
-

SH (I) 5/15/74 SH (I)

NAME
sh − shell (command interpreter)

SYNOPSIS
sh [name [arg1 ... [arg9]]]

DESCRIPTION
Sh is the standard command interpreter. It is the program which reads and arranges the execu-
tion of the command lines typed by most users. It may itself be called as a command to interpret
files of commands. Before discussing the arguments to the Shell used as a command, the struc-
ture of command lines themselves will be given.

Commands. Each command is a sequence of non-blank command arguments separated by
blanks. The first argument specifies the name of a command to be executed. Except for certain
types of special arguments discussed below, the arguments other than the command name are
passed without interpretation to the invoked command.

If the first argument is the name of an executable file, it is invoked; otherwise the string ‘/bin/’ is
prepended to the argument. (In this way most standard commands, which reside in ‘/bin’, are
found.) If no such command is found, the string ‘/usr’ is further prepended (to give
‘/usr/bin/command’) and another attempt is made to execute the resulting file. (Certain lesser-
used commands live in ‘/usr/bin’.) If the ‘/usr/bin’ file exists, but is not executable, it is used by
the Shell as a command file. That is to say it is executed as though it were typed from the con-
sole. If all attempts fail, a diagnostic is printed.

Command lines. One or more commands separated by ‘’ or ‘ˆ’ constitute apipeline. The stan-
dard output of each command but the last in a pipeline is taken as the standard input of the next
command. Each command is run as a separate process, connected by pipes (see pipe(II)) to its
neighbors. A command line contained in parentheses ‘()’ may appear in place of a simple com-
mand as an element of a pipeline.

A command line consists of one or more pipelines separated, and perhaps terminated by ‘;’ or
‘&’. The semicolon designates sequential execution. The ampersand causes the preceding pipe-
line to be executed without waiting for it to finish. The process id of such a pipeline is reported,
so that it may be used if necessary for a subsequentwait or kill.

Termination Reporting. If a command (not followed by ‘&’) terminates abnormally, a mes-
sage is printed. (All terminations other than exit and interrupt are considered abnormal.) Termi-
nation reports for commands followed by ‘&’ are given upon receipt of the first command subse-
quent to the termination of the command, or when await is executed. The following is a list of
the abnormal termination messages:

Bus error
Trace/BPT trap
Illegal instruction
IOT trap
EMT trap
Bad system call
Quit
Floating exception
Memory violation
Killed

If a core image is produced, ‘− Core dumped’ is appended to the appropriate message.

Redirection of I/O. There are three character sequences that cause the immediately following
string to be interpreted as a special argument to the Shell itself. Such an argument may appear
anywhere among the arguments of a simple command, or before or after a parenthesized com-
mand list, and is associated with that command or command list.

- 1 -

-

SH (I) 5/15/74 SH (I)

An argument of the form ‘<arg’ causes the file ‘arg’ to be used as the standard input (file de-
scriptor 0) of the associated command.

An argument of the form ‘>arg’ causes file ‘arg’ to be used as the standard output (file descriptor
1) for the associated command. ‘Arg’ is created if it did not exist, and in any case is truncated at
the outset.

An argument of the form ‘>>arg’ causes file ‘arg’ to be used as the standard output for the asso-
ciated command. If ‘arg’ did not exist, it is created; if it did exist, the command output is ap-
pended to the file.

For example, either of the command lines

ls >junk; cat tail >>junk
(ls; cat tail) >junk

creates, on file ‘junk’, a listing of the working directory, followed immediately by the contents
of file ‘tail’.

Either of the constructs ‘>arg’ or ‘>>arg’ associated with any but the last command of a pipeline
is ineffectual, as is ‘<arg’ in any but the first.

In commands called by the Shell, file descriptor 2 refers to the standard output of the Shell be-
fore any redirection. Thus filters may write diagnostics to a location where they have a chance
to be seen.

Generation of argument lists. If any argument contains any of the characters ‘?’, ‘*’ or ‘[’, it is
treated specially as follows. The current directory is searched for files whichmatch the given ar-
gument.

The character ‘*’ in an argument matches any string of characters in a file name (including the
null string).

The character ‘?’ matches any single character in a file name.

Square brackets ‘[...]’ specify a class of characters which matches any single file-name character
in the class. Within the brackets, each ordinary character is taken to be a member of the class. A
pair of characters separated by ‘−’ places in the class each character lexically greater than or
equal to the first and less than or equal to the second member of the pair.

Other characters match only the same character in the file name.

For example, ‘*’ matches all file names; ‘?’ matches all one-character file names; ‘[ab]*.s’
matches all file names beginning with ‘a’ or ‘b’ and ending with ‘.s’; ‘?[zi−m]’ matches all two-
character file names ending with ‘z’ or the letters ‘i’ through ‘m’.

If the argument with ‘*’ or ‘?’ also contains a ‘/’, a slightly different procedure is used: instead
of the current directory, the directory used is the one obtained by taking the argument up to the
last ‘/’ before a ‘*’ or ‘?’. The matching process matches the remainder of the argument after
this ‘/’ against the files in the derived directory. For example: ‘/usr/dmr/a*.s’ matches all files
in directory ‘/usr/dmr’ which begin with ‘a’ and end with ‘.s’.

In any event, a list of names is obtained which match the argument. This list is sorted into alpha-
betical order, and the resulting sequence of arguments replaces the single argument containing
the ‘*’, ‘[’, or ‘?’. The same process is carried out for each argument (the resulting lists arenot
merged) and finally the command is called with the resulting list of arguments.

For example: directory /usr/dmr contains the files a1.s, a2.s, ..., a9.s. From any directory, the
command

as /usr/dmr/a?.s

callsas with arguments /usr/dmr/a1.s, /usr/dmr/a2.s, ... /usr/dmr/a9.s in that order.

Quoting. The character ‘\’ causes the immediately following character to lose any special mean-
ing it may have to the Shell; in this way ‘<’, ‘>’, and other characters meaningful to the Shell
may be passed as part of arguments. A special case of this feature allows the continuation of
commands onto more than one line: a new-line preceded by ‘\’ is translated into a blank.

- 2 -

-

SH (I) 5/15/74 SH (I)

Sequences of characters enclosed in double (") or single (´) quotes are also taken literally. For
example:

ls pr −h "My directory"

causes a directory listing to be produced byls, and passed on topr to be printed with the heading
‘My directory’. Quotes permit the inclusion of blanks in the heading, which is a single argument
to pr.

Argument passing. When the Shell is invoked as a command, it has additional string process-
ing capabilities. Recall that the form in which the Shell is invoked is

sh [name [arg1 ... [arg9]]]

Thename is the name of a file which will be read and interpreted. If not given, this subinstance
of the Shell will continue to read the standard input file.

In command lines in the file (not in command input), character sequences of the form ‘$n’,
wheren is a digit, are replaced by thenth argument to the invocation of the Shell (argn). ‘$0’ is
replaced byname.

End of file. An end-of-file in the Shell’s input causes it to exit. A side effect of this fact means
that the way to log out from UNIX is to type an EOT.

Special commands. The following commands are treated specially by the Shell.

chdir is done without spawning a new process by executingsys chdir (II).

login is done by executing /bin/login without creating a new process.

wait is done without spawning a new process by executingsys wait (II).

shift is done by manipulating the arguments to the Shell.

‘ :’ is simply ignored.

Command file errors; interrupts. Any Shell-detected error, or an interrupt signal, during the
execution of a command file causes the Shell to cease execution of that file.

Process that are created with a ‘&’ ignore interrupts. Also if such a process has not redirected its
input with a ‘<’, its input is automatically redirected to the zero length file /dev/null.

FILES
/etc/glob, which interprets ‘*’, ‘?’, and ‘[’.
/dev/null as a source of end-of-file.

SEE ALSO
‘The UNIX Time-sharing System’, which gives the theory of operation of the Shell.
chdir (I), login (I), wait (I), shift (I)

BUGS
There is no way to redirect the diagnostic output.

- 3 -

