taken as
block numbers which are remembered; whenever any of the named blocks turns up in a file, a di-
agnostic is produced.

FILES
Currently, /dev/rp0 is the default file system.

SEE ALSO
fs (V)

DIAGNOSTICS
There are some self-evident diagnostics like ‘‘can’t open ...’’, ‘‘can’t write’’ If a read error is
encountered, the block number of the bad block is printed andcheckexits. ‘‘Bad freeblock’’
means that a block number outside the available space was encountered in the free list. ‘‘n dups
in free’’ means thatn blocks were found in the free list which duplicate blocks either in some file
or in the earlier part of the free list.

An important class of diagnostics is produced by a routine which is called for each block which
is encountered in an i-node corresponding to an ordinary file or directory. These have the form

- 1 -

-

CHECK (VIII) 8/31/73 CHECK (VIII)

b# complaint; i= i# (class)

Hereb# is the block number being considered;complaintis the diagnostic itself. It may be

blk if the block number was mentioned as an argument after−b;
bad if the block number has a value not inside the allocatable space on the device, as indi-

cated by the devices’s super-block;
dup if the block number has already been seen in a file;
din if the block is a member of a directory, and if an entry is found therein whose i-number

is outside the range of the i-list on the device, as indicated by the i-list size specified
by the super-block. Unfortunately this diagnostic does not indicate the offending entry
name, but since the i-number of the directory itself is given (see below) the problem
can be tracked down.

The i# in the form above is the i-number in which the named block was found. Theclassis an
indicator of what type of block was involved in the difficulty:

sdir indicates that the block is a data block in a small file;
ldir indicates that the block is a data block in a large file (the indirect block number is not

available);
idir indicates that the block is an indirect block (pointing to data blocks) in a large file;
free indicates that the block was mentioned after−b and is free;
urk indicates a malfunction incheck.

When an i-number specified after−i is encountered while reading a directory, a report in the
form

ino; i= d# (class) name

wherei# is the requested i-number.d# is the i-number of the directory,classis the class of the
directory block as discussed above (virtually always ‘‘sdir’’) andnameis the entry name. This
diagnostic gives enough information to find a full path name for an i-number without using the-l
option: use−b n to find an entry name and the i-number of the directory containing the reference
to n, then recursively use−b on the i-number of the directory to find its name.

Another important class of file system diseases indicated bycheckis files for which the number
of directory entries does not agree with the link-count field of the i-node. The diagnostic is hard
to interpret. It has the form

i# delta

Here i# is the i-number affected.Delta is an octal number accumulated in a byte, and thus can
have the value 0 through 377(8). The easiest way (short of rewriting the routine) of explaining
the significance ofdelta is to describe how it is computed.

If the associated i-node is allocated (that is, has theallocatedbit on) add 100 todelta. If its
link-count is non-zero, add another 100 plus the link-count. Each time a directory entry specify-
ing the associated i-number is encountered, subtract 1 fromdelta. At the end, the i-number and
deltaare printed ifdelta is neither 0 nor 200. The first case indicates that the i-node was unallo-
cated and no entries for it appear; the second that it was allocated and that the link-count and the
number of directory entries agree.

Therefore (to explain the symptoms of the most common difficulties)delta = 377 (−1 in 8-bit,
2’s complement octal) means that there is a directory entry for an unallocated i-node. This is
somewhat serious and the entry should be be found and removed forthwith.Delta = 201 usually
means that a normal, allocated i-node has no directory entry. This difficulty is much less seri-
ous. Whatever blocks there are in the file are unavailable, but no further damage will occur if
nothing is done. Aclri followed by acheck −s will restore the lost space at leisure.

In general, values ofdelta equal to or somewhat above 0, 100, or 200 are relatively innocuous;
just below these numbers there is danger of spreading infection.

BUGS
Unfortunately,check−l on file systems with more than 3000 or so files does not work because it
runs out of core.

- 2 -

-

CHECK (VIII) 8/31/73 CHECK (VIII)

Sincecheckis inherently two-pass in nature, extraneous diagnostics may be produced if applied
to active file systems.

It believes even preposterous super-blocks and consequently can get core images.

- 3 -

-

CLRI (VIII) 10/31/73 CLRI (VIII)

NAME
clri − clear i-node

SYNOPSIS
clri i-number [filesystem]

DESCRIPTION
Clri writes zeros on the 32 bytes occupied by the i-node numberedi-number. If the file system
argument is given, the i-node resides on the given device, otherwise on a default file system.
The file system argument must be a special file name referring to a device containing a file sys-
tem. Afterclri, any blocks in the affected file will show up as ‘‘missing’’ in acheckof of the
file system.

Read and write permission is required on the specified file system device. The i-node becomes
allocatable.

The primary purpose of this routine is to remove a file which for some reason appears in no di-
rectory. If it is used to zap an i-node which does appear in a directory, care should be taken to
track down the entry and remove it. Otherwise, when the i-node is reallocated to some new file,
the old entry will still point to that file. At that point removing the old entry will destroy the new
file. The new entry will again point to an unallocated i-node, so the whole cycle is likely to be
repeated again and again.

BUGS
Whatever the default file system is, it is likely to be wrong. Specify the file system explicitly.

If the file is open,clri is likely to be ineffective.

- 1 -

-

DF (VIII) 1/20/73 DF (VIII)

NAME
df − disk free

SYNOPSIS
df [filesystem]

DESCRIPTION
Df prints out the number of free blocks available on a file system. If the file system is unspeci-
fied, the free space on all of the normally mounted file systems is printed.

FILES
/dev/rf?, /dev/rk?, /dev/rp?

SEE ALSO
check(VIII)

BUGS

- 1 -

-

DUMP (VIII) 11/24/73 DUMP (VIII)

NAME
dump − incremental file system dump

SYNOPSIS
dump [key [arguments] filesystem]

DESCRIPTION
Dumpwill make an incremental file system dump on magtape of all files changed after a certain
date. The argumentkey,specifies the date and other options about the dump.Key consists of
characters from the setiu0hds.

i the dump date is taken from the file/etc/ddate.

u the date just prior to this dump is written on/etc/ddateupon successful completion of this
dump.

0 the dump date is taken as the epoch (beginning of time). Thus this option causes an entire
file system dump to be taken.

h the dump date is some number of hours before the current date. The number of hours is
taken from the next argument inarguments.

d the dump date is some number of days before the current date. The number of days is tak-
en from the next argument inarguments.

s the size of the dump tape is specified in feet. The number of feet is taken from the next ar-
gument inarguments. It is assumed that there are 9 standard UNIX records per foot.
When the specified size is reached, the dump will wait for reels to be changed. The de-
fault size is 1700 feet.

If no arguments are given, thekey is assumed to bei and the file system is assumed to be
/dev/rp1.

Full dumps should be taken on quiet file systems as follows:

dump 0u /dev/rp1
check -l /dev/rp1

Thecheckwill come in handy in case it is necessary to resore indiviidual files from this dump.
Incremental dumps should then be taken when desired by:

dump

When the incremental dumps get cumbersome, a new complete dump should be taken. In this
way, a restore requires loading of the complete dump tape and only the latest incremental tape.

FILES
/dev/mt0magtape
/dev/rp1default file system
/etc/ddate

SEE ALSO
restor, check(VIII), dump(V)

BUGS

- 1 -

-

INO (VIII) 11/1/73 INO (VIII)

NAME
ino − get the i-number of a file

SYNOPSIS
ino file ...

DESCRIPTION
The i-number of each file argument is printed. An i-number of zero is printed if a bad argument
is given.

BUGS

- 1 -

-

MKFS (VIII) 11/1/73 MKFS (VIII)

NAME
mkfs − construct a file system

SYNOPSIS
/etc/mkfsspecial proto

DESCRIPTION
Mkfs constructs a file system by writing on the special filespecialaccording to the directions
found in the prototype fileproto. The prototype file contains tokens separated by spaces or new
lines. The first token is the name of a file to be copied onto block zero as the bootstrap program
(see boot procedures(VIII)). The second token is a number specifying the size of the created file
system. Typically it will be the number of blocks on the device, perhaps diminished by space for
swapping. The next token is the i-list size in blocks (remember there are 16 i-nodes per block).
The next set of tokens comprise the specification for the root file. File specifications consist of
tokens giving the mode, the user-id, the group id, and the initial contents of the file. The syntax
of the contents field depends on the mode.

The mode token for a file is a 6 character string. The first character specifies the type of the file.
(The characters−bcd specify regular, block special, character special and directory files respec-
tively.) The second character of the type is eitheru or − to specify set-user-id mode or not. The
third is g or − for the set-group-id mode. The rest of the mode is a three digit octal number giv-
ing the owner, group, and foreigner read, write, execute permissions (seechmod(I)).

Two decimal number tokens come after the mode; they specify the user and group ID’s of the
owner of the file.

If the file is a regular file, the next token is a pathname whence the contents and size are copied.

If the file is a block or character special file, two decimal number tokens follow which give the
major and minor device numbers.

If the file is a directory,mkfsmakes the entries. and.. and then reads a list of names and (recur-
sively) file specifications for the entries in the directory. The scan is terminated with the token
$.

If the prototype file cannot be opened and its name consists of a string of digits,mkfsbuilds a
file system with a single empty directory on it. The size of the file system is the value ofproto
interpreted as a decimal number. The i-list size is the file system size divided by 50. (This cor-
responds to an average size of three blocks per file.) The boot program is left uninitialized.

A sample prototype specification follows:

/usr/mdec/uboot
4872 55
d−−777 3 1
usr d−−777 3 1

sh −−−755 3 1 /bin/sh
ken d−−755 6 1

$
b0 b−−644 3 1 0 0
c0 c−−644 3 1 0 0
$

$

SEE ALSO
file system(V), directory(V), boot procedures(VIII)

DIAGNOSTICS
There are various diagnostics for syntax errors, inconsistent values, and sizes too small.

BUGS
It is not possible to initialize a file larger than 64K bytes.
The size of the file system is restricted to 64K blocks.

- 1 -

-

MKFS (VIII) 11/1/73 MKFS (VIII)

There should be some way to specify links.

- 2 -

-

MKNOD (VIII) 10/31/73 MKNOD (VIII)

NAME
mknod − build special file

SYNOPSIS
/etc/mknodname [c] [b] major minor

DESCRIPTION
Mknodmakes a directory entry and corresponding i-node for a special file. The first argument is
the nameof the entry. The second isb if the special file is block-type (disks, tape) orc if it is
character-type (other devices). The last two arguments are numbers specifying themajor device
type and theminor device (e.g. unit, drive, or line number).

The assignment of major device numbers is specific to each system. For reference, here are the
numbers for the MH 2C-644 machine. Do not believe them too much.

Block devices:
0 RF fixed-head disk
1 RK moving-head disk
2 TC DECtape
3 TM magtape
4 RP moving-head disk
5 Vermont Research moving-head disk

Character devices:
0 KL on-line console
1 DC communications lines
2 PC paper tape
3 DP synchronous interface
4 DN ACU interface
5 core memory
6 VT scope (via 11/20)
7 DA voice response unit
8 CT phototypesetter
9 VS voice synthesizer
10 TIU Spider interface

SEE ALSO
mknod (II)

BUGS

- 1 -

-

MOUNT (VIII) 10/31/73 MOUNT (VIII)

NAME
mount − mount file system

SYNOPSIS
/etc/mountspecial file

DESCRIPTION
Mountannounces to the system that a removable file system is present on the device correspond-
ing to special filespecial(which must refer to a disk or possibly DECtape). Thefile must exist
already; it becomes the name of the root of the newly mounted file system.

SEE ALSO
umount (VIII)

BUGS
Mounting file systems full of garbage can crash the system.

- 1 -

-

RELOC (VIII) 2/7/73 RELOC (VIII)

NAME
reloc − relocate object files

SYNOPSIS
reloc file octal [−]

DESCRIPTION
Relocmodifies the named object program file so that it will operate correctly at a different core
origin than the one for which it was assembled or loaded.

The new core origin is the old origin increased by the givenoctal number (or decreased if the
number has a ‘−’ sign).

If the object file was generated byld, the−r and−d options must have been given to preserve the
relocation information and define any common symbols in the file.

If the optional last argument is given, then anysetdinstruction at the start of the file will be re-
placed by a no-op.

The purpose of this command is to simplify the preparation of object programs for systems
which have no relocation hardware. It is hard to imagine a situation in which it would be useful
to attempt directly to execute a program treated byreloc.

SEE ALSO
as(I), ld(I), a.out(V)

BUGS

- 1 -

-

RESTOR (VIII) 11/24/73 RESTOR (VIII)

NAME
restor − incremental file system restore

SYNOPSIS
restor key [arguments]

DESCRIPTION
Restoris used to read magtapes dumped with thedumpcommand. Thekeyargument specifies
what is to be done.Key is a character from the settrxw.

t The date that the tape was made and the date that was specified in thedumpcommand are
printed. A list of all of the i-numbers on the tape are also given.

r The tape is read and loaded into the file system specified inarguments.This should not be
done lightly (see below).

x Each file on the tape is individually extracted into a file whose name is the file’s i-number.
If there arearguments,they are interpreted as i-numbers and only they are extracted.

w In conjunction with thex option, before each file is extracted, its i-number is typed out.
To extract this file, you must respond withy.

The r option should only be used to restore a complete dump tape onto a clear file system or to
restore an incremental dump tape onto this. Thus

/etc/mkfs /dev/rp0 40600
restor r /dev/rp0

is a typical sequence to restore a complete dump. Anotherrestor can be done to get an incre-
mental dump in on top of this.

A dumpfollowed by amkfsand arestor is used to change the size of a file system.

FILES
/dev/mt0

SEE ALSO
dump, mkfs, check, clri (VIII)

DIAGNOSTICS
There are various diagnostics involved with reading the tape and writing the disk. There are also
diagnostics if the i-list or the free list of the file system is not large enough to hold the dump.

BUGS
There is redundant information on the tape that could be used in case of tape reading problems.
Unfortunately,restor’sapproach is to exit if anything is wrong.

Files that have been deleted are not removed when incremental tapes are loaded. It will be nec-
essary tocheckthe restored file system andclri any files that show up with a 201 delta diagnos-
tic.

The current version ofrestor does not free space occupied by files that are overwritten. Thus a
checkwill have to be performed to reclain the missing space.

- 1 -

-

SU (VIII) 10/31/73 SU (VIII)

NAME
su − become privileged user

SYNOPSIS
su

DESCRIPTION
Suallows one to become the super-user, who has all sorts of marvelous (and correspondingly
dangerous) powers. In order forsu to do its magic, the user must supply a password. If the pass-
word is correct,su will execute the Shell with the UID set to that of the super-user. To restore
normal UID privileges, type an end-of-file to the super-user Shell.

The password demanded is that of the entry ‘‘root’’ in the system’s password file.

To remind the super-user of his responsibilities, the Shell substitutes ‘#’ for its usual prompt
‘%’.

SEE ALSO
sh (I)

- 1 -

-

SYNC (VIII) 11/1/73 SYNC (VIII)

NAME
sync − update the super block

SYNOPSIS
sync

DESCRIPTION
Syncexecutes thesyncsystem primitive. If the system is to be stopped,syncmust be called to
insure file system integrity. See sync(II) for details.

SEE ALSO
sync(II)

BUGS

- 1 -

-

UMOUNT (VIII) 10/31/73 UMOUNT (VIII)

NAME
umount − dismount file system

SYNOPSIS
/etc/umountspecial

DESCRIPTION
Umountannounces to the system that the removable file system previously mounted on special
file specialis to be removed.

SEE ALSO
mount (VIII)

DIAGNOSTICS
It complains if the special file is not mounted or if it is busy. The file system is busy if there is
an open file on it or if someone has his current directory there.

BUGS

- 1 -

-

UPDATE (VIII) 11/1/73 UPDATE (VIII)

NAME
update − periodically update the super block

SYNOPSIS
update

DESCRIPTION
Updateis a program that executes thesyncprimitive every 30 seconds. This insures that the file
system is fairly up to date in case of a crash. This command should not be executed directly, but
should be executed out of the initialization shell command file. See sync(II) for details.

SEE ALSO
sync(II), init(VII)

BUGS
There is a system bug which, it is suspected, may be aggravated by this program. Until further
notice,updateshould not be run.

- 1 -

