
-

ED (I) 1/15/73 ED (I)

NAME
ed − editor

SYNOPSIS
ed [−] [name]

DESCRIPTION
Ed is the standard text editor.

If a name argument is given,ed simulates ane command (see below) on the named file; that is
to say, the file is read intoed’s buffer so that it can be edited. The optional− simulates anos
command (see below) which suppresses the printing of characters counts bye, r, andw com-
mands.

Ed operates on a copy of any file it is editing; changes made in the copy have no effect on the
file until a w (write) command is given. The copy of the text being edited resides in a temporary
file called thebuffer. There is only one buffer.

Commands toed have a simple and regular structure: zero or moreaddresses followed by a sin-
gle charactercommand, possibly followed by parameters to the command. These addresses
specify one or more lines in the buffer. Every command which requires addresses has default
addresses, so that the addresses can often be omitted.

In general, only one command may appear on a line. Certain commands allow the input of text.
This text is placed in the appropriate place in the buffer. Whileed is accepting text, it is said to
be in input mode. In this mode, no commands are recognized; all input is merely collected. In-
put mode is left by typing a period ‘.’ alone at the beginning of a line.

Ed supports a limited form ofregular expression notation. A regular expression is an expression
which specifies a set of strings of characters. A member of this set of strings is said to be
matched by the regular expression. The regular expressions allowed byed are constructed as
follows:

1. An ordinary character (not one of those discussed below) is a regular expression and
matches that character.

2. A circumflex ‘ˆ’ at the beginning of a regular expression matches the null character at the
beginning of a line.

3. A currency symbol ‘$’ at the end of a regular expression matches the null character at the
end of a line.

4. A period ‘.’ matches any character but a new-line character.

5. A regular expression followed by an asterisk ‘*’ matches any number of adjacent occur-
rences (including zero) of the regular expression it follows.

6. A string of characters enclosed in square brackets ‘[]’ matches any character in the string
but no others. If, however, the first character of the string is a circumflex ‘ˆ’ the regular
expression matches any character but new-line and the characters in the string.

7. The concatenation of regular expressions is a regular expression which matches the con-
catenation of the strings matched by the components of the regular expression.

8. The null regular expression standing alone is equivalent to the last regular expression en-
countered.

Regular expressions are used in addresses to specify lines and in one command (sees below) to
specify a portion of a line which is to be replaced.

If it is desired to use one of the regular expression metacharacters as an ordinary character, that
character may be preceded by ‘\’. This also applies to the character bounding the regular expres-
sion (often ‘/’) and to ‘\’ itself.

Addresses are constructed as follows. To understand addressing ined it is necessary to know
that at any time there is acurrent line. Generally speaking, the current line is the last line af-

- 1 -

-

ED (I) 1/15/73 ED (I)

fected by a command; however, the exact effect on the current line by each command is dis-
cussed under the description of the command.

1. The character ‘.’ addresses the current line.

2. The character ‘ˆ’ addresses the line immediately before the current line.

3. The character ‘$’ addresses the last line of the buffer.

4. A decimal numbern addresses then-th line of the buffer.

5. ‘´x’ addresses the line associated (marked) with the mark name characterx which must
be a printable character. Lines are marked with thek command described below.

6. A regular expression enclosed in slashes ‘/’ addresses the first line found by searching to-
ward the end of the buffer and stopping at the first line containing a string matching the
regular expression. If necessary the search wraps around to the beginning of the buffer.

7. A regular expression enclosed in queries ‘?’ addresses the first line found by searching
toward the beginning of the buffer and stopping at the first line found containing a string
matching the regular expression. If necessary the search wraps around to the end of the
buffer.

8. An address followed by a plus sign ‘+’ or a minus sign ‘−’ followed by a decimal number
specifies that address plus (resp. minus) the indicated number of lines. The plus sign
may be omitted.

Commands may require zero, one, or two addresses. Commands which require no addresses re-
gard the presence of an address as an error. Commands which accept one or two addresses as-
sume default addresses when insufficient are given. If more addresses are given than such a
command requires, the last one or two (depending on what is accepted) are used.

Addresses are separated from each other typically by a comma ‘,’. They may also be separated
by a semicolon ‘;’. In this case the current line ‘.’ is set to the previous address before the next
address is interpreted. This feature can be used to determine the starting line for forward and
backward searches (‘/’, ‘?’) . The second address of any two-address sequence must correspond
to a line following the line corresponding to the first address.

In the following list of ed commands, the default addresses are shown in parentheses. The
parentheses are not part of the address, but are used to show that the given addresses are the de-
fault.

As mentioned, it is generally illegal for more than one command to appear on a line. However,
any command may be suffixed by ‘p’ (for ‘print’) . In that case, the current line is printed after
the command is complete.

(.) a
<text>
.

The append command reads the given text and appends it after the addressed line.
‘ .’ is left on the last line input, if there were any, otherwise at the addressed line.
Address ‘0’ is legal for this command; text is placed at the beginning of the buffer.

(. , .) c
<text>
.

The change command deletes the addressed lines, then accepts input text which re-
places these lines. ‘.’ is left at the last line input; if there were none, it is left at the
first line not changed.

(. , .) d
The delete command deletes the addressed lines from the buffer. The line originally
after the last line deleted becomes the current line; if the lines deleted were origi-
nally at the end, the new last line becomes the current line.

- 2 -

-

ED (I) 1/15/73 ED (I)

e filename
The edit command causes the entire contents of the buffer to be deleted, and then the
named file to be read in. ‘.’ is set to the last line of the buffer. The number of char-
acters read is typed. ‘filename’ is remembered for possible use as a default file
name in a subsequentr or w command.

f filename
The filename command prints the currently remembered file name. If ‘filename’ is
given, the currently remembered file name is changed to ‘filename’.

(1,$) g/regular expression/command list
In the global command, the first step is to mark every line which matches the given
regular expression. Then for every such line, the given command list is executed
with ‘ .’ initially set to that line. A single command or the first of multiple com-
mands appears on the same line with the global command. All lines of a multi-line
list except the last line must be ended with ‘\’.A, i, andc commands and associated
input are permitted; the ‘.’ terminating input mode may be omitted if it would be on
the last line of the command list. The (global) commands,g, andv, are not permit-
ted in the command list.

(.) i
<text>
.

This command inserts the given text before the addressed line. ‘.’ is left at the last
line input; if there were none, at the addressed line. This command differs from the
a command only in the placement of the text.

(.) kx
The mark command associates or marks the addressed line with the single character
mark namex. The ten most recent mark names are remembered. The current mark
names may be printed with then command.

(. , .) ma
The move command will reposition the addressed lines after the line addressed bya.
The last of the moved lines becomes the current line.

n
Then command will print the current mark names.

os
ov

After os character counts printed bye, r, andw are suppressed.Ov turns them back
on.

(. , .) p
The print command prints the addressed lines. ‘.’ is left at the last line printed. The
p commandmay be placed on the same line after any command.

q
The quit command causesed to exit. No automatic write of a file is done.

($) r filename
The read command reads in the given file after the addressed line. If no file name is
given, the remembered file name, if any, is used (seee and f commands) . The re-
membered file name is not changed unless ‘filename’ is the very first file name
mentioned. Address ‘0’ is legal forr and causes the file to be read at the beginning
of the buffer. If the read is successful, the number of characters read is typed. ‘.’ is
left at the last line read in from the file.

(. , .) s/regular expression/replacement/ or,
(. , .) s/regular expression/replacement/g

The substitute command searches each addressed line for an occurrence of the speci-
fied regular expression. On each line in which a match is found, all matched strings

- 3 -

-

ED (I) 1/15/73 ED (I)

are replaced by the replacement specified, if the global replacement indicator ‘g’ ap-
pears after the command. If the global indicator does not appear, only the first oc-
currence of the matched string is replaced. It is an error for the substitution to fail
on all addressed lines. Any character other than space or new-line may be used in-
stead of ‘/’ to delimit the regular expression and the replacement. ‘.’ is left at the
last line substituted.

An ampersand ‘&’ appearing in the replacement is replaced by the regular expres-
sion that was matched. The special meaning of ‘&’ in this context may be sup-
pressed by preceding it by ‘\’.

(1,$) v/regular expression/command list
This command is the same as the global command except that the command list is
executed with ‘.’ initially set to every lineexcept those matching the regular expres-
sion.

(1,$) w filename
The write command writes the addressed lines onto the given file. If the file does
not exist, it is created mode 666 (readable and writeable by everyone) . The remem-
bered file name isnot changed unless ‘filename’ is the very first file name men-
tioned. If no file name is given, the remembered file name, if any, is used (seee and
f commands) . ‘.’ is unchanged. If the command is successful, the number of char-
acters written is typed.

($) =
The line number of the addressed line is typed. ‘.’ is unchanged by this command.

!UNIX command
The remainder of the line after the ‘!’ is sent to UNIX to be interpreted as a com-
mand. ‘.’ is unchanged. The entire shell syntax is not recognized. See msh(VII) for
the restrictions.

(.+1) <newline>
An address alone on a line causes the addressed line to be printed. A blank line
alone is equivalent to ‘.+1p’; it is useful for stepping through text.

If an interrupt signal (ASCII DEL) is sent,ed will print a ‘?’ and return to its command level.

If invoked with the command name ‘−’, (see init(VII)) ed will sign on with the message ‘Edit-
ing system’ and print ‘*’ as the command level prompt character.

Ed has size limitations on the maximum number of lines that can be edited, on the maximum
number of characters in a line, in a global’s command list, in a remembered file name, and in the
size of the temporary file. The current sizes are: 4000 lines per file, 512 characters per line, 256
characters per global command list, 64 characters per file name, and 64K characters in the tem-
porary file (see BUGS) .

FILES
/tmp/etm?, temporary
/etc/msh, to implement the ‘!’ command.

DIAGNOSTICS
‘?’ for errors in commands; ‘TMP’ for temporary file overflow.

BUGS
The temporary file can grow to no more than 64K bytes.

- 4 -

