INTRO (II) 11/5/73 INTRO (1)

INTRODUCTION TO SYSTEM CALLS

Section Il of this manual lists all the entries into the system. In most cases two calling sequences are
specified, one of which is usable from assembly language, and the other from C. Most of these calls have
an error return. From assembly language an erroneous call is always indicated by turning on the c-bit of
the condition codes. The presence of an error is most easily tested by the instriesesd bec
(“branch on error set (or clear)”). These are synonyms fobttsandbccinstructions.

From C, an error condition is indicated by an otherwise impossible returned value. Almost always this is
-1, the individual sections specify the detalils.

In both cases an error number is also available. In assembly language, this number is returned in r0 on er-
roneous calls. From C, the external variabienois set to the error numbeiErrno is not cleared on suc-

cessful calls, so it should be tested only after an error has occurred. There is a table of messages associ-
ated with each error, and a routine for printing the messagepesee (111).

The possible error numbers are not recited with each writeup in section Il, since many errors are possible
for most of the calls. Here is a list of the error numbers, their names inside the system (for the benefit of
system-readers), and the messages available pesiray. A short explanation is also provided.

0 - (unused)

1 EPERM Not owner and not super-user
Typically this error indicates an attempt to modify a file in some way forbidden except to its own-
er. Itis also returned for attempts by ordinary users to do things allowed only to the super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should exist but doesn't, or when one
of the directories in a path name does not exist.

3 ESRCH No such process

The process whose number was givesigoaldoes not exist, or is already dead.
4 - (unused)
5 EIO I/O error

Some physical I/0 error occurred duringesad or write. This error may in some cases occur on a
call following the one to which it actually applies.

6 ENXIO No such device or address
I/0O on a special file refers to a subdevice which does not exist, or beyond the limits of the device.
It may also occur when, for example, a tape drive is not dialled in or no disk pack is loaded on a
drive.

7 E2BIG Arg list too long
An argument list longer than 512 bytes (counting the null at the end of each argument) is pre-
sented texec.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the appropriate permissions, does not
start with one of the magic numbers 407 or 410.

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read (resp. write) request is made to a file which
is open only for writing (resp. reading).

INTRO (II) 11/5/73 INTRO (1)

10 ECHILD No children
Waitand the process has no living or unwaited-for children.

11 EAGAIN No more processes
In afork, the system’s process table is full and no more processes can for the moment be created.

12 ENOMEM Not enough core
During anexecor break,a program asks for more core than the system is able to supply. This is
not a temporary condition; the maximum core size is a system parameter. The error may also oc-
cur if the arrangement of text, data, and stack segments is such as to require more than the existing
8 segmentation registers.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by the protection system.

14 - (unused)

15 ENOTBLK Block device required
A plain file was mentioned where a block device was required, engpunt.

16 EBUSY Mount device busy
An attempt was made to dismount a device on which there is an open file or some process’s cur-
rent directory.

17 EEXIST File exists
In existing file was mentioned in an a context in which it should not havelirkg.
18 EXDEV Cross-device link
A link to a file on another device was attempted.
19 ENODEV No such device
An attempt was made to apply an inappropriate system call to a device; e.g. read a write-only de-
vice.

20 ENOTDIR Not a directory
A non-directory was specified where a directory is required, for example in a path name or as an
argument tahdir.

21 EISDIR Is a directory
An attempt to write on a directory.

22 EINVAL Invalid argument
Some invalid argument: currently, dismounting a non-mounted device, mentioning an unknown
signal insignal,and giving an unknown requeststtyto the TIU special file.

23 ENFILE File table overflow
The system’s table of open files is full, and temporarily no rapemscan be accepted.
24 EMFILE Too many open files
Only 10 files can be open per process; this error occurs when the eleventh is opened.
25 ENOTTY Not a typewriter
The file mentioned irstty or gtty is not a typewriter or one of the other devices to which these
calls apply.

26 ETXTBSY Text file busy
An attempt to execute a pure-procedure program which is currently open for writing (or reading!).

INTRO (II) 11/5/73 INTRO (1)

27

28

29

30

EFBIG File too large
An attempt to make a file larger than the maximum of 2048 blocks.

ENOSPC No space left on device
During awrite to an ordinary file, there is no free space left on the device.

ESPIPE Seek on pipe
A seekwas issued to a pipe. This error should also be issued for other non-seekable devices.

EROFS Read-only file system
An attempt to modify a file or directory was made on a device mounted read-only.

BREAK (I1) 8/5/73 BREAK (I1)

NAME

break- set program break
SYNOPSIS

(break =17.)

sys break; addr

char *brk(addr)
char *sbrk(incr)

DESCRIPTION
Breaksets the system’s idea of the lowest location not used by the program (called the break) to
addr (rounded up to the next multiple of 64 bytes). Locations not less dloiain and below the
stack pointer are not in the address space and will thus cause a memory violation if accessed.

From C,brk will set the break taddr. The old break is returned.

In the alternate entrsbrk, incrmore bytes are added to the program’s data space and a pointer to
the start of the new area is returned.

When a program begins execution erecthe break is set at the highest location defined by the
program and data storage areas. Ordinarily, therefore, only programs with growing data areas
need to usereak.

SEE ALSO
exec (1), alloc (111), end (llI)

DIAGNOSTICS
The c-bit is set if the program requests more memory than the system limit or if more than 8 seg-
mentation registers would be required to implement the break. Frori @, returned for these
errors.

CHDIR (1) 8/5/73 CHDIR (II)

NAME
chdir - change working directory

SYNOPSIS
(chdir =12.)
syschdir; dirname

chdir (dirname)
char *dirname;

DESCRIPTION
Dirnameis the address of the pathname of a directory, terminated by a null Ktdir causes
this directory to become the current working directory.

SEE ALSO
chdir(l)

DIAGNOSTICS
The error bit (c-bit) is set if the given name is not that of a directory or is not readable. From C,
a-—1 returned value indicates an error, O indicates success.

CHMOD (11) 8/5/73 CHMOD (1I)

NAME
chmod- change mode of file

SYNOPSIS
(chmod =15.)
sys chmod; name; mode

chmod(name, mode)
char *name;

DESCRIPTION
The file whose name is given as the null-terminated string pointed toamgehas its mode
changed tanode. Modes are constructed by ORing together some combination of the following:

4000 set user ID on execution

2000 set group ID on execution

0400 read by owner

0200 write by owner

0100 execute (search on directory) by owner
0070 read, write, execute (search) by group

0007 read, write, execute (search) by others

Only the owner of a file (or the super-user) may change the mode.

SEE ALSO
chmod (1)

DIAGNOSTIC
Error bit (c-bit) set ifnamecannot be found or if current user is neither the owner of the file nor
the super-user. From C4 returned value indicates an error, O indicates success.

CHOWN (11) 8/5/73 CHOWN (1)

NAME
chown- change owner

SYNOPSIS
(chmod =16.)
sys chown; name; owner

chown(name, owner)
char *name;

DESCRIPTION
The file whose name is given by the null-terminated string pointed tmdyehas its owner
changed toowner (a numerical user ID). Only the present owner of a file (or the super-user)
may donate the file to another user. Changing the owner of a file removes the set-user-ID pro-
tection bit unless it is done by the super user.

SEE ALSO
chown (1), passwd (V)

DIAGNOSTICS
The error bit (c-bit) is set on illegal owner changes. From €laeturned value indicates error,
0 indicates success.

CLOSE (1) 8/5/73 CLOSE (1)

NAME
close — close afile

SYNOPSIS
(close =6.)
(file descriptor in r0)
sysclose
close(fildes)

DESCRIPTION
Given a file descriptor such as returned fromagen, creatpr pipecall, closecloses the associ-
ated file. A close of all files is automatic @xit, but since processes are limited to 15 simultane-
ously open filesgloseis necessary for programs which deal with many files.

SEE ALSO
creat (1), open (I1), pipe (I1)

DIAGNOSTICS

The error bit (c-bit) is set for an unknown file descriptor. From €landicates an error, 0 indi-
cates success.

CREAT(II) 8/5/73 CREAT (1)

NAME
creat— create a new file

SYNOPSIS
(creat =8.)
syscreat; name; mode
(filedescriptor inrQ)
creat(name, mode)
char *name;

DESCRIPTION
Creatcreates a new file or prepares to rewrite an existing file calkemhe,given as the address
of a null-terminated string. If the file did not exist, it is given madede. See chmod(ll) for the
construction of thenodeargument.
If the file did exist, its mode and owner remain unchanged but it is truncated to O length.
The file is also opened for writing, and its file descriptor is returned (in r0).
The modegiven is arbitrary; it need not allow writing. This feature is used by programs which
deal with temporary files of fixed names. The creation is done with a mode that forbids writing.
Then if a second instance of the program attempteeat, an error is returned and the program
knows that the name is unusable for the moment.

SEE ALSO
write (II), close (ll), stat (II)

DIAGNOSTICS

The error bit (c-bit) may be set if: a needed directory is not searchable; the file does not exist and
the directory in which it is to be created is not writable; the file does exist and is unwritable; the
file is a directory; there are already too many files open.

From C, a-1 return indicates an error.

csw () 7/29/72 csw ()

NAME
csw-read console switches
SYNOPSIS
(csw = 38.; not in assembler)
sys csw
getcsw()
DESCRIPTION

The setting of the console switches is returned (in r0).

DUP (1) 8/5/73 DUP (1)

NAME
dup-— duplicate an open file descriptor

SYNOPSIS
(dup = 41.; not in assembler)
(file descriptor in r0)
sysdup
dup(fildes)
int fildes,

DESCRIPTION
Given a file descriptor returned from apen, pipepr creatcall, dup will allocate another file
descriptor synonymous with the original. The new file descriptor is returned in r0.
Dupis used more to reassign the value of file descriptors than to genuinely duplicate a file de-
scriptor. Since the algorithm to allocate file descriptors returns the lowest available value, com-
binations ofdup andclosecan be used to manipulate file descriptors in a general way. This is
handy for manipulating standard input and/or standard output.

SEE ALSO
creat (), open (I1), close (Il), pipe (II)

DIAGNOSTICS

The error bit (c-bit) is set if: the given file descriptor is invalid; there are already too many open
files. From C, a-1 returned value indicates an error.

EXEC (Il) 8/5/73 EXEC (Il)

NAME
exec — execute a file

SYNOPSIS
(exec = 11.
SyS exec; name; args

name; <..\0>

.a.l.rgs: argl; argz; ...; 0
argl: <.\0>
argz: <..\0>

execl(name, argl, argz, ..., argn, 0)
char *name, *argl, *arg2, ..., *argn;

execv(name, argv)
char *name;
char *argv[|;

DESCRIPTION
Execoverlays the calling process with the named file, then transfers to the beginning of the core
image of the file. There can be no return from the file; the calling core image is lost.

Files remain open acrogxeccalls. Ignored signals remain ignored acresec,but signals that
are caught are reset to their default values.

Each user has eeal user ID and group ID and agffectiveuser ID and group ID (The real ID
identifies the person using the system; the effective ID determines his access privilEges.)
changes the effective user and group ID to the owner of the executed file if the file has the “set-
user-ID” or “set-group-ID” modes. The real user ID is not affected.

The form of this call differs somewhat depending on whether it is called from assembly language
or C; see below for the C version.

The first argument t@xecis a pointer to the name of the file to be executed. The second is the
address of a null-terminated list of pointers to arguments to be passed to the file. Convention-
ally, the first argument is the name of the file. Each pointer addresses a string terminated by a
null byte.

Once the called file starts execution, the arguments are available as follows. The stack pointer
points to a word containing the number of arguments. Just above this number is a list of pointers
to the argument strings. The arguments are placed as high as possible in core.

sp— nargs
argl
argn
-1

argl: <argl\0>

argn: .éarg n\0>

From C, two intefaces are availablexeclis useful when a known file with known arguments is
being called; the arguments &xeclare the character strings constituting the file and the argu-
ments; as in the basic call, the first argument is conventionally the same as the file name (or its
last component). A 0 argument must end the argument list.

The execwversion is useful when the number of arguments is unknown in advance; the argu-
ments toexecvare the name of the file to be executed and a vector of strings containing the argu-
ments. The last argument string must be followed by a 0 pointer.

EXEC (Il) 8/5/73 EXEC (Il)

When a C program is executed, it is called as follows:

main(argc, argv)

int argc;

char *argv[];
whereargc is the argument count anatgv is an array of character pointers to the arguments
themselves. As indicatedygc is conventionally at least one and the first member of the array
points to a string containing the name of the file.

Argvis not directly usable in anothexecvsinceargvlargc] is -1 and not 0.

SEE ALSO
fork(Il)

DIAGNOSTICS
If the file cannot be found, if it is not executable, if it does not have a valid header (407 or 410
octal as first word), if maximum memory is exceeded, or if the arguments require more than 512
bytes a return fronexecconstitutes the diagnostic; the error bit (c-bit) is set. From C the re-

turned value is-1.

BUGS
Only 512 characters of arguments are allowed.

EXIT(I) 8/5/73 EXIT(I)

NAME
exit — terminate process

SYNOPSIS
(exit=1.)
(status in r0)
sys exit
exit(status)
int status;

DESCRIPTION
Exit is the normal means of terminating a proceEsit closes all the process'’s files and notifies
the parent process if it is executingnait. The low byte of rO (resp. the argument éait) is
available as status to the parent process.

This call can never return.

SEE ALSO
wait (I1)

DIAGNOSTICS
None.

FORK (I1) 8/5/73 FORK (11)

NAME
fork — spawn new process

SYNOPSIS
(fork = 2))
sysfork
(new process return)
(old process return)

fork()

DESCRIPTION
Fork is the only way new processes are created. The new process’s core image is a copy of that
of the caller offork. The only distinction is the return location and the fact that r0 in the old
(parent) process contains the process ID of the new (child) process. This process ID is used by
wait.

The two returning processes share all open files that existed before the call. In particular, this is
the way that standard input and output files are passed and also how pipes are set up.

From C, the returned value is 0 in the child process, non-zero in the parent process; however, a
return of-1 indicates inability to create a new process.

SEE ALSO
wait (1), exec (Il)

DIAGNOSTICS
The error bit (c-bit) is set in the old process if a new process could not be created because of lack
of process space. From C, a returr-dbf(not just negative) indicates an error.

FSTAT (1) 3/15/72 FSTAT(Il)

NAME
fstat — get status of open file

SYNOPSIS
(fstat = 28.)
(file descriptor in r0)
sysfstat; buf

fstat(fildes, buf)
struct inode buf;

DESCRIPTION
This call is identical tostat, except that it operates on open files instead of files given by name.
It is most often used to get the status of the standard input and output files, whose names are un-
known.

SEE ALSO
stat(ll)

DIAGNOSTICS
The error bit (c-bit) is set if the file descriptor is unknown; from €laeturn indicates an error,
0 indicates success.

GETGID(Il) 5/15/74 GETGID(Il)

NAME
getgid — get group identifications

SYNOPSIS
(getgid = 47.; not in assembler)
sys getgid
getgid()

DESCRIPTION
Getgidreturns a word, the low byte of which contains the real group ID of the current process.
The high byte contains the effective group ID of the current process. The real group ID identi-
fies the group of the person who is logged in, in contradistinction to the effective group ID,
which determines his access permission at the moment. It is thus useful to programs which oper-
ate using the “set group ID” mode, to find out who invoked them.

SEE ALSO
setgid (11)

DIAGNOSTICS

GETUID (1) 5/15/74 GETUID (1)

NAME
getuid — get user identifications

SYNOPSIS
(getuid = 24.)
sysgetuid
getuid()

DESCRIPTION
Getuidreturns a word, the low byte of which contains the real user ID of the current process.
The high byte contains the effective user ID of the current process. The real user ID identifies
the person who is logged in, in contradistinction to the effective user ID, which determines his
access permission at the moment. It is thus useful to programs which operate using the “set user
ID” mode, to find out who invoked them.

SEE ALSO
setuid (II)

DIAGNOSTICS

GTTY(I) 8/5/73 GTTY(I)

NAME
gtty — get typewriter status

SYNOPSIS
(gtty = 32._) _
(file descriptor in r0)
sysgtty; arg
é'rg: =.+6
otty(fildes, arg)
int arg[3];

DESCRIPTION
Gtty stores in the three words addressedaby the status of the typewriter whose file descriptor
is given in r0 (resp. given as the first argument). The format is the same as that pasged by

SEE ALSO
stty (1)

DIAGNOSTICS
Error bit (c-bit) is set if the file descriptor does not refer to a typewriter. From €1 salue is
returned for an error, 0, for a successful call.

INDIR (I1) 9/15/73 INDIR (1)

NAME
indir — indirect system call

SYNOPSIS
(indir = 0.; not in assembler)
sysindir; syscall

DESCRIPTION
The system call at the locatisgscallis executed. Execution resumes afteritiugr call.
The main purpose dhdir is to allow a program to store arguments in system calls and execute
them out of line in the data segment. This preserves the purity of the text segment.
If indir is executed indirectly, it is a no-op.

SEE ALSO

DIAGNOSTICS

KILL (1) 8/5/73 KILL (1)

NAME
kill - send signal to a process
SYNOPSIS
(kill = 37.; not in assembler)
(process number in r0)
sysKkill; sig
kill(pid, sig);
DESCRIPTION
Kill sends the signalig to the process specified by the process number in r0. See signal (Il) for
a list of signals.
The sending and receiving processes must have the same controlling typewriter, otherwise this
call is restricted to the super-user.
SEE ALSO
signal (I1), kill (1)
DIAGNOSTICS
The error bit (c-bit) is set if the process does not have the same controlling typewriter and the
user is not super-user, or if the process does not exist.
BUGS

Equality between the controlling typewriters of the sending and receiving process is neither a
necessary nor sufficient condition for allowing the sending of a signal. The correct condition is
equality of user IDs.

LINK (1) 3/15/72 LINK (11

NAME
link — link to a file
SYNOPSIS
(link =9.)
syslink; namel; name2
link(namel, name2)
char *namel, *name2;
DESCRIPTION
A link to namelis created; the link has the namame2. Either name may be an arbitrary path
name.
SEE ALSO
link(l), unlink(11)
DIAGNOSTICS

The error bit (c-bit) is set whenamelcannot be found; whename2already exists; when the
directory ofname2cannot be written; when an attempt is made to link to a directory by a user
other than the super-user; when an attempt is made to link to a file on another file system. From
C, a-1 return indicates an error, a O return indicates success.

MKNOD (I1) 8/5/73 MKNOD (1)

NAME
mknod— make a directory or a special file

SYNOPSIS
(mknod = 14.; not in assembler)
sys mknod; name; mode; addr

mknod(name, mode, addr)
char *name;

DESCRIPTION
Mknod creates a new file whose name is the null-terminated string pointed twaine. The
mode of the new file (including directory and special file bits) is initialized frm@de. The first
physical address of the file is initialized froeddr. Note that in the case of a directorgddr
should be zero. In the case of a special ditkjr specifies which special file.

Mknodmay be invoked only by the super-user.

SEE ALSO
mkdir (1), mknod (VII1), fs (V)

DIAGNOSTICS
Error bit (c-bit) is set if the file already exists or if the user is not the super-user. From+C, a
value indicates an error.

MOUNT (1I) 5/15/74 MOUNT (11)

NAME
mount— mount file system

SYNOPSIS
(mount = 21.)
sys mount; special; name; rwflag

mount(special, name, rwflag)
char *special, *name;

DESCRIPTION
Mount announces to the system that a removable file system has been mounted on the block-
structured special filspecial;from now on, references to filkamewill refer to the root file on
the newly mounted file systenspecialandnameare pointers to null-terminated strings contain-
ing the appropriate path names.

Namemust exist already. Its old contents are inaccessible while the file system is mounted.

Therwflag argument determines whether the file system can be written on; if it is O writing is al-
lowed, if non-zero no writing is done. Physically write-protected and magnetic tape file systems
must be mounted read-only or errors will occur when access times are updated, whether or not
any explicit write is attempted.

SEE ALSO
mount (V1II), umount (II)

DIAGNOSTICS
Error bit (c-bit) set if:specialis inaccessible or not an appropriate fieymedoes not existspe-
cial is already mounted; there are already too many file systems mounted.

NICE (I1) 3/15/72 NICE (II)

NAME
nice— set program priority

SYNOPSIS
(nice = 34.)
(priority in r0)
syshice

nice(priority)

DESCRIPTION
The currently executing process is set into the priority specifiegrinyrity. If priority is posi-
tive, the priority of the process is below default; if negative the process must be the super-user
and its priority is raised. The valid range fiority is 20 and-220. The value of 16 is recom-
mended to users who wish to execute long-running programs without flak from the administra-
tion.

The effect of this call is passed to a child process byftinke system call. The effect can be can-
celled by another call toicewith apriority of 0.

SEE ALSO
nice(l)

DIAGNOSTICS

The error bit (c-bit) is set if the user requestgreority outside the range of 0 to 20 and is not the
super-user.

OPEN(II) 8/5/73 OPEN(II)

NAME
open- open for reading or writing
SYNOPSIS
(open =5))
sys open; name; mode
open(name, mode)
char *name;
DESCRIPTION
Openopens the filenamefor reading (ifmodeis 0), writing (if modeis 1) or for both reading
and writing (if modeis 2). Nameis the address of a string of ASCII characters representing a
path name, terminated by a null character.
The returned file descriptor should be saved for subsequent aaidtonrite,andclose.
SEE ALSO
creat (Il), read (II), write (I1), close (II)
DIAGNOSTICS

The error bit (c-bit) is set if the file does not exist, if one of the necessary directories does not ex-
ist or is unreadable, if the file is not readable (resp. writable), or if too many files are open. From
C, a-1 value is returned on an error.

PIPE (Il) 8/5/73 PIPE(Il)

NAME
pipe - create a pipe
SYNOPSIS
(pipe = 42.)
syspipe
(read file descriptor in r0)
(write file descriptor in rl)
pipe(fildes)
int fildeg[2];
DESCRIPTION
The pipe system call creates an I/O mechanism called a pipe. The file descriptors returned can
be used in read and write operations. When the pipe is written using the descriptor returned in rl
(resp. fildes[1]), up to 4096 bytes of data are buffered before the writing processis suspended. A
read using the descriptor returned in rO (resp. fildes[0]) will pick up the data.
It is assumed that after the pipe has been set up, two (or more) cooperating processes (created by
subsequerfork calls) will pass data through the pipe wigdadandwrite calls.
The Shell has a syntax to set up a linear array of processes connected by pipes.
Read calls on an empty pipe (no buffered data) with only one end (all write file descriptors
closed) return an end-of-file. Write calls under similar conditions are ignored.
SEE ALSO
sh (1), read (ll), write (II), fork (1)
DIAGNOSTICS

The error bit (c-bit) is set if more than 8 files are already open. From-€, @eturned value in-
dicates an error.

PROFIL (I1) 5/15/74 PROFIL (I1)

NAME
profil — execution time profile

SYNOPSIS
(profil = 44.; not in assembler)
sys profil; buff; bufsiz; offset; scale
profil(buff, bufsiz, offset, scale)
char buff[];
int bufsiz, offset, scale;

DESCRIPTION
Buff points to an area of core whose length (in bytes) is giverblfigiz. After this call, the
user’s program counter (pc) is examined each clock tick (60th secofisitis subtracted from
it, and the result multiplied bgcale. If the resulting number corresponds to a word indidéf,
that word is incremented.
The scale is interpreted as an unsigned, fixed-point fraction with binary point at the left:
177777(8) gives a 1-1 mapping of pc’s to wordsounf;, 77777(8) maps each pair of instruction
words together. 2(8) maps all instructions onto the beginningowuf (producing a non-
interrupting core clock).
Profiling is turned off by giving acaleof O or 1. It is rendered ineffective by givinghafsizof
0. Profiling is also turned off when agxecis executed but remains on in child and parent both
after afork.

SEE ALSO
monitor (111), prof (1)

DIAGNOSTICS

READ (I1) 8/5/73 READ (I1)

NAME
read- read from file

SYNOPSIS
(read = 3.)
(file descriptor in r0)
sysread; buffer; nbytes

read(fildes, buffer, nbytes)
char *buffer;

DESCRIPTION
A file descriptor is a word returned from a successfpén,or pipecall. Bufferis the location of
nbytescontiguous bytes into which the input will be placed. It is not guaranteed thabwlés
bytes will be read; for example if the file refers to a typewriter at most one line will be returned.
In any event the number of characters read is returned (in r0).

If the returned value is 0, then end-of-file has been reached.

SEE ALSO
open (), pipe (1)

DIAGNOSTICS
As mentioned, 0 is returned when the end of the file has been reached. If the read was otherwise
unsuccessful the error bit (c-bit) is set. Many conditions can generate an error: physical /O er-
rors, bad buffer address, preposterabsgtesfile descriptor not that of an input file. From C, a
-1 return indicates the error.

SEEK (1) 3/15/72 SEEK (1)

NAME
seek— move read/write pointer

SYNOPSIS
(seek =19))
(file descriptor in r0)
sys seek; offset; ptrname

seek (fildes, offset, ptrname)

DESCRIPTION
The file descriptor refers to a file open for reading or writing. The read (resp. write) pointer for
the file is set as follows:

if ptrnameis 0, the pointer is set tuffset.
if ptrnameis 1, the pointer is set to its current location mffset.
if ptrnameis 2, the pointer is set to the size of the file mffset.

if ptrnameis 3, 4 or 5, the meaning is as above for 0, 1 and 2 except that the offset is multi-
plied by 512.

If ptrnameis 0 or 3,offsetis unsigned, otherwise it is signed.

SEE ALSO
open(ll), creat(ll)

DIAGNOSTICS
The error bit (c-bit) is set for an undefined file descriptor. From+1, @eturn indicates an error.

SETGID(Il) 3/15/72 SETGID(Il)

NAME
setgid— set process group ID
SYNOPSIS
(setgid = 46.)
(group ID in r0)
sys setgid
setgid(gid)
DESCRIPTION
The group ID of the current process is set to the argument. Both the effective and the real group
ID are set. This call is only permitted to the super-user or if the argument is the real group ID.
SEE ALSO
getgid(ll)
DIAGNOSTICS

Error bit (c-bit) is set as indicated; from G;-hvalue is returned.

SETUID (1) 3/15/72 SETUID (1)

NAME
setuid- set process user ID

SYNOPSIS
(setuid = 23.)
(user ID in r0)
sys setuid

setuid(uid)
DESCRIPTION

The user ID of the current process is set to the argument. Both the effective and the real user ID
are set. This call is only permitted to the super-user or if the argument is the real user ID.

SEE ALSO
getuid(ll)

DIAGNOSTICS
Error bit (c-bit) is set as indicated; from G;-hvalue is returned.

SIGNAL (1) 8/5/73 SIGNAL (1)

NAME
signal- catch or ignore signals

SYNOPSIS
(signal = 48.)
sys signal; sig; label
(old value in r0)
signal(sig, func)
int (*func)();
DESCRIPTION

When the signal defined bsigis sent to the current process, it is to be treated accordifatd
(resp. func.) The following is the list of signals:

1 hangup

2 interrupt

3* quit

4* illegal instruction

5* trace trap

6* 10T instruction

7* EMT instruction

8* floating point exception

9 kill (cannot be caught or ignored)
10* bus error

11* segmentation violation

12* bad argument to sys call

If labelis 0, the default system action applies to the signal. This is processes termination with or
without a core dump. Ifabelis odd, the signal is ignored. Any other evabel specifies an ad-
dress in the process where an interrupt is simulated. An RTI instruction will return from the in-
terrupt. As a signal is caught, it is reset to 0. Thus if it is desired to catch every such signal, the
catching routine must issue anotbgmalcall.

In C, iffuncis 0 or 1, the action is as described abovdurtis even, it is assumed to be the ad-
dress of a function entry point. When the signal occurs, the function will be called. A return
from the function will simulate the RTI.

The starred signals in the list above cause core images if not caught and not ignored.
In assembly language, the old value of the signal is returned in r0. In C, that value is retruned.
After afork, the child inherits all signals. Thexeccall resets all caught signals to default action.

SEE ALSO
Kill (1), Kill (I1)

DIAGNOSTICS
The error bit (c-bit) is set if the given signal is out of range. In Gldandicates an error; 0 indi-
cates success.

SLEEP (Il) 9/4/72 SLEEP (Il)

NAME
sleep- stop execution for interval

SYNOPSIS
(sleep = 35.; not in assembler)
(seconds in r0)
syssleep

deep(seconds)

DESCRIPTION
The current process is suspended from execution for the number of seconds specified by the ar-
gument.

SEE ALSO
sleep (1)

DIAGNOSTICS

STAT(I) 8/5/73

stat— get file status

SYNOPSIS

(stat =18.)
sys stat; name; buf

stat(name, buf)
char *name;
struct inode * buf;

DESCRIPTION

STAT(I)

Namepoints to a null-terminated string naming a filef is the address of a 36(10) byte buffer
into which information is placed concerning the file. It is unnecessary to have any permissions
at all with respect to the file, but all directories leading to the file must be readable. sider

bufhas the following structure (starting offset given in bytes):

struct {
char minor;
char major;
int inumber
int flags;
char nlinks;
char uid;
char gid;
char sizeO;
int sizel,
int addr[8];
int actime[2];
int modtime[2];
3

The flags are as follows:

/* +0: minor device of i-node */

/* +1: major device */

[*+2 *

/* +4: see below */

/* +6: number of links to file */

/* +7: user ID of owner */

[* +8: group ID of owner */

/* +9: high byte of 24-bit size */
/* +10: low word of 24-bit size */
/* +12: block numbers or device number */
[* +28: time of last access */

[* +32: time of last modification */

100000 i-node is allocated

060000 2-hit file type:
000000 plain file
040000 directory

020000 character-type special file

060000 block-type special file.
010000 large file
004000 set user-ID on execution
002000 set group-ID on execution
000400 read (owner)
000200 write (owner)
000100 execute (owner)
000070 read, write, execute (group)
000007 read, write, execute (others)

SEE ALSO

Is (1), fstat (11), fs (V)

DIAGNOSTICS

Error bit (c-bit) is set if the file cannot be found. From Glaeturn indicates an error.

STIME (1) 8/5/73 STIME (1)

NAME
stime— set time

SYNOPSIS
(stime = 25.)
(time in rO-r1)
sysstime

stime(tbuf)
int tbuf[2];

DESCRIPTION
Stimesets the system’s idea of the time and date. Time is measured in seconds from 0000 GMT
Jan 1 1970. Only the super-user may use this call.

SEE ALSO
date (1), time (I1), ctime (l11)

DIAGNOSTICS
Error bit (c-bit) set if user is not the super-user.

STTY (1) 8/5/73 STTY (1)

NAME
stty — set mode of typewriter

SYNOPSIS
(stty = 31.)
(file descriptor in r0)
syssity; arg

é'rg: speed; 0; mode

stty(fildes, arg)
int arg[3];

DESCRIPTION
Stty sets mode bits and character speeds for the typewriter whose file descriptor is passed in r0
(resp. is the first argument to the call). First, the system delays until the typewriter is quiescent.
Then the speed and general handling of the input side of the typewriter is set from the low byte
of the first word of thearg, and the speed of the output side is set from the high byte of the first
word of thearg. The speeds are selected from the following table. This table corresponds to the
speeds supported by the DH-11 interface. If DC-11, DL-11 or KL-11 interfaces are used, impos-
sible speed changes are ignored.

(turn off device)
50 baud
75 baud
110 baud
134.5 baud
150 baud
200 baud
300 baud
600 baud
1200 baud
10 1800 baud
11 2400 baud
12 4800 baud
13 9600 baud
14 External A
15 External B

In the current configuration, only 150 and 300 baud are really supported, in that the code conver-
sion and line control required for 2741's (134.5 baud) must be implemented by the user’s pro-
gram, and the half-duplex line discipline required for the 202 dataset (1200 baud) is not supplied.

Co~NoOOUOP~WNEFO

The second word of therg is currently unused and is available for expansion.

The third word of thearg sets themode. It contains several bits which determine the system’s
treatment of the typewriter:

10000 no delays after tabs (e.g. TN 300)

200 even parity allowed on input (e. g. for M37s)
100 odd parity allowed on input

040 raw mode: wake up on all characters

020 map CR into LF; echo LF or CR as CR-LF
010 echo (full duplex)

004 map upper case to lower on input (e. g. M33)
002 echo and print tabs as spaces

001 inhibit all function delays (e. g. CRTs)

Characters with the wrong parity, as determined by bits 200 and 100, are ignored.

STTY (1) 8/5/73 STTY (1)

In raw mode, every character is passed back immediately to the program. No erase or Kill pro-
cessing is done; the end-of-file character (EOT), the interrupt character (DELETE) and the quit
character (FS) are not treated specially.

Mode 020 causes input carriage returns to be turned into new-lines; input of either CR or LF
causes LF-CR both to be echoed (used for GE TermiNet 300’s and other terminals without the
newline function).

SEE ALSO
stty (1), gtty (1)

DIAGNOSTICS
The error bit (c-bit) is set if the file descriptor does not refer to a typewriter. From C, a negative

value indicates an error.

SYNC (1) 6/12/72 SYNC (1)

NAME
sync— update super-block
SYNOPSIS
(sync = 36.; not in assembler)
Sys sync
DESCRIPTION
Synccauses all information in core memory that should be on disk to be written out. This in-
cludes modified super blocks, modified i-nodes, and delayed block I/O.
It should be used by programs which examine a file system, for exaomglek, dfetc. It is
mandatory before a boot.
SEE ALSO
sync (VIII), update (VIII)
DIAGNOSTICS

TIME (1) 3/15/72 TIME (1)

NAME
time — get date and time
SYNOPSIS
(time = 13.)
sys time
time(tvec)
int tvec[2];
DESCRIPTION
Timereturns the time since 00:00:00 GMT, Jan. 1, 1970, measured in seconds.aErtm
high order word is in the rO register and the low order is in r1. From C, the user-supplied vector
is filled in.
SEE ALSO
date(l), stime(ll), ctime(lll)
DIAGNOSTICS

none

TIMES (Il) 8/5/73 TIMES (Il)

NAME
times— get process times
SYNOPSIS
(times = 43.; not in assembler)
sys times; buffer
times(buffer)
struct tbuffer *buffer;
DESCRIPTION
Timesreturns time-accounting information for the current process and for the terminated child
processes of the current process. All times are in 1/60 seconds.
After the call, the buffer will appear as follows:
struct tbuffer {
int proc user time;
int proc systemtime;
int child_user time[2];
int child_systemtime[2];
%
The children times are the sum of the children’s process times and their children’s times.
SEE ALSO
time(l)
DIAGNOSTICS
BUGS

The process times should be 32 bits as well.

UMOUNT (I1) 8/5/73 UMOUNT (11)

NAME
umount- dismount file system
SYNOPSIS
(umount = 22))
Sys umount; special
DESCRIPTION
Umountannounces to the system that special$ppecialis no longer to contain a removable file
system. The file associated with the special file reverts to its ordinary interpretatiom¢aed
).
SEE ALSO
umount (VIII), mount (II)
DIAGNOSTICS

Error bit (c-bit) set if no file system was mounted on the special file or if there are still active
files on the mounted file system.

UNLINK (11) 8/5/73 UNLINK (11)

NAME
unlink — remove directory entry

SYNOPSIS
(unlink = 10.)
sys unlink; name

unlink(name)
char *name;

DESCRIPTION
Namepoints to a null-terminated stringUnlink removes the entry for the file pointed to by
namefrom its directory. If this entry was the last link to the file, the contents of the file are freed
and the file is destroyed. If, however, the file was open in any process, the actual destruction is
delayed until it is closed, even though the directory entry has disappeared.

SEE ALSO
rm (1), rmdir (1), link (II)

DIAGNOSTICS
The error bit (c-bit) is set to indicate that the file does not exist or that its directory cannot be
written. Write permission is not required on the file itself. It is also illegal to unlink a directory
(except for the super-user). From C;lareturn indicates an error.

WAIT (1) 8/5/73 WAIT (1)

NAME
wait — wait for process to die

SYNOPSIS
(wait=7.)
sys wait
wait(status)
int *status;

DESCRIPTION
Wait causes its caller to delay until one of its child processes terminates. If any child has died
since the laswait, return is immediate; if there are no children, return is immediate with the er-
ror bit set (resp. with a value ofl returned). In the case of several children sevesmt calls
are needed to learn of all the deaths.
If no error is indicated on return, the r1 high byte (resp. the high byte storestants) contains
the low byte of the child process r0 (resp. the argumendaff) when it terminated. The r1
(resp. status) low byte contains the termination status of the process. See signal (II) for a list of
termination statuses (signals); O status indicates normal termination. If the 0200 bit of the termi-
nation status is set, a core image of the process was produced by the system.
If the parent process terminates without waiting on its children, the initialization process (pro-
cess ID = 1) inherits the children.

SEE ALSO
exit (1), fork (I1), signal (II)

DIAGNOSTICS

The error bit (c-bit) is set if there are no children not previously waited for. From C, a returned
value of-1 indicates an error.

WRITE (1) 3/15/72 WRITE (1)

NAME
write — write on a file

SYNOPSIS
(write = 4.)
(file descriptor in r0)
sys write; buffer; nbytes

write(fildes, buffer, nbytes)
char *buffer;

DESCRIPTION
A file descriptor is a word returned from a succesghan, creabr pipecall.

Bufferis the address afbytescontiguous bytes which are written on the output file. The num-
ber of characters actually written is returned (in r0). It should be regarded as an error if this is
not the same as requested.

Writes which are multiples of 512 characters long and begin on a 512-byte boundary are more
efficient than any others.

SEE ALSO
creat(ll), open(ll), pipe(ll)

DIAGNOSTICS
The error bit (c-bit) is set on an error: bad descriptor, buffer address, or count; physical 1/O er-
rors. From C, a returned value-f indicates an error.

