
-

A.OUT (V) 9/9/73 A.OUT (V)

NAME
a.out − assembler and link editor output

DESCRIPTION
A.out is the output file of the assembleras and the link editorld. Both programs makea.out exe-
cutable if there were no errors and no unresolved external references.

This file has four sections: a header, the program and data text, a symbol table, and relocation
bits (in that order). The last two may be empty if the program was loaded with the ‘‘−s’’ option
of ld or if the symbols and relocation have been removed bystrip.

The header always contains 8 words:

1 A magic number (407 or 410(8))
2 The size of the program text segment
3 The size of the initialized portion of the data segment
4 The size of the uninitialized (bss) portion of the data segment
5 The size of the symbol table
6 The entry location (always 0 at present)
7 Unused
8 A flag indicating relocation bits have been suppressed

The sizes of each segment are in bytes but are even. The size of the header is not included in any
of the other sizes.

When a file produced by the assembler or loader is loaded into core for execution, three logical
segments are set up: the text segment, the data segment (with uninitialized data, which starts off
as all 0, following initialized), and a stack. The text segment begins at 0 in the core image; the
header is not loaded. If the magic number (word 0) is 407, it indicates that the text segment is
not to be write-protected and shared, so the data segment is immediately contiguous with the text
segment. If the magic number is 410, the data segment begins at the first 0 mod 8K byte bound-
ary following the text segment, and the text segment is not writable by the program; if other pro-
cesses are executing the same file, they will share the text segment.

The stack will occupy the highest possible locations in the core image: from 177776(8) and
growing downwards. The stack is automatically extended as required. The data segment is only
extended as requested by thebreak system call.

The start of the text segment in the file is 20(8); the start of the data segment is 20+St (the size of
the text) the start of the relocation information is 20+St+Sd; the start of the symbol table is
20+2(St+Sd) if the relocation information is present, 20+St+Sd if not.

The symbol table consists of 6-word entries. The first four words contain the ASCII name of the
symbol, null-padded. The next word is a flag indicating the type of symbol. The following val-
ues are possible:

00 undefined symbol
01 absolute symbol
02 text segment symbol
03 data segment symbol
37 file name symbol (produced by ld)
04 bss segment symbol
40 undefined external (.globl) symbol
41 absolute external symbol
42 text segment external symbol
43 data segment external symbol
44 bss segment external symbol

Values other than those given above may occur if the user has defined some of his own instruc-
tions.

- 1 -

-

A.OUT (V) 9/9/73 A.OUT (V)

The last word of a symbol table entry contains the value of the symbol.

If the symbol’s type is undefined external, and the value field is non-zero, the symbol is inter-
preted by the loaderld as the name of a common region whose size is indicated by the value of
the symbol.

The value of a word in the text or data portions which is not a reference to an undefined external
symbol is exactly that value which will appear in core when the file is executed. If a word in the
text or data portion involves a reference to an undefined external symbol, as indicated by the re-
location bits for that word, then the value of the word as stored in the file is an offset from the as-
sociated external symbol. When the file is processed by the link editor and the external symbol
becomes defined, the value of the symbol will be added into the word in the file.

If relocation information is present, it amounts to one word per word of program text or initial-
ized data. There is no relocation information if the ‘‘suppress relocation’’ flag in the header is
on.

Bits 3-1 of a relocation word indicate the segment referred to by the text or data word associated
with the relocation word:

00 indicates the reference is absolute
02 indicates the reference is to the text segment
04 indicates the reference is to initialized data
06 indicates the reference is to bss (uninitialized data)
10 indicates the reference is to an undefined external symbol.

Bit 0 of the relocation word indicates ifon that the reference is relative to the pc (e.g. ‘‘clr x’’); if
off, that the reference is to the actual symbol (e.g., ‘‘clr *$x’’).

The remainder of the relocation word (bits 15-4) contains a symbol number in the case of exter-
nal references, and is unused otherwise. The first symbol is numbered 0, the second 1, etc.

SEE ALSO
as(I), ld(I), strip(I), nm(I)

- 2 -

-

ARCHIVE (V) 9/10/73 ARCHIVE (V)

NAME
ar − archive (library) file format

DESCRIPTION
The archive commandar is used to combine several files into one. Archives are used mainly as
libraries to be searched by the link-editorld.

A file produced byar has a magic number at the start, followed by the constituent files, each pre-
ceded by a file header. The magic number is 177555(8) (it was chosen to be unlikely to occur
anywhere else). The header of each file is 16 bytes long:

0-7 file name, null padded on the right
8-11 modification time of the file
12 user ID of file owner
13 file mode
14-15 file size

If the file is an odd number of bytes long, it is padded with a null byte, but the size in the header
is correct.

Notice there is no provision for empty areas in an archive file.

SEE ALSO
ar, ld (I)

BUGS
Names are only 8 characters, not 14. More important, there isn’t enough room to store the prop-
er mode, soar always extracts in mode 666.

- 1 -

-

CORE (V) 9/10/73 CORE (V)

NAME
core − format of core image file

DESCRIPTION
UNIX writes out a core image of a terminated process when any of various errors occur. See
signal (II) for the list of reasons; the most common are memory violations, illegal instructions,
bus errors, and user-generated quit signals. The core image is called ‘‘core’’ and is written in the
process’s working directory (provided it can be; normal access controls apply).

The first 1024 bytes of the core image are a copy of the system’s per-user data for the process,
including the registers as they were at the time of the fault. The remainder represents the actual
contents of the user’s core area when the core image was written. At the moment, if the text seg-
ment is write-protected and shared, it is not dumped; otherwise the entire address space is
dumped.

The actual format of the information in the first 1024 bytes is complicated. A guru will have to
be consulted if enlightenment is required. In general the debuggerdb (I) should be used to deal
with core images.

SEE ALSO
db (I), signal (II)

- 1 -

-

DIRECTORY (V) 9/10/73 DIRECTORY (V)

NAME
dir − format of directories

DESCRIPTION
A directory behaves exactly like an ordinary file, save that no user may write into a directory.
The fact that a file is a directory is indicated by a bit in the flag word of its i-node entry. Direc-
tory entries are 16 bytes long. The first word is the i-number of the file represented by the entry,
if non-zero; if zero, the entry is empty.

Bytes 2-15 represent the (14-character) file name, null padded on the right. These bytes are not
cleared for empty slots.

By convention, the first two entries in each directory are for ‘‘.’’ and ‘‘ ..’’. The first is an entry
for the directory itself. The second is for the parent directory. The meaning of ‘‘..’’ is modified
for the root directory of the master file system and for the root directories of removable file sys-
tems. In the first case, there is no parent, and in the second, the system does not permit off-
device references. Therefore in both cases ‘‘..’’ has the same meaning as ‘‘.’’.

SEE ALSO
file system (V)

- 1 -

-

DUMP (V) 5/15/74 DUMP (V)

NAME
dump − incremental dump tape format

DESCRIPTION
Thedump andrestor commands are used to write and read incremental dump magnetic tapes.

The dump tape consists of blocks of 512-bytes each. The first block has the following structure.

struct {
int isize;
int fsize;
int date[2];
int ddate[2];
int tsize;

};

Isize, and fsize are the corresponding values from the super block of the dumped file system.
(See file system (V).)Date is the date of the dump.Ddate is the incremental dump date. The
incremental dump contains all files modified betweenddate and date. Tsize is the number of
blocks per reel. This block checksums to the octal value 31415.

Next there are enough whole tape blocks to contain one word per file of the dumped file system.
This is isize divided by 16 rounded to the next higher integer. The first word corresponds to i-
node 1, the second to i-node 2, and so forth. If a word is zero, then the corresponding file was
not dumped. A non-zero value of the word indicates that the file was dumped and the value is
one more than the number of blocks it contains.

The rest of the tape contains for each dumped file a header block and the data blocks from the
file. The header contains an exact copy of the i-node (see file system (V)) and also checksums to
031415. The number of data blocks per file is directly specified by the control word for the file
and indirectly specified by the size in the i-node. If these numbers differ, the file was dumped
with a ‘phase error’.

SEE ALSO
dump (VIII), restor (VIII), file system(V)

- 1 -

-

FILE SYSTEM (V) 9/7/73 FILE SYSTEM (V)

NAME
fs − format of file system volume

DESCRIPTION
Every file system storage volume (e.g. RF disk, RK disk, RP disk, DECtape reel) has a common
format for certain vital information. Every such volume is divided into a certain number of 256
word (512 byte) blocks. Block 0 is unused and is available to contain a bootstrap program, pack
label, or other information.

Block 1 is thesuper block. Starting from its first word, the format of a super-block is

struct {
int isize;
int fsize;
int nfree;
int free[100];
int ninode;
int inode[100];
char flock;
char ilock;
char fmod;
int time[2];

};

Isize is the number of blocks devoted to the i-list, which starts just after the super-block, in block
2. Fsize is the first block not potentially available for allocation to a file. This number is unused
by the system, but is used by programs likecheck (I) to test for bad block numbers. The free list
for each volume is maintained as follows. Thefree array contains, infree[1], ... , free[nfree−1],
up to 99 numbers of free blocks.Free[0] is the block number of the head of a chain of blocks
constituting the free list. The first word in each free-chain block is the number (up to 100) of
free-block numbers listed in the next 100 words of this chain member. The first of these 100
blocks is the link to the next member of the chain. To allocate a block: decrementnfree, and the
new block isfree[nfree]. If the new block number is 0, there are no blocks left, so give an error.
If nfree became 0, read in the block named by the new block number, replacenfree by its first
word, and copy the block numbers in the next 100 words into thefree array. To free a block,
check if nfree is 100; if so, copynfree and thefree array into it, write it out, and setnfree to 0.
In any event setfree[nfree] to the freed block’s number and incrementnfree.

Ninode is the number of free i-numbers in theinode array. To allocate an i-node: ifninode is
greater than 0, decrement it and returninode[ninode]. If it was 0, read the i-list and place the
numbers of all free inodes (up to 100) into theinode array, then try again. To free an i-node,
providedninode is less than 100, place its number intoinode[ninode] and incrementninode. If
ninode is already 100, don’t bother to enter the freed i-node into any table. This list of i-nodes is
only to speed up the allocation process; the information as to whether the inode is really free or
not is maintained in the inode itself.

Flock andilock are flags maintained in the core copy of the file system while it is mounted and
their values on disk are immaterial. The value offmod on disk is likewise immaterial; it is used
as a flag to indicate that the super-block has changed and should be copied to the disk during the
next periodic update of file system information.

Time is the last time the super-block of the file system was changed, and is a double-precision
representation of the number of seconds that have elapsed since 0000 Jan. 1 1970 (GMT). Dur-
ing a reboot, thetime of the super-block for the root file system is used to set the system’s idea
of the time.

I-numbers begin at 1, and the storage for i-nodes begins in block 2. Also, i-nodes are 32 bytes
long, so 16 of them fit into a block. Therefore, i-nodei is located in block (i + 31) / 16, and be-
gins 32.((i + 31) (mod 16) bytes from its start. I-node 1 is reserved for the root directory of the
file system, but no other i-number has a built-in meaning. Each i-node represents one file. The
format of an i-node is as follows.

- 1 -

-

FILE SYSTEM (V) 9/7/73 FILE SYSTEM (V)

struct {
int flags; /* +0: see below */
char nlinks; /* +2: number of links to file */
char uid; /* +3: user ID of owner */
char gid; /* +4: group ID of owner */
char size0; /* +5: high byte of 24-bit size */
int size1; /* +6: low word of 24-bit size */
int addr[8]; /* +8: block numbers or device number */
int actime[2]; /* +24: time of last access */
int modtime[2]; /* +28: time of last modification */

};

The flags are as follows:

100000 i-node is allocated
060000 2-bit file type:

000000 plain file
040000 directory
020000 character-type special file
060000 block-type special file.

010000 large file
004000 set user-ID on execution
002000 set group-ID on execution
000400 read (owner)
000200 write (owner)
000100 execute (owner)
000070 read, write, execute (group)
000007 read, write, execute (others)

Special files are recognized by their flags and not by i-number. A block-type special file is basi-
cally one which can potentially be mounted as a file system; a character-type special file cannot,
though it is not necessarily character-oriented. For special files the high byte of the first address
word specifies the type of device; the low byte specifies one of several devices of that type. The
device type numbers of block and character special files overlap.

The address words of ordinary files and directories contain the numbers of the blocks in the file
(if it is small) or the numbers of indirect blocks (if the file is large).

Byte numbern of a file is accessed as follows.N is divided by 512 to find its logical block num-
ber (sayb) in the file. If the file is small (flag 010000 is 0), thenb must be less than 8, and the
physical block number isaddr[b].

If the file is large,b is divided by 256 to yieldi, andaddr[i] is the physical block number of the
indirect block. The remainder from the division yields the word in the indirect block which con-
tains the number of the block for the sought-for byte.

For blockb in a file to exist, it is not necessary that all blocks less thanb exist. A zero block
number either in the address words of the i-node or in an indirect block indicates that the corre-
sponding block has never been allocated. Such a missing block reads as if it contained all zero
words.

SEE ALSO
check (VIII)

- 2 -

-

MTAB (V) 1/6/74 MTAB (V)

NAME
mtab − mounted file system table

DESCRIPTION
Mtab resides in directory/etc and contains a table of devices mounted by themount command.
Umount removes entries.

Each entry is 64 bytes long; the first 32 are the null-padded name of the place where the special
file is mounted; the second 32 are the null-padded name of the special file. The special file has
all its directories stripped away; that is, everything through the last ‘‘/’’ is thrown away.

This table is present only so people can look at it. It does not matter tomount if there are dupli-
cated entries nor toumount if a name cannot be found.

FILES
/etc/mtab

SEE ALSO
mount (VIII), umount (VIII)

BUGS

- 1 -

-

PASSWD (V) 9/10/73 PASSWD (V)

NAME
passwd − password file

DESCRIPTION
Passwd contains for each user the following information:

name (login name, contains no upper case)
encrypted password
numerical user ID
numerical group ID (for now, always 1)
GCOS job number and box number
initial working directory
program to use as Shell

This is an ASCII file. Each field within each user’s entry is separated from the next by a colon.
The job and box numbers are separated by a comma. Each user is separated from the next by a
new-line. If the password field is null, no password is demanded; if the Shell field is null, the
Shell itself is used.

This file resides in directory /etc. Because of the encrypted passwords, it can and does have gen-
eral read permission and can be used, for example, to map numerical user ID’s to names.

SEE ALSO
login (I), crypt (III), passwd (I)

- 1 -

-

TP (V) 9/10/73 TP (V)

NAME
tp − DEC/mag tape formats

DESCRIPTION
The commandtp dumps and extracts files to and DECtape and magtape. The formats of these
tapes are the same except that magtapes have larger directories.

Block zero contains a copy of a stand-alone bootstrap program. See boot procedures (VIII).

Blocks 1 through 24 for DECtape (1 through 62 for magtape) contain a directory of the tape.
There are 192 (resp. 496) entries in the directory; 8 entries per block; 64 bytes per entry. Each
entry has the following format:

path name 32 bytes
mode 2 bytes
uid 1 byte
gid 1 byte
unused 1 byte
size 3 bytes
time modified 4 bytes
tape address 2 bytes
unused 16 bytes
check sum 2 bytes

The path name entry is the path name of the file when put on the tape. If the pathname starts
with a zero word, the entry is empty. It is at most 32 bytes long and ends in a null byte. Mode,
uid, gid, size and time modified are the same as described under i-nodes (file system (V)). The
tape address is the tape block number of the start of the contents of the file. Every file starts on a
block boundary. The file occupies (size+511)/512 blocks of continuous tape. The checksum en-
try has a value such that the sum of the 32 words of the directory entry is zero.

Blocks 25 (resp. 63) on are available for file storage.

A fake entry (see tp(I)) has a size of zero.

SEE ALSO
file system(V), tp(I)

- 1 -

-

TTYS (V) 2/20/74 TTYS (V)

NAME
ttys − typewriter initialization data

DESCRIPTION
The ttys file is read by theinit program and specifies which typewriter special files are to have a
process created for them which will allow people to log in. It consists of lines of 3 characters
each.

The first character is either ‘0’ or ‘1’; the former causes the line to be ignored, the latter causes it
to be effective. The second character is the last character in the name of a typewriter; e.g.x
refers to the file ‘/dev/ttyx’. The third character is the offset in a table contained ininit which se-
lects an initialization program for the line; currently it must be ‘0’ and the only such program is
/etc/getty.

FILES
found in /etc

SEE ALSO
init (VIII)

- 1 -

-

UTMP (V) 9/10/73 UTMP (V)

NAME
utmp − user information

DESCRIPTION
This file allows one to discover information about who is currently using UNIX. The file is bi-
nary; each entry is 16(10) bytes long. The first eight bytes contain a user’s login name or are
null if the table slot is unused. The low order byte of the next word contains the last character of
a typewriter name. The next two words contain the user’s login time. The last word is unused.

This file resides in directory /tmp.

SEE ALSO
init (VIII) and login (I), which maintain the file; who(I), which interprets it.

- 1 -

-

WTMP (V) 2/22/74 WTMP (V)

NAME
wtmp − user login history

DESCRIPTION
This file records all logins and logouts. Its format is exactly like utmp (V) except that a null user
name indicates a logout on the associated typewriter. Furthermore, the typewriter name ‘˜’ indi-
cates that the system was rebooted at the indicated time; the adjacent pair of entries with type-
writer names ‘ ’ and ‘}’ indicate the system-maintained time just before and just after adate
command has changed the system’s idea of the time.

Wtmp is maintained by login (I) and init (VIII). Neither of these programs creates the file, so if
it is removed record-keeping is turned off. It is summarized by ac (VIII).

This file resides in directory/usr/adm.

SEE ALSO
login (I), init (VIII), ac (VIII), who (I)

- 1 -

