
-

FILE SYSTEM (V) 9/7/73 FILE SYSTEM (V)

NAME
fs − format of file system volume

DESCRIPTION
Every file system storage volume (e.g. RF disk, RK disk, RP disk, DECtape reel) has a common
format for certain vital information. Every such volume is divided into a certain number of 256
word (512 byte) blocks. Block 0 is unused and is available to contain a bootstrap program, pack
label, or other information.

Block 1 is thesuper block. Starting from its first word, the format of a super-block is

struct {
int isize;
int fsize;
int nfree;
int free[100];
int ninode;
int inode[100];
char flock;
char ilock;
char fmod;
int time[2];

};

Isize is the number of blocks devoted to the i-list, which starts just after the super-block, in block
2. Fsize is the first block not potentially available for allocation to a file. This number is unused
by the system, but is used by programs likecheck (I) to test for bad block numbers. The free list
for each volume is maintained as follows. Thefree array contains, infree[1], ... , free[nfree−1],
up to 99 numbers of free blocks.Free[0] is the block number of the head of a chain of blocks
constituting the free list. The first word in each free-chain block is the number (up to 100) of
free-block numbers listed in the next 100 words of this chain member. The first of these 100
blocks is the link to the next member of the chain. To allocate a block: decrementnfree, and the
new block isfree[nfree]. If the new block number is 0, there are no blocks left, so give an error.
If nfree became 0, read in the block named by the new block number, replacenfree by its first
word, and copy the block numbers in the next 100 words into thefree array. To free a block,
check if nfree is 100; if so, copynfree and thefree array into it, write it out, and setnfree to 0.
In any event setfree[nfree] to the freed block’s number and incrementnfree.

Ninode is the number of free i-numbers in theinode array. To allocate an i-node: ifninode is
greater than 0, decrement it and returninode[ninode]. If it was 0, read the i-list and place the
numbers of all free inodes (up to 100) into theinode array, then try again. To free an i-node,
providedninode is less than 100, place its number intoinode[ninode] and incrementninode. If
ninode is already 100, don’t bother to enter the freed i-node into any table. This list of i-nodes is
only to speed up the allocation process; the information as to whether the inode is really free or
not is maintained in the inode itself.

Flock andilock are flags maintained in the core copy of the file system while it is mounted and
their values on disk are immaterial. The value offmod on disk is likewise immaterial; it is used
as a flag to indicate that the super-block has changed and should be copied to the disk during the
next periodic update of file system information.

Time is the last time the super-block of the file system was changed, and is a double-precision
representation of the number of seconds that have elapsed since 0000 Jan. 1 1970 (GMT). Dur-
ing a reboot, thetime of the super-block for the root file system is used to set the system’s idea
of the time.

I-numbers begin at 1, and the storage for i-nodes begins in block 2. Also, i-nodes are 32 bytes
long, so 16 of them fit into a block. Therefore, i-nodei is located in block (i + 31) / 16, and be-
gins 32.((i + 31) (mod 16) bytes from its start. I-node 1 is reserved for the root directory of the
file system, but no other i-number has a built-in meaning. Each i-node represents one file. The
format of an i-node is as follows.

- 1 -

-

FILE SYSTEM (V) 9/7/73 FILE SYSTEM (V)

struct {
int flags; /* +0: see below */
char nlinks; /* +2: number of links to file */
char uid; /* +3: user ID of owner */
char gid; /* +4: group ID of owner */
char size0; /* +5: high byte of 24-bit size */
int size1; /* +6: low word of 24-bit size */
int addr[8]; /* +8: block numbers or device number */
int actime[2]; /* +24: time of last access */
int modtime[2]; /* +28: time of last modification */

};

The flags are as follows:

100000 i-node is allocated
060000 2-bit file type:

000000 plain file
040000 directory
020000 character-type special file
060000 block-type special file.

010000 large file
004000 set user-ID on execution
002000 set group-ID on execution
000400 read (owner)
000200 write (owner)
000100 execute (owner)
000070 read, write, execute (group)
000007 read, write, execute (others)

Special files are recognized by their flags and not by i-number. A block-type special file is basi-
cally one which can potentially be mounted as a file system; a character-type special file cannot,
though it is not necessarily character-oriented. For special files the high byte of the first address
word specifies the type of device; the low byte specifies one of several devices of that type. The
device type numbers of block and character special files overlap.

The address words of ordinary files and directories contain the numbers of the blocks in the file
(if it is small) or the numbers of indirect blocks (if the file is large).

Byte numbern of a file is accessed as follows.N is divided by 512 to find its logical block num-
ber (sayb) in the file. If the file is small (flag 010000 is 0), thenb must be less than 8, and the
physical block number isaddr[b].

If the file is large,b is divided by 256 to yieldi, andaddr[i] is the physical block number of the
indirect block. The remainder from the division yields the word in the indirect block which con-
tains the number of the block for the sought-for byte.

For blockb in a file to exist, it is not necessary that all blocks less thanb exist. A zero block
number either in the address words of the i-node or in an indirect block indicates that the corre-
sponding block has never been allocated. Such a missing block reads as if it contained all zero
words.

SEE ALSO
check (VIII)

- 2 -

