
-

ALLOC (III) 3/1/74 ALLOC (III)

NAME
alloc − core allocator

SYNOPSIS
char *alloc(size)

free(ptr)
char *ptr;

DESCRIPTION
Alloc andfreeprovide a simple general-purpose core management package.Alloc is given a size
in bytes; it returns a pointer to an area at least that size which is even and hence can hold an ob-
ject of any type. The argument tofree is a pointer to an area previously allocated byalloc; this
space is made available for further allocation.

Needless to say, grave disorder will result if the space assigned byalloc is overrun or if some
random number is handed tofree.

The routine uses a first-fit algorithm which coalesces blocks being freed with other blocks al-
ready free. It callssbrk (seebreak (II)) to get more core from the system when there is no suit-
able space already free, and writes ‘‘Out of space’’ on the standard output, then exists, if that
fails.

The external variableslop (which is 2 if not set) is a number such that ifn bytes are requested,
and if the first free block of size at leastn is no larger thann+slop, then the whole block will be
allocated instead of being split up. Larger values ofslop tend to reduce fragmentation at the ex-
pense of unused space in the allocated blocks.

DIAGNOSTICS
‘‘Out of space’’ if it needs core and can’t get it.

BUGS

- 1 -

-

ATAN (III) 4/30/73 ATAN (III)

NAME
atan − arc tangent function

SYNOPSIS
jsr r5,atan[2]

double atan(x)
double x;

double atan2(x, y)
double x, y;

DESCRIPTION
Theatanentry returns the arc tangent of fr0 in fr0; from C, the arc tangent ofx is returned. The
range is −π/2 to π/2. Theatan2entry returns the arc tangent of fr0/fr1 in fr0; from C, the arc tan-
gent ofx/y is returned. The range is −πto π.

DIAGNOSTIC
There is no error return.

BUGS

- 1 -

-

ATOF (III) 4/30/73 ATOF (III)

NAME
atof − ascii to floating

SYNOPSIS
double atof(nptr)
char *nptr;

DESCRIPTION
Atof converts a string to a floating number.Nptr should point to a string containing the number;
the first unrecognized character ends the number.

The only numbers recognized are: an optional minus sign followed by a string of digits option-
ally containing one decimal point, then followed optionally by the lettere followed by a signed
integer.

DIAGNOSTICS
There are none; overflow results in a very large number and garbage characters terminate the
scan.

BUGS
The routine should accept initial+, initial blanks, andE for e. Overflow should be signalled.

- 1 -

-

CRYPT (III) 4/30/73 CRYPT (III)

NAME
crypt − password encoding

SYNOPSIS
mov $key,r0
jsr pc,crypt

char *crypt(key)
char *key;

DESCRIPTION
On entry, r0 should point to a string of characters terminated by an ASCII NULL. The routine
performs an operation on the key which is difficult to invert (i.e. encrypts it) and leaves the re-
sulting eight bytes of ASCII alphanumerics in a global cell called ‘‘word’’.

From C, thekeyargument is a string and the value returned is a pointer to the eight-character en-
crypted password.

Login uses this result as a password.

SEE ALSO
passwd(I), passwd(V), login(I)

- 1 -

-

CTIME (III) 10/15/73 CTIME (III)

NAME
ctime − convert date and time to ASCII

SYNOPSIS
char *ctime(tvec)
int tvec[2];

[from Fortran]
double precision ctime
... = ctime(dummy)

int *localtime(tvec)
int tvec[2];

int *gmtime(tvec)
int tvec[2];

DESCRIPTION
Ctimeconverts a time in the vectortvecsuch as returned by time (II) into ASCII and returns a
pointer to a character string in the form

Sun Sep 16 01:03:52 1973\n\0

All the fields have constant width.

Once the time has been placed intot andt+2, this routine is callable from assembly language as
follows:

mov $t,−(sp)
jsr pc,_ctime
tst (sp)+

and a pointer to the string is available in r0.

The localtimeandgmtimeentries return pointers to integer vectors containing the broken-down
time. Localtimecorrects for the time zone and possible daylight savings time;gmtimeconverts
directly to GMT, which is the time UNIX uses. The value is a pointer to an array whose compo-
nents are

0 seconds
1 minutes
2 hours
3 day of the month (1-31)
4 month (0-11)
5 year − 1900
6 day of the week (Sunday = 0)
7 day of the year (0-365)
8 Daylight Saving Time flag if non-zero

The external variabletimezonecontains the difference, in seconds, between GMT and local stan-
dard time (in EST, is 5*60*60); the external variabledaylight is non-zero iff the standard U.S.A.
Daylight Saving Time conversion should be applied between the last Sundays in April and Octo-
ber. The external variablenixonflg if non-zero supersedesdaylight and causes daylight time all
year round.

A routine namedctime is also available from Fortran. Actually it more resembles thetime (II)
system entry in that it returns the number of seconds since the epoch 0000 GMT Jan. 1, 1970 (as
a floating-point number).

SEE ALSO
time(II)

BUGS

- 1 -

-

ECVT (III) 4/30/73 ECVT (III)

NAME
ecvt − output conversion

SYNOPSIS
jsr pc,ecvt

jsr pc,fcvt

char *ecvt(value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *fcvt(value, ndigit, decpt, sign)
...

DESCRIPTION
Ecvt is called with a floating point number in fr0.

On exit, the number has been converted into a string of ascii digits in a buffer pointed to by r0.
The number of digits produced is controlled by a global variable_ndigits.

Moreover, the position of the decimal point is contained in r2: r2=0 means the d.p. is at the left
hand end of the string of digits; r2>0 means the d.p. is within or to the right of the string.

The sign of the number is indicated by r1 (0 for +; 1 for −).

The low order digit has suffered decimal rounding (i. e. may have been carried into).

From C, thevalue is converted and a pointer to a null-terminated string ofndigit digits is re-
turned. The position of the decimal point is stored indirectly throughdecpt(negative means to
the left of the returned digits). If the sign of the result is negative, the word pointed to bysign is
non-zero, otherwise it is zero.

Fcvt is identical toecvt, except that the correct digit has had decimal rounding for F-style output
of the number of digits specified by_ndigits.

SEE ALSO
printf(III)

BUGS

- 1 -

-

EXP (III) 4/30/73 EXP (III)

NAME
exp − exponential function

SYNOPSIS
jsr r5,exp

double exp(x)
double x;

DESCRIPTION
The exponential of fr0 is returned in fr0. From C, the exponential ofx is returned.

DIAGNOSTICS
If the result is not representable, the c-bit is set and the largest positive number is returned.
From C, no diagnostic is available.

Zero is returned if the result would underflow.

BUGS

- 1 -

-

FLOOR (III) 5/15/74 FLOOR (III)

NAME
floor − floor and ceiling functions

SYNOPSIS
double floor(x)
double x;

double ceil(x)
double x;

DESCRIPTION
The floor function returns the largest integer (as a double precision number) not greater thanx.

The ceil function returns the smallest integer not less thanx.

BUGS

- 1 -

-

FPTRAP (III) 11/18/73 FPTRAP (III)

NAME
fptrap − floating point interpreter

SYNOPSIS
sys signal; 4; fptrap

DESCRIPTION
Fptrap is a simulator of the 11/45 FP11-B floating point unit. It works by intercepting illegal in-
struction faults and examining the offending operation codes for possible floating point.

FILES
found in /lib/libu.a; a fake version is in /lib/liba.a

DIAGNOSTICS
A break point trap is given when a real illegal instruction trap occurs.

SEE ALSO
signal(II)

BUGS
Rounding mode is not interpreted. Its slow.

- 1 -

-

GAMMA (III) 5/15/74 GAMMA (III)

NAME
gamma − log gamma function

SYNOPSIS
jsr r5,gamma

double gamma(x)
double x;

DESCRIPTION
If x is passed (in fr0)gammareturns ln Γ (x) (in fr0). The sign ofΓ(x) is returned in the ex-
ternal integersigngam.The following C program might be used to calculate Γ:

y = gamma(x);
if (y > 88.)

error();
y = exp(y);
if(signgam)

y = −y;

DIAGNOSTICS
The c-bit is set on negative integral arguments and the maximum value is returned. There is no
error return for C programs.

BUGS
No error return from C.

- 1 -

-

GETARG (III) 11/24/73 GETARG (III)

NAME
getarg − get command arguments from Fortran

SYNOPSIS
call getarg (i, iarray, [, isize])

... = iargc(dummy)

DESCRIPTION
Thegetargentry fills in iarray (which is considered to beinteger)with the Hollerith string rep-
resenting thei th argument to the command in which it it is called. If noisizeargument is speci-
fied, at least one blank is placed after the argument, and the last word affected is blank padded.
The user should make sure that the array is big enough.

If the isizeargument is given, the argument will be followed by blanks to fill upisizewords, but
even if the argument is long no more than that many words will be filled in.

The blank-padded array is suitable for use as an argument to setfil (III).

The iargc entry returns the number of arguments to the command, counting the first (file-name)
argument.

SEE ALSO
exec (II), setfil (III)

BUGS

- 1 -

-

GETC (III) 4/30/72 GETC (III)

NAME
getc − buffered input

SYNOPSIS
mov $filename,r0
jsr r5,fopen; iobuf

fopen(filename, iobuf)
char *filename;
struct buf *iobuf;

jsr r5,getc; iobuf
(character in r0)

getc(iobuf)
struct buf *iobuf;

jsr r5,getw; iobuf
(word in r0)

getw(iobuf)
struct buf *iobuf;

DESCRIPTION
These routines provide a buffered input facility.Iobuf is the address of a 518(10) byte buffer
area whose contents are maintained by these routines. Its format is:

ioptr: .=.+2 / file descriptor
.=.+2 / characters left in buffer
.=.+2 / ptr to next character
.=.+512. / the buffer

Or in C,

struct buf {
int fildes;
int nleft;
char *nextp;
char buffer[512];

};

Fopenmay be called initially to open the file. On return, the error bit (c-bit) is set if the open
failed. If fopenis never called,get will read from the standard input file. From C, the value is
negative if the open failed.

Getcreturns the next byte from the file in r0. The error bit is set on end of file or a read error.
From C, the character is returned; it is −1 on end-of-file or error.

Getwreturns the next word in r0.Getcandgetwmay be used alternately; there are no odd/even
problems.Getw is may be called from C;−1 is returned on end-of-file or error, but of course is
also a legitimate value.

Iobufmust be provided by the user; it must be on a word boundary.

To reuse the same buffer for another file, it is sufficient to close the original file and callfopen
again.

SEE ALSO
open(II), read(II), putc(III)

DIAGNOSTICS
c-bit set on EOF or error;
from C, negative return indicates error or EOF.

- 1 -

-

GETC (III) 4/30/72 GETC (III)

BUGS

- 2 -

-

GETCHAR (III) 4/7/73 GETCHAR (III)

NAME
getchar − read character

SYNOPSIS
getchar()

DESCRIPTION
Getcharprovides the simplest means of reading characters from the standard input for C pro-
grams. It returns successive characters until end-of-file, when it returns ‘‘\0’’.

Associated with this routine is an external variable calledfin, which is a structure containing a
buffer such as described undergetc(III).

Generally speaking,getcharshould be used only for the simplest applications;getc is better
when there are multiple input files.

SEE ALSO
getc (III)

DIAGNOSTICS
Null character returned on EOF or error.

BUGS
−1 should be returned on EOF; null is a legitimate character.

- 1 -

-

GETPW (III) 4/7/73 GETPW (III)

NAME
getpw − get name from UID

SYNOPSIS
getpw(uid, buf)
char *buf;

DESCRIPTION
Getpwsearches the password file for the (numerical)uid, and fills in buf with the corresponding
line; it returns non-zero ifuid could not be found. The line is null-terminated.

FILES
/etc/passwd

SEE ALSO
passwd(V)

DIAGNOSTICS
non-zero return on error.

BUGS

- 1 -

-

HMUL (III) 4/7/73 HMUL (III)

NAME
hmul − high-order product

SYNOPSIS
hmul(x, y)

DESCRIPTION
Hmul returns the high-order 16 bits of the product ofx andy. (The binary multiplication opera-
tor generates the low-order 16 bits of a product.)

BUGS

- 1 -

-

HYPOT (III) 6/12/72 HYPOT (III)

NAME
hypot − calculate hypotenuse

SYNOPSIS
jsr r5,hypot

DESCRIPTION
The square root of fr0× fr0 + fr1 × fr1 is returned in fr0. The calculation is done in such a way
that overflow will not occur unless the answer is not representable in floating point.

DIAGNOSTICS
The c-bit is set if the result cannot be represented.

BUGS

- 1 -

-

IERROR (III) 10/29/73 IERROR (III)

NAME
ierror − catch Fortran errors

SYNOPSIS
if (ierror (errno) .ne. 0) goto label

DESCRIPTION
Ierror provides a way of detecting errors during the running of a Fortran program. Its argument
is a run-time error number such as enumerated infc (I).

When ierror is called, it returns a 0 value; thus thegoto statement in the synopsis is not exe-
cuted. However, the routine stores inside itself the call point and invocation level. If and when
the indicated error occurs, areturn is simulated fromierror with a non-zero value; thus thegoto
(or other statement) is executed. It is a ghastly error to callierror from a subroutine which has
already returned when the error occurs.

This routine is essentially tailored to catching end-of-file situations. Typically it is called just
before the start of the loop which reads the input file, and thegoto jumps to a graceful termina-
tion of the program.

There is a limit of 5 on the number of different error numbers which can be caught.

SEE ALSO
fc (I)

BUGS
There is no way to ignore errors.

- 1 -

-

LDIV (III) 5/7/73 LDIV (III)

NAME
ldiv − long division

SYNOPSIS
ldiv(hidividend, lodividend, divisor)

lrem(hidividend, lodividend, divisor)

DESCRIPTION
The concatenation of the signed 16-bithidividendand the unsigned 16-bitlodividendis divided
by divisor. The 16-bit signed quotient is returned byldiv and the 16-bit signed remainder is re-
turned bylrem. Divide check and erroneous results will occur unless the magnitude of the divi-
sor is greater than that of the high-order dividend.

An integer division of an unsigned dividend by a signed divisor may be accomplished by

quo = ldiv(0, dividend, divisor);

and similarly for the remainder operation.

Often both the quotient and the remainder are wanted. Thereforeldiv leaves a remainder in the
external cellldivr.

BUGS
No divide check check.

- 1 -

-

LOCV (III) 3/9/74 LOCV (III)

NAME
locv − long output conversion

SYNOPSIS
char *locv(hi, lo)
int hi, lo;

DESCRIPTION
Locv converts a signed double-precision integer, whose parts are passed as arguments, to the
equivalent ASCII character string and returns a pointer to that string.

BUGS

- 1 -

-

LOG (III) 4/30/72 LOG (III)

NAME
log − natural logarithm

SYNOPSIS
jsr r5,log

double log(x)
double x;

DESCRIPTION
The natural logarithm of fr0 is returned in fr0. From C, the natural logarithm ofx is returned.

DIAGNOSTICS
The error bit (c-bit) is set if the input argument is less than or equal to zero and the result is a
negative number very large in magnitude. From C, there is no error indication.

- 1 -

-

MONITOR (III) 2/11/74 MONITOR (III)

NAME
monitor − prepare execution profile

SYNOPSIS
monitor(lowpc, highpc, buffer, bufsize)
int lowpc(), highpc(), buffer[], bufsize;

DESCRIPTION
Monitor is an interface to the system’s profile entry (II).Lowpcandhighpcare the names of two
functions;buffer is the address of a (user supplied) array ofbufsizeintegers. Monitor arranges
for the system to sample the user’s program counter periodically and record the execution his-
togram in the buffer. The lowest address sampled is that oflowpcand the highest is just below
highpc. For the results to be significant, especially where there are small, heavily used routines,
it is suggested that the buffer be no more than a few times smaller than the range of locations
sampled.

To profile the entire program, it is sufficient to use

extern etext;
...
monitor(2, &etext, buf, bufsize);

Etextis a loader-defined symbol which lies just above all the program text.

To stop execution monitoring and write the results on the filemon.out,use

monitor(0);

Then, when the program exits, prof (I) can be used to examine the results.

It is seldom necessary to call this routine directly; the−p option ofcc is simpler if one is satis-
fied with its default profile range and resolution.

FILES
mon.out

SEE ALSO
prof (I), profil (II), cc (I)

- 1 -

-

DC (IV) 5/27/74 DC (IV)

NAME
dc − DC-11 communications interface

DESCRIPTION
The discussion of typewriter I/O given in tty (IV) applies to these devices.

The DC-11 typewriter interface operates at any of four speeds, independently settable for input
and output. The speed is selected by the same encoding used by the DH (IV) device (enumer-
ated in stty (II)); impossible speed changes are ignored.

FILES
/dev/tty[01234567abcd] 113B Dataphones (not currently connected− see dh (IV))

SEE ALSO
tty (IV), stty (II), dh (IV)

BUGS

- 1 -

-

NLIST (III) 6/12/72 NLIST (III)

NAME
nlist − get entries from name list

SYNOPSIS
jsrr5,nlist; file; list
...

file: <file name\0>; .even
list: <name1xxx>; type1; value1

<name2xxx>; type2; value2
...
0

nlist(filename, nl)
char *filename;
struct {

char name[8];
int type;
int value;

} nl[];

DESCRIPTION
Nlist examines the name list in the given executable output file and selectively extracts a list of
values. The name list consists of a list of 8-character names (null padded) each followed by two
words. The list is terminated with a null name. Each name is looked up in the name list of the
file. If the name is found, the type and value of the name are placed in the two words following
the name. If the name is not found, the type entry is set to −1.

This subroutine is useful for examining the system name list kept in the file/unix. In this way
programs can obtain system addresses that are up to date.

SEE ALSO
a.out (V)

DIAGNOSTICS
All type entries are set to −1 if the file cannot be found or if it is not a valid namelist.

BUGS

- 1 -

-

PERROR (III) 11/5/73 PERROR (III)

NAME
perror − system error messages

SYNOPSIS
perror(s)
char *s;

int sys_nerr;
char *sys_errlist[];

int errno;

DESCRIPTION
Perror produces a short error message describing the last error encountered during a call to the
system from a C program. First the argument strings is printed, then a colon, then the message
and a new-line. Most usefully, the argument string is the name of the program which incurred
the error. The error number is taken from the external variableerrno, which is set when errors
occur but not cleared when non-erroneous calls are made.

To simplify variant formatting of messages, the vector of message stringssys_errlist is provided;
errno can be used as an index in this table to get the message string without the newline.
Sys_nerr is the largest message number provided for in the table; it should be checked because
new error codes may be added to the system before they are added to the table.

SEE ALSO
Introduction to System Calls

BUGS

- 1 -

-

POW (III) 4/30/73 POW (III)

NAME
pow − floating exponentiation

SYNOPSIS
movf x,fr0
movf y,fr1
jsr pc,pow

double pow(x,y)
double x, y;

DESCRIPTION
Powreturns the value ofxy (in fr0). Pow(0, y)is 0 for anyy. Pow(−x, y)returns a result only ify
is an integer.

SEE ALSO
exp(III), log(III)

DIAGNOSTICS
The carry bit is set on return in case of overflow,pow(0, 0),or pow(−x, y) for non-integraly.
From C there is no diagnostic.

BUGS

- 1 -

-

PRINTF (III) 9/17/73 PRINTF (III)

NAME
printf − formatted print

SYNOPSIS
printf(format, arg1, ...);
char *format;

DESCRIPTION
Printf converts, formats, and prints its arguments after the first under control of the first argu-
ment. The first argument is a character string which contains two types of objects: plain charac-
ters, which are simply copied to the output stream, and conversion specifications, each of which
causes conversion and printing of the next successive argument toprintf.

Each conversion specification is introduced by the character%. Following the%, there may be

− an optional minus sign ‘‘−’’ which specifiesleft adjustmentof the converted argument in
the indicated field;

− an optional digit string specifying afield width; if the converted argument has fewer
characters than the field width it will be blank-padded on the left (or right, if the left-
adjustment indicator has been given) to make up the field width;

− an optional period ‘‘.’’ which serves to separate the field width from the next digit string;

− an optional digit string(precision)which specifies the number of digits to appear after
the decimal point, for e- and f-conversion, or the maximum number of characters to be
printed from a string;

− a character which indicates the type of conversion to be applied.

The conversion characters and their meanings are

d
o
x The integer argument is converted to decimal, octal, or hexadecimal notation respec-

tively.

f The argument is converted to decimal notation in the style ‘‘[−]ddd.ddd’’ where the num-
ber of d’s after the decimal point is equal to the precision specification for the argument.
If the precision is missing, 6 digits are given; if the precision is explicitly 0, no digits and
no decimal point are printed. The argument should befloat or double.

e The argument is converted in the style ‘‘[−]d.ddde±dd’’ where there is one digit before
the decimal point and the number after is equal to the precision specification for the argu-
ment; when the precision is missing, 6 digits are produced. The argument should be a
float or doublequantity.

c The argument character or character-pair is printed if non-null.

s The argument is taken to be a string (character pointer) and characters from the string are
printed until a null character or until the number of characters indicated by the precision
specification is reached; however if the precision is 0 or missing all characters up to a
null are printed.

l The argument is taken to be an unsigned integer which is converted to decimal and print-
ed (the result will be in the range 0 to 65535).

If no recognizable character appears after the%, that character is printed; thus% may be printed
by use of the string%%. In no case does a non-existent or small field width cause truncation of
a field; padding takes place only if the specified field width exceeds the actual width. Characters
generated byprintf are printed by callingputchar.

SEE ALSO
putchar (III)

- 1 -

-

PUTC (III) 6/12/72 PUTC (III)

NAME
putc − buffered output

SYNOPSIS
mov $filename,r0
jsr r5,fcreat; iobuf

fcreat(file, iobuf)
char *file;
struct buf *iobuf;

(get byte in r0)
jsr r5,putc; iobuf

putc(c, iobuf)
int c;
struct buf *iobuf;

(get word in r0)
jsr r5,putw; iobuf

putw(w, iobuf);
int w;
struct buf *iobuf;

jsr r5,flush; iobuf

fflush(iobuf)
struct buf *iobuf;

DESCRIPTION
Fcreatcreates the given file (mode 666) and sets up the bufferiobuf (size 518 bytes);putc and
putwwrite a byte or word respectively onto the file;flush forces the contents of the buffer to be
written, but does not close the file. The format of the buffer is:

iobuf: .=.+2 / file descriptor
.=.+2 / characters unused in buffer
.=.+2 / ptr to next free character
.=.+512. / buffer

Or in C,

struct buf {
int fildes;
int nunused;
char *nxtfree;
char buff[512];

};

Fcreatsets the error bit (c-bit) if the file creation failed (from C, returns−1); none of the other
routines returns error information.

Before terminating, a program should callflush to force out the last of the output(fflush from C).

The user must supplyiobuf,which should begin on a word boundary.

To write a new file using the same buffer, it suffices to call[f]flush, close the file, and callfcreat
again.

SEE ALSO
creat(II), write(II), getc(III)

DIAGNOSTICS
error bit possible onfcreatcall.

- 1 -

-

PUTCHAR (III) 5/10/73 PUTCHAR (III)

NAME
putchar − write character

SYNOPSIS
putchar(ch)

flush()

DESCRIPTION
Putcharwrites out its argument and returns it unchanged. Only the low-order byte is written,
and only if it is non-null. Unless other arrangements have been made,putchar writes in un-
buffered fashion on the standard output file.

Associated with this routine is an external variablefout which has the structure of a buffer dis-
cussed under putc (III). If the file descriptor part of this structure (first word) is greater than 2,
output viaputcharis buffered. To achieve buffered output one may say, for example,

fout = dup(1); or
fout = creat(...);

In such a caseflush must be called before the program terminates in order to flush out the buf-
fered output.Flushmay be called at any time.

SEE ALSO
putc(III)

BUGS
Thefout notion is kludgy.

- 1 -

-

QSORT (III) 6/12/72 QSORT (III)

NAME
qsort − quicker sort

SYNOPSIS
(base of data in r1)
(end+1 of data in r2)
(element width in r3)
jsr pc,qsort

qsort(base, nel, width, compar)
char *base;
int (*compar)();

DESCRIPTION
Qsort is an implementation of the quicker-sort algorithm. The assembly-language version is de-
signed to sort equal length elements. Registers r1 and r2 delimit the region of core containing
the array of byte strings to be sorted: r1 points to the start of the first string, r2 to the first loca-
tion above the last string. Register r3 contains the length of each string. r2−r1 should be a mul-
tiple of r3. On return, r0, r1, r2, r3 are destroyed.

The C version has somewhat different arguments and the user must supply a comparison routine.
The first argument is to the base of the data; the second is the number of elements; the third is
the width of an element in bytes; the last is the name of the comparison routine. It is called with
two arguments which are pointers to the elements being compared. The routine must return a
negative integer if the first element is to be considered less than the second, a positive integer if
the second element is smaller than the first, and 0 if the elements are equal.

SEE ALSO
sort (I)

BUGS

- 1 -

-

RAND (III) 1/15/73 RAND (III)

NAME
rand − random number generator

SYNOPSIS
(seed in r0)
jsr pc,srand /to initialize

jsr pc,rand /to get a random number

srand(seed)
int seed;

rand()

DESCRIPTION
Randuses a multiplicative congruential random number generator to return successive pseudo-
random numbers (in r0) in the range from 0 to 215−1.

The generator is reinitialized by callingsrandwith 1 as argument (in r0). It can be set to a ran-
dom starting point by callingsrandwith whatever you like as argument, for example the low-
order word of the time.

BUGS
The low-order bits are not very random.

- 1 -

-

RESET (III) 5/10/73 RESET (III)

NAME
reset − execute non-local goto

SYNOPSIS
setexit()

reset()

DESCRIPTION
These routines are useful for dealing with errors discovered in a low-level subroutine of a pro-
gram.

Setexitis typically called just at the start of the main loop of a processing program. It stores cer-
tain parameters such as the call point and the stack level.

Resetis typically called after diagnosing an error in some subprocedure called from the main
loop. Whenresetis called, it pops the stack appropriately and generates a non-local return from
the last call tosetexit.

It is erroneous, and generally disastrous, to callresetunlesssetexithas been called in a routine
which is an ancestor ofreset.

BUGS

- 1 -

-

SETFIL (III) 10/29/73 SETFIL (III)

NAME
setfil − specify Fortran file name

SYNOPSIS
call setfil (unit, hollerith-string)

DESCRIPTION
Setfilprovides a primitive way to associate an integer I/Ounit number with a file named by the
hollerith-string. The end of the file name is indicated by a blank. Subsequent I/O on this unit
number will refer to file whose name is specified by the string.

Setfil should be called only before any I/O has been done on theunit, or just after doing a
rewind or endfile. It is ineffective for unit numbers 5 and 6.

SEE ALSO
fc (I)

BUGS
The exclusion of units 5 and 6 is unwarranted.

- 1 -

-

SIN (III) 3/15/72 SIN (III)

NAME
sin − sine, cosine

SYNOPSIS
jsr r5,sin (cos)

double sin(x)
double x;

double cos(x)
double x;

DESCRIPTION
The sine (cosine) of fr0 (resp.x), measured in radians, is returned (in fr0).

The magnitude of the argument should be checked by the caller to make sure the result is mean-
ingful.

BUGS

- 1 -

-

SQRT (III) 3/15/72 SQRT (III)

NAME
sqrt − square root function

SYNOPSIS
jsr r5,sqrt

double sqrt(x)
double x;

DESCRIPTION
The square root of fr0 (resp.x) is returned (in fr0).

DIAGNOSTICS
The c-bit is set on negative arguments and 0 is returned. There is no error return for C programs.

BUGS
No error return from C.

- 1 -

-

TTYN (III) 1/15/73 TTYN (III)

NAME
ttyn − return name of current typewriter

SYNOPSIS
jsr pc,ttyn

ttyn(file)

DESCRIPTION
Ttyn hunts up the last character of the name of the typewriter which is the standard input (from
as) or is specified by the argumentfile descriptor (from C). Ifn is returned, the typewriter name
is then ‘‘/dev/ttyn’’.

x is returned if the indicated file does not correspond to a typewriter.

- 1 -

-

VT (III) 6/4/73 VT (III)

NAME
vt − display (vt01) interface

SYNOPSIS
openvt()

erase()

label(s)
char s[];

line(x,y)

circle(x,y,r)

arc(x,y,x0,y0,x1,y1)

dot(x,y,dx,n,pattern)
int pattern[];

move(x,y)

DESCRIPTION
C interface routines to perform similarly named functions described in vt(IV).Openvtmust be
used before any of the others to open the storage scope for writing.

FILES
/dev/vt0, found in /lib/libp.a

SEE ALSO
vt (IV)

BUGS

- 1 -

