
-

TTY (IV) 5/27/74 TTY (IV)

NAME
tty − general typewriter interface

DESCRIPTION
All of the low-speed asynchronous communications ports use the same general interface, no mat-
ter what hardware is involved. This section discusses the common features of the interface; the
KL, DC, and DH writeups (IV) describe peculiarities of the individual devices.

When a typewriter file is opened, it causes the process to wait until a connection is established.
In practice user’s programs seldom open these files; they are opened byinit and become a user’s
input and output file. The very first typewriter file open in a process becomes thecontrol type-
writer for that process. The control typewriter plays a special role in handling quit or interrupt
signals, as discussed below. The control typewriter is inherited by a child process during afork.

A terminal associated with one of these files ordinarily operates in full-duplex mode. Characters
may be typed at any time, even while output is occurring, and are only lost when the system’s
character input buffers become completely choked, which is rare, or when the user has accumu-
lated the maximum allowed number of input characters which have not yet been read by some
program. Currently this limit is 256 characters. When the input limit is reached all the saved
characters are thrown away without notice.

When first opened, the interface mode is 300 baud; either parity accepted; 10 bits/character (one
stop bit); and newline action character. The system delays transmission after sending certain
function characters. Delays for horizontal tab, newline, and form feed are calculated for the
Teletype Model 37; the delay for carriage return is calculated for the GE TermiNet 300. Most of
these operating states can be changed by using the system call stty(II). In particular, provided
the hardware permits, the speed of the received and transmitted characters can be changed. In
addition, the following software modes can be invoked: acceptance of even parity, odd parity, or
both; a raw mode in which all characters may be read one at a time; a carriage return (CR) mode
in which CR is mapped into newline on input and either CR or line feed (LF) cause echoing of
the sequence LF-CR; mapping of upper case letters into lower case; suppression of echoing; sup-
pression of delays after function characters; and the printing of tabs as spaces. Seegetty(VIII)
for the way that terminal speed and type are detected.

Normally, typewriter input is processed in units of lines. This means that a program attempting
to read will be suspended until an entire line has been typed. Also, no matter how many charac-
ters are requested in the read call, at most one line will be returned. It is not however necessary
to read a whole line at once; any number of characters may be requested in a read, even one,
without losing information.

During input, erase and kill processing is normally done. The character ‘#’ erases the last char-
acter typed, except that it will not erase beyond the beginning of a line or an EOT. The character
‘@’ kills the entire line up to the point where it was typed, but not beyond an EOT. Both these
characters operate on a keystroke basis independently of any backspacing or tabbing that may
have been done. Either ‘@’ or ‘#’ may be entered literally by preceding it by ‘\’; the erase or kill
character remains, but the ‘\’ disappears.

In upper-case mode, all upper-case letters are mapped into the corresponding lower-case letter.
The upper-case letter may be generated by preceding it by ‘\’. In addition, the following escape
sequences are generated on output and accepted on input:

for use
` \´
 \!
˜ \ˆ
{ \(
} \)

In raw mode, the program reading is awakened on each character. No erase or kill processing is
done; and the EOT, quit and interrupt characters are not treated specially. The input parity bit is
passed back to the reader, but parity is still generated for output characters.

- 1 -

-

TTY (IV) 5/27/74 TTY (IV)

The ASCII EOT character may be used to generate an end of file from a typewriter. When an
EOT is received, all the characters waiting to be read are immediately passed to the program,
without waiting for a new-line. Thus if there are no characters waiting, which is to say the EOT
occurred at the beginning of a line, zero characters will be passed back, and this is the standard
end-of-file indication. The EOT is passed back unchanged in raw mode.

When the carrier signal from the dataset drops (usually because the user has hung up his termi-
nal) a hangupsignal is sent to all processes with the typewriter as control typewriter. Unless
other arrangements have been made, this signal causes the processes to terminate. If the hangup
signal is ignored, any read returns with an end-of-file indication. Thus programs which read a
typewriter and test for end-of-file on their input can terminate appropriately when hung up on.

Two characters have a special meaning when typed. The ASCII DEL character (sometimes
called ‘rubout’) is not passed to a program but generates aninterrupt signal which is sent to all
processes with the associated control typewriter. Normally each such process is forced to termi-
nate, but arrangements may be made either to ignore the signal or to receive a simulated trap to
an agreed-upon location. Seesignal(II).

The ASCII character FS generates thequit signal. Its treatment is identical to the interrupt signal
except that unless a receiving process has made other arrangements it will not only be terminated
but a core image file will be generated. Seesignal (II). If you find it hard to type this character,
try control-\ or control-shift-L.

When one or more characters are written, they are actually transmitted to the terminal as soon as
previously-written characters have finished typing. Input characters are echoed by putting them
in the output queue as they arrive. When a process produces characters more rapidly than they
can be typed, it will be suspended when its output queue exceeds some limit. When the queue
has drained down to some threshold the program is resumed. Even parity is always generated on
output. The EOT character is not transmitted (except in raw mode) to prevent terminals which
respond to it from hanging up.

SEE ALSO
dc (IV), kl (IV), dh (IV), getty (VIII), stty (I, II), gtty (I, II), signal (II)

BUGS
Half-duplex terminals are not supported. On raw-mode output, parity should be transmitted as
specified in the characters written.

- 2 -

