
-

A Tutorial Introduction to the UNIX Text Editor

B. W. Kernighan

Bell Laboratories, Murray Hill, N. J.

Introduction

Ed is a ‘‘text editor’’, that is, an interactive pro-
gram for creating and modifying ‘‘text’’, using direc-
tions provided by a user at a terminal.The text is often
a document like this one, or a program or perhaps data
for a program.

This introduction is meant to simplify learning
ed. The recommended way to learned is to read this
document, simultaneously usinged to follow the exam-
ples, then to read the description in section I of the
UNIX manual, all the while experimenting withed.
(Solicitation of advice from experienced users is also
useful.)

Do the exercises! They cover material not com-
pletely discussed in the actual text. An appendix sum-
marizes the commands.

Disclaimer

This is an introduction and a tutorial.For this
reason, no attempt is made to cover more than a part of
the facilities thated offers (although this fraction in-
cludes the most useful and frequently used parts).Al-
so, there is not enough space to explain basic UNIX
procedures. We will assume that you know how to log
on to UNIX, and that you have at least a vague under-
standing of what a file is.

You must also know what character to type as the
end-of-line on your particular terminal.This is a ‘‘new-
line’’ on Model 37 Teletypes, and ‘‘return’’ on most
others. Throughout,we will refer to this character,
whatever it is, as ‘‘newline’’.

Getting Started

We’l l assume that you have logged in to UNIX
and it has just said ‘‘%’’. The easiest way to geted is
to type

ed (followed by a newline)

You are now ready to go− ed is waiting for you to tell
it what to do.

Creating Text − the Append command ‘‘a’’

As our first problem, suppose we want to create
some text starting from scratch.Perhaps we are typing
the very first draft of a paper; clearly it will have to start
somewhere, and undergo modifications later. This sec-
tion will show how to get some text in, just to get start-
ed. Laterwe’ll talk about how to change it.

Whened is first started, it is rather like working
with a blank piece of paper− there is no text or infor-
mation present. This must be supplied by the person
usinged; it is usually done by typing in the text, or by
reading it intoed from a file. We will start by typing in
some text, and return shortly to how to read files.

First a bit of terminology. In ed jargon, the text
being worked on is said to be ‘‘kept in a buffer.’’ Think
of the buffer as a work space, if you like, or simply as
the information that you are going to be editing.In ef-
fect the buffer is like the piece of paper, on which we
will write things, then change some of them, and finally
file the whole thing away for another day.

The user tellsedwhat to do to his text by typing
instructions called ‘‘commands.’’ M ost commands
consist of a single letter, which must be typed in lower
case. Eachcommand is typed on a separate line.
(Sometimes the command is preceded by information
about what line or lines of text are to be affected− we
will discuss these shortly.) Ed makes no response to
most commands− there is no prompting or typing of
messages like ‘‘ready’’. (This silence is preferred by
experienced users, but sometimes a hangup for begin-
ners.)

The first command isappend,written as the letter

a

all by itself. It means ‘‘append (or add) text lines to the
buffer, as I type them in.’’ A ppending is rather like
writing fresh material on a piece of paper.

So to enter lines of text into the buffer, we just
type an ‘‘a’’ f ollowed by a newline, followed by the
lines of text we want, like this:

a
Now is the time
for all good men

–

– 2 –

to come to the aid of their party.
.

The only way to stop appending is to type a line
that contains only a period. The ‘‘ .’’ i s used to telled
that we have finished appending.(Even experienced
users forget that terminating ‘‘ .’’ sometimes. If ed
seems to be ignoring you, type an extra line with just
‘‘ .’’ on it. You may then find you’ve added some
garbage lines to your text, which you’ll have to take out
later.)

After the append command has been done, the
buffer will contain the three lines

Now is the time
for all good men
to come to the aid of their party.

The ‘‘a’’ and ‘‘ .’’ aren’t there, because they are not text.

To add more text to what we already have, just is-
sue another ‘‘a’’ command, and continue typing.

Error Messages− ‘‘ ?’’

If at any time you make an error in the com-
mands you type toed,it will tell you by typing

?

This is about as cryptic as it can be, but with practice,
you can usually figure out how you goofed.

Writing text out as a file − the Write command ‘‘w’’

It’s likely that we’ll want to save our text for later
use. To write out the contents of the buffer onto a file,
we use thewrite command

w

followed by the filename we want to write on.This
will copy the buffer’s contents onto the specified file
(destroying any previous information on the file).To
save the text on a file named ‘‘junk’’, for example, type

w junk

Leave a space between ‘‘w’ ’ and the file name.Ed will
respond by printing the number of characters it wrote
out. Inour case,edwould respond with

68

(Remember that blanks and the newline character at the
end of each line are included in the character count.)
Writing a file just makes a copy of the text − the
buffer’s contents are not disturbed, so we can go on
adding lines to it.This is an important point.Ed at all
times works on a copy of a file, not the file itself.No
change in the contents of a file takes place until you
give a ‘‘w’ ’ command. (Writingout the text onto a file
from time to time as it is being created is a good idea,
since if the system crashes or if you make some horri-
ble mistake, you will lose all the text in the buffer but
any text that was written onto a file is relatively safe.)

Leaving ed− the Quit command ‘‘q’’

To terminate a session withed, save the text
you’re working on by writing it onto a file using the
‘‘ w’’ command, and then type the command

q

which stands forquit. The system will respond with
‘‘ %’’. At this point your buffer vanishes, with all its
text, which is why you want to write it out before quit-
ting.

Exercise 1:

Enteredand create some text using

a
. . . text . . .
.

Write it out using ‘‘w’ ’. Then leave ed with the ‘‘q’’
command, and print the file, to see that everything
worked. (To print a file, say

pr filename

or

cat filename

in response to ‘‘%’’. Try both.)

Reading text from a file− the Edit command ‘‘e’’

A common way to get text into the buffer is to
read it from a file in the file system. This is what you
do to edit text that you saved with the ‘‘w’ ’ command in
a previous session.The edit command ‘‘e’’ f etches the
entire contents of a file into the buffer. So if we had
saved the three lines ‘‘Now is the time’’, etc., with a
‘‘ w’’ command in an earlier session, theedcommand

e junk

would fetch the entire contents of the file ‘‘junk’ ’ i nto
the buffer, and respond

68

which is the number of characters in ‘‘junk’’. If any-
thing was already in the buffer, it is deleted first.

If we use the ‘‘e’’ command to read a file into the
buffer, then we need not use a file name after a subse-
quent ‘‘w’ ’ command;ed remembers the last file name
used in an ‘‘e’’ command, and ‘‘w’ ’ w ill write on this
file. Thusa common way to operate is

ed
e file
[editing session]
w
q

You can find out at any time what file nameed is
remembering by typing thefile command ‘‘f ’ ’. In our
case, if we typed

-

– 3 –

f

edwould reply

junk

Reading text from a file− the Read command ‘‘r’’

Sometimes we want to read a file into the buffer
without destroying anything that is already there.This
is done by thereadcommand ‘‘r’’. Thecommand

r junk

will read the file ‘‘junk’ ’ i nto the buffer; it adds it to the
end of whatever is already in the buffer. So if we do a
read after an edit:

e junk
r junk

the buffer will containtwo copies of the text (six lines).

Now is the time
for all good men
to come to the aid of their party.
Now is the time
for all good men
to come to the aid of their party.

Like the ‘‘w’ ’ and ‘‘e’’ commands, ‘‘r’ ’ prints the num-
ber of characters read in, after the reading operation is
complete.

Generally speaking, ‘‘r’ ’ is much less used than
‘‘ e’’.

Exercise 2:

Experiment with the ‘‘e’’ command− try reading
and printing various files.You may get an error ‘‘?’’,
typically because you spelled the file name wrong.Try
alternately reading and appending to see that they work
similarly. Verify that

ed filename

is exactly equivalent to

ed
e filename

What does

f fi lename

do?

Printing the contents of the buffer − the Print com-
mand ‘‘p’’

To print or list the contents of the buffer (or parts
of it) on the terminal, we use the print command

p

The way this is done is as follows. We specify the lines
where we want printing to begin and where we want it
to end, separated by a comma, and followed by the let-
ter ‘‘p’ ’. Thus to print the first two lines of the buffer,

for example, (that is, lines 1 through 2) we say

1,2p (startingline=1, ending line=2 p)

Edwill respond with

Now is the time
for all good men

Suppose we want to printall the lines in the
buffer. We could use ‘‘1,3p’’ as above if we knew there
were exactly 3 lines in the buffer. But in general, we
don’t know how many there are, so what do we use for
the ending line number?Ed provides a shorthand sym-
bol for ‘‘line number of last line in buffer’’ − the dollar
sign ‘‘$’’. Useit this way:

1,$p

This will print all the lines in the buffer (line 1 to last
line.) If you want to stop the printing before it is fin-
ished, push the DEL or Delete key; edwill type

?

and wait for the next command.

To print thelast line of the buffer, we could use

$,$p

but ed lets us abbreviate this to

$p

We can print any single line by typing the line number
followed by a ‘‘p’’. Thus

1p

produces the response

Now is the time

which is the first line of the buffer.

In fact,ed lets us abbreviate even further: we can
print any single line by typingjust the line number− no
need to type the letter ‘‘p’’. So if we say

$

edwill print the last line of the buffer for us.

We can also use ‘‘$’’ in combinations like

$−1,$p

which prints the last two lines of the buffer. This helps
when we want to see how far we got in typing.

Exercise 3:

As before, create some text using the append
command and experiment with the ‘‘p’ ’ command. You
will find, for example, that you can’t print line 0 or a
line beyond the end of the buffer, and that attempts to
print a buffer in reverse order by saying

3,1p

don’t work.

-

– 4 –

The current line − ‘‘ Dot’’ or ‘ ‘.’’

Suppose our buffer still contains the six lines as
above, that we have just typed

1,3p

andedhas printed the three lines for us.Try typing just

p (no line numbers).

This will print

to come to the aid of their party.

which is the third line of the buffer. In fact it is the last
(most recent) line that we have done anything with.
(We just printed it!) We can repeat this ‘‘p’ ’ command
without line numbers, and it will continue to print line
3.

The reason is thated maintains a record of the
last line that we did anything to (in this case, line 3,
which we just printed) so that it can be used instead of
an explicit line number. This most recent line is re-
ferred to by the shorthand symbol

. (pronounced ‘‘dot’’).

Dot is a line number in the same way that ‘‘$’ ’ i s; it
means exactly ‘‘the current line’’, or loosely, ‘‘the line
we most recently did something to.’’ We can use it in
several ways− one possibility is to say

.,$p

This will print all the lines from (including) the current
line to the end of the buffer. In our case these are lines
3 through 6.

Some commands change the value of dot, while
others do not. The print command sets dot to the num-
ber of the last line printed; by our last command, we
would have ‘‘ .’’ = ‘‘ $’’ = 6.

Dot is most useful when used in combinations
like this one:

.+1 (orequivalently, .+1p)

This means ‘‘print the next line’’ and gives us a handy
way to step slowly through a buffer. We can also say

.−1 (or .−1p)

which means ‘‘print the line before the current line.’’
This enables us to go backwards if we wish.Another
useful one is something like

.−3,.−1p

which prints the previous three lines.

Don’t forget that all of these change the value of
dot. You can find out what dot is at any time by typing

.=

Edwill respond by printing the value of dot.

Let’s summarize some things about the ‘‘p’ ’ com-
mand and dot. Essentially ‘‘p’ ’ can be preceded by 0,
1, or 2 line numbers.If there is no line number given,

it prints the ‘‘current line’’, the line that dot refers to.If
there is one line number given (with or without the let-
ter ‘‘p’ ’), it prints that line (and dot is set there); and if
there are two line numbers, it prints all the lines in that
range (and sets dot to the last line printed.)If two line
numbers are specified the first can’t be bigger than the
second (see Exercise 2.)

Typing a single newline will cause printing of the
next line − it’ s equivalent to ‘‘ .+1p’’. Try it. Try typing
‘‘ ˆ’’ − it’ s equivalent to ‘‘.−1p’’.

Deleting lines: the ‘‘d’’ command

Suppose we want to get rid of the three extra
lines in the buffer. This is done by thedeletecommand

d

Except that ‘‘d’ ’ deletes lines instead of printing them,
its action is similar to that of ‘‘p’ ’. The lines to be
deleted are specified for ‘‘d’ ’ exactly as they are for
‘‘ p’’:

starting line, ending lined

Thus the command

4,$d

deletes lines 4 through the end. There are now three
lines left, as we can check by using

1,$p

And notice that ‘‘$’ ’ now is line 3! Dot is set to the
next line after the last line deleted, unless the last line
deleted is the last line in the buffer. In that case, dot is
set to ‘‘$’’.

Exercise 4:

Experiment with ‘‘a’’, ‘ ‘e’’, ‘ ‘r’ ’, ‘ ‘w’ ’, ‘ ‘p’ ’, and
‘‘ d’’ until you are sure that you know what they do, and
until you understand how dot, ‘‘$’ ’, and line numbers
are used.

If you are adventurous, try using line numbers
with ‘‘a’’, ‘ ‘r’ ’, and ‘‘w’ ’ as well. You will find that
‘‘ a’’ w ill append linesafter the line number that you
specify (rather than after dot); that ‘‘r’ ’ reads a file in
after the line number you specify (not necessarily at the
end of the buffer); and that ‘‘w’ ’ w ill write out exactly
the lines you specify, not necessarily the whole buffer.
These variations are sometimes handy. For instance
you can insert a file at the beginning of a buffer by say-
ing

0r filename

and you can enter lines at the beginning of the buffer by
saying

0a
. . . text. . .
.

Notice that ‘‘.w’’ i s verydifferent from

-

– 5 –

.
w

Modifying text: the Substitute command ‘‘s’’

We are now ready to try one of the most impor-
tant of all commands− the substitute command

s

This is the command that is used to change individual
words or letters within a line or group of lines.It is
what we use, for example, for correcting spelling mis-
takes and typing errors.

Suppose that by a typing error, line 1 says

Now is th time

− the ‘‘e’’ has been left off ‘ ‘the’’. We can use ‘‘s’’ to
fix this up as follows:

1s/th/the/

This says: ‘‘in line 1, substitute for the characters ‘th’
the characters ‘the’.’’ To verify that it works (ed will
not print the result automatically) we say

p

and get

Now is the time

which is what we wanted. Noticethat dot must have
been set to the line where the substitution took place,
since the ‘‘p’ ’ command printed that line. Dot is al-
ways set this way with the ‘‘s’’ command.

The general way to use the substitute command
is

starting–line, ending–lines/change this/to this/

Whatever string of characters is between the first pair
of slashes is replaced by whatever is between the sec-
ond pair, in all the lines between starting line and end-
ing line. Only the first occurrence on each line is
changed, however. If you want to changeevery occur-
rence, see Exercise 5. The rules for line numbers are
the same as those for ‘‘p’ ’, except that dot is set to the
last line changed. (But there is a trap for the unwary: if
no substitution took place, dot isnot changed. This
causes an error ‘‘?’’ as a warning.)

Thus we can say

1,$s/speling/spelling/

and correct the first spelling mistake on each line in the
text. (This is useful for people who are consistent mis-
spellers!)

If no line numbers are given, the ‘‘s’’ command
assumes we mean ‘‘make the substitution on line dot’’,
so it changes things only on the current line.This leads
to the very common sequence

s/something/something else/p

which makes some correction on the current line, and

then prints it, to make sure it worked out right. If it
didn’t, we can try again. (Noticethat we put a print
command on the same line as the substitute.With few
exceptions, ‘‘p’ ’ can follow any command; no other
multi-command lines are legal.)

It’s also legal to say

s/ . . . //

which means ‘‘change the first string of characters to
nothing’’ , i.e., remove them. Thisis useful for deleting
extra words in a line or removing extra letters from
words. For instance, if we had

Nowxx is the time

we can say

s/xx//p

to get

Now is the time

Notice that ‘‘//’ ’ here means ‘‘no characters’’, not a
blank. Thereis a difference! (Seebelow for another
meaning of ‘‘//’’.)

Exercise 5:

Experiment with the substitute command.See
what happens if you substitute for some word on a line
with several occurrences of that word. For example, do
this:

a
the other side of the coin
.
s/the/on the/p

You will get

on the other side of the coin

A substitute command changes only the first occur-
rence of the first string.You can change all occur-
rences by adding a ‘‘g’ ’ (for ‘‘global’’) to the ‘‘s’’ com-
mand, like this:

s/ . . . / . . . /gp

Try other characters instead of slashes to delimit the
two sets of characters in the ‘‘s’’ command− anything
should work except blanks or tabs.

(If you get funny results using any of the charac-
ters

ˆ . $ [* \

read the section on ‘‘Special Characters’’.)

-

– 6 –

Context searching− ‘‘ / . . . /’’

With the substitute command mastered, we can
move on to another highly important idea ofed − con-
text searching.

Suppose we have our original three line text in
the buffer:

Now is the time
for all good men
to come to the aid of their party.

Suppose we want to find the line that contains ‘‘their’’
so we can change it to ‘‘the’’. Now with only three
lines in the buffer, it’s pretty easy to keep track of what
line the word ‘‘their’’ is on. But if the buffer contained
several hundred lines, and we’d been making changes,
deleting and rearranging lines, and so on, we would no
longer really know what this line number would be.
Context searching is simply a method of specifying the
desired line, regardless of what its number is, by speci-
fying some context on it.

The way we say ‘‘search for a line that contains
this particular string of characters’’ is to type

/string of characters we want to find/

For example, theed line

/their/

is a context search which is sufficient to find the desired
line − it will locate the next occurrence of the charac-
ters between slashes (‘‘their’’). It also sets dot to that
line and prints the line for verification:

to come to the aid of their party.

‘‘ Next occurrence’’ means thatedstarts looking for the
string at line ‘‘ .+1’’, searches to the end of the buffer,
then continues at line 1 and searches to line dot.(That
is, the search ‘‘wraps around’’ f rom ‘‘$’ ’ to 1.) It scans
all the lines in the buffer until it either finds the desired
line or gets back to dot again. If the given string of
characters can’t be found in any line, ed types the error
message

?

Otherwise it prints the line it found.

We can do both the search for the desired line
anda substitution all at once, like this:

/their/s/their/the/p

which will yield

to come to the aid of the party.

There were three parts to that last command: context
search for the desired line, make the substitution, print
the line.

The expression ‘‘/their/’’ is a context search ex-
pression. Intheir simplest form, all context search ex-
pressions are like this − a string of characters surround-
ed by slashes.Context searches are interchangeable

with line numbers, so they can be used by themselves
to find and print a desired line, or as line numbers for
some other command, like ‘‘s’’. We used them both
ways in the examples above.

Suppose the buffer contains the three familiar
lines

Now is the time
for all good men
to come to the aid of their party.

Then theed line numbers

/Now/+1
/good/
/party/−1

are all context search expressions, and they all refer to
the same line (line 2).To make a change in line 2, we
could say

/Now/+1s/good/bad/

or

/good/s/good/bad/

or

/party/−1s/good/bad/

The choice is dictated only by convenience. We could
print all three lines by, for instance

/Now/,/party/p

or

/Now/,/Now/+2p

or by any number of similar combinations. The first
one of these might be better if we don’t know how
many lines are involved. (Ofcourse, if there were only
three lines in the buffer, we’d use

1,$p

but not if there were several hundred.)

The basic rule is: a context search expression is
the same asa line number, so it can be used wherever a
line number is needed.

Exercise 6:

Experiment with context searching.Try a body
of text with several occurrences of the same string of
characters, and scan through it using the same context
search.

Try using context searches as line numbers for
the substitute, print and delete commands.(They can
also be used with ‘‘r’’, ‘‘w’’, and ‘‘a’’.)

Try context searching using ‘‘?text?’’ i nstead of
‘‘ /text/’’. This scans lines in the buffer in reverse order
rather than normal. This is sometimes useful if you go
too far while looking for some string of characters− it’s
an easy way to back up.

-

– 7 –

(If you get funny results with any of the charac-
ters

ˆ . $ [* \

read the section on ‘‘Special Characters’’.)

Ed provides a shorthand for repeating a context
search for the same string.For example, theed line
number

/string/

will find the next occurrence of ‘‘string’’. It often hap-
pens that this is not the desired line, so the search must
be repeated. This can be done by typing merely

//

This shorthand stands for ‘‘the most recently used con-
text search expression.’’ I t can also be used as the first
string of the substitute command, as in

/string1/s//string2/

which will find the next occurrence of ‘‘string1’’ and
replace it by ‘‘string2’’. This can save a lot of typing.
Similarly

??

means ‘‘scan backwards for the same expression.’’

Change and Insert− ‘‘ c’’ and ‘‘i’’

This section discusses thechangecommand

c

which is used to change or replace a group of one or
more lines, and theinsertcommand

i

which is used for inserting a group of one or more
lines.

‘‘ Change’’, written as

c

is used to replace a number of lines with different lines,
which are typed in at the terminal.For example, to
change lines ‘‘ .+1’’ through ‘‘$’ ’ to something else,
type

.+1,$c

. . . type the lines of text you want here. . .

.

The lines you type between the ‘‘c’ ’ command and the
‘‘ .’’ w ill take the place of the original lines between
start line and end line.This is most useful in replacing
a line or several lines which have errors in them.

If only one line is specified in the ‘‘c’ ’ command,
then just that line is replaced.(You can type in as many
replacement lines as you like.) Noticethe use of ‘‘ .’’ t o
end the input− this works just like the ‘‘ .’’ i n the ap-
pend command and must appear by itself on a new line.
If no line number is given, line dot is replaced.The
value of dot is set to the last line you typed in.

‘‘ Insert’’ is similar to append− for instance

/string/i
. . . type the lines to be inserted here. . .
.

will insert the given text beforethe next line that con-
tains ‘‘string’’. The text between ‘‘i’ ’ and ‘‘ .’’ i s insert-
ed before the specified line.If no line number is speci-
fied dot is used. Dot is set to the last line inserted.

Exercise 7:

‘‘ Change’’ is rather like a combination of delete
followed by insert. Experiment to verify that

start, endd
i
. . . text . . .
.

is almost the same as

start, endc
. . . text . . .
.

These are notpreciselythe same if line ‘‘$’ ’ gets delet-
ed. Checkthis out. What is dot?

Experiment with ‘‘a’’ and ‘‘i’ ’, to see that they
are similar, but not the same.You will observe that

line–numbera
. . . text. . .
.

appendsafter the given line, while

line–numberi
. . . text. . .
.

insertsbeforeit. Observe that if no line number is giv-
en, ‘‘i’ ’ i nserts before line dot, while ‘‘a’’ appends after
line dot.

Moving text around: the ‘‘m’ ’ command

The move command ‘‘m’ ’ is used for cutting and
pasting− it lets you move a group of lines from one
place to another in the buffer. Suppose we want to put
the first three lines of the buffer at the end instead.We
could do it by saying:

1,3w temp
$r temp
1,3d

(Do you see why?) but we can do it a lot easier with
the ‘‘m’’ command:

1,3m$

The general case is

start line, end linem after this line

Notice that there is a third line to be specified− the
place where the moved stuff gets put. Of course the

-

– 8 –

lines to be moved can be specified by context searches;
if we had

First paragraph
. . .
end of first paragraph.
Second paragraph
. . .
end of second paragraph.

we could reverse the two paragraphs like this:

/Second/,/second/m/First/−1

Notice the ‘‘−1’’ − the moved text goesafter the line
mentioned. Dotgets set to the last line moved.

The global commands ‘‘g’’ and ‘‘v’’

Theglobal command ‘‘g’ ’ is used to execute one
or moreed commands on all those lines in the buffer
that match some specified string.For example

g/peling/p

prints all lines that contain ‘‘peling’’. More usefully,

g/peling/s//pelling/gp

makes the substitution everywhere on the line, then
prints each corrected line. Compare this to

1,$s/peling/pelling/gp

which only prints the last line substituted.Another
subtle difference is that the ‘‘g’ ’ command does not
give a ‘‘?’’ if ‘ ‘peling’’ is not found where the ‘‘s’’ com-
mand will.

There may be several commands (including ‘‘a’’,
‘‘ c’’ ‘ ‘i’ ’ ‘ ‘r’ ’, ‘ ‘w’ ’, but not ‘‘g’ ’); in that case, every
line except the last must end with a backslash ‘‘\’’:

g/xxx/.–1s/abc/def/\
.+2s/ghi/jkl/\
.–2,.p

makes changes in the lines before and after each line
that contains ‘‘xxx’’, then prints all three lines.

The ‘‘v’ ’ command is the same as ‘‘g’ ’, except
that the commands are executed on every line that does
notmatch the string following ‘‘v’’:

v/ /d

deletes every line that does not contain a blank.

Special Characters

You may have noticed that things just don’t work
right when you used some characters like ‘‘.’’ , ‘‘*’’,
‘‘ $’’, and others in context searches and the substitute
command. Thereason is rather complex, although the
cure is simple.Basically,ed treats these characters as
special, with special meanings.For instance,in a con-
text search or the first string of the substitute command
only,

/x.y/

means ‘‘a line with anx, any character,and a y,’’ not
just ‘‘a line with an x, a period, and a y.’’ A complete
list of the special characters that can cause trouble is
the following:

ˆ . $ [* \

Warning: The backslash character \ is special toed.
For safety’s sake, avoid it where possible. If you have
to use one of the special characters in a substitute com-
mand, you can turn off i ts magic meaning temporarily
by preceding it with the backslash. Thus

s/\\\.*/backslash dot star/

will change ‘‘\.*’ ’ i nto ‘‘backslash dot star’’.

Here is a hurried synopsis of the other special
characters. First,the circumflex ‘‘ ˆ ’’ s ignifies the be-
ginning of a line. Thus

/ˆstring/

finds ‘‘string’’ only if it is at the beginning of a line: it
will find

string

but not

the string...

The dollar-sign ‘‘$’ ’ is just the opposite of the circum-
flex; it means the end of a line:

/string$/

will only find an occurrence of ‘‘string’’ that is at the
end of some line. This implies, of course, that

/ˆstring$/

will find only a line that contains just ‘‘string’’, and

/ˆ.$/

finds a line containing exactly one character.

The character ‘‘ .’’ , as we mentioned above,
matches anything;

/x.y/

matches any of

x+y
x–y
x y
x.y

This is useful in conjunction with ‘‘*’ ’, which is a repe-
tition character; ‘‘a*’ ’ is a shorthand for ‘‘any number
of a’s,’’ so ‘‘ .*’ ’ matches any number of anythings.
This is used like this:

s/.*/stuff/

which changes an entire line, or

s/.*,//

which deletes all characters in the line up to and includ-
ing the last comma. (Since ‘‘ .*’ ’ fi nds the longest pos-
sible match, this goes up to the last comma.)

-

– 9 –

‘‘ [’ ’ is used with ‘‘]’ ’ to form ‘‘character class-
es’’; for example,

/[1234567890]/

matches any single digit _ any one of the characters in-
side the braces will cause a match.

Finally, the ‘‘&’ ’ is another shorthand character -
it is used only on the right-hand part of a substitute
command where it means ‘‘whatever was matched on
the left-hand side’’. It is used to save typing. Suppose
the current line contained

Now is the time

and we wanted to put parentheses around it.We could
just retype the line, but this is tedious.Or we could say

s/ˆ/(/
s/$/)/

using our knowledge of ‘‘ˆ’ ’ and ‘‘$’ ’. But the easiest
way uses the ‘‘&’’:

s/.*/(&)/

This says ‘‘match the whole line, and replace it by itself
surrounded by parens.’’ T he ‘‘&’ ’ can be used several
times in a line; consider using

s/.*/&? &!!/

to produce

Now is the time? Now is the time!!

We don’t hav eto match the whole line, of course:
if the buffer contains

the end of the world

we could type

/world/s//& is at hand/

to produce

the end of the world is at hand

Observe this expression carefully, for it illustrates how
to take advantage ofed to save typing. The string
‘‘ /world/’’ f ound the desired line; the shorthand ‘‘//’’
found the same word in the line; and the ‘‘&’ ’ sav ed us
from typing it again.

The ‘‘&’ ’ is a special character only within the
replacement text of a substitute command, and has no
special meaning elsewhere. We can turn off the special
meaning of ‘‘&’’ by preceding it with a ‘‘\’’:

s/ampersand/\&/

will convert the word ‘‘ampersand’’ i nto the literal sym-
bol ‘‘&’ ’ in the current line.

Summary of Commands and Line Numbers

The general form ofed commands is the com-
mand name, perhaps preceded by one or two line num-
bers, and, in the case ofe, r andw, followed by a file
name. Onlyone command is allowed per line, but ap
command may follow any other command (except for
e, r, w andq).

a (append)Add lines to the buffer (at line dot, unless a
different line is specified). Appending continues until
‘‘ .’’ i s typed on a new line. Dot is set to the last line
appended.

c (change)Change the specified lines to the new text
which follows. Thenew lines are terminated by a ‘‘ .’’ .
If no lines are specified, replace line dot. Dot is set to
last line changed.

d (delete)Delete the lines specified. If none are speci-
fied, delete line dot.Dot is set to the first undeleted
line, unless ‘‘$’ ’ is deleted, in which case dot is set to
‘‘ $’’.

e (edit) Edit new file. Any previous contents of the
buffer are thrown away, so issue aw beforehand if you
want to save them.

f (file) Print remembered filename. If a name follows f
the remembered name will be set to it.

g (global) g/---/commandswill execute the commands
on those lines that contain ‘‘---’ ’, which can be any con-
text search expression.

i (insert) Insert lines before specified line (or dot) until
a ‘‘ .’’ i s typed on a new line. Dot is set to last line in-
serted.

m (move)Move lines specified to after the line named
afterm. Dot is set to the last line moved.

p (print) Print specified lines. If none specified, print
line dot. A single line number is equivalent to ‘‘line-
number p’’. A single newline prints ‘‘ .+1’’, the next
line.

q (quit) Exit from ed. Wipes out all text in buffer!!

r (read) Read a file into buffer (at end unless specified
elsewhere.) Dot set to last line read.

s (substitute) s/string1/string2/will substitute the char-
acters of ‘string2’ for ‘string1’ in specified lines. If no
line is specified, make substitution in line dot. Dot is
set to last line in which a substitution took place, which
means that if no substitution took place, dot is not
changed.s changes only the first occurrence of string1
on a line; to change all of them, type a ‘‘g’ ’ after the fi-
nal slash.

v (exclude) v/---/commandsexecutes ‘‘commands’’ on
those lines thatdo notcontain ‘‘---’’.

w (write) Write out buffer onto a file. Dot is not
changed.

-

– 10 –

.= (dot value)Print value of dot.(‘‘=’ ’ by i tself prints
the value of ‘‘$’’.)

! (temporary escape)
Execute this line as a UNIX command.

/-----/ Context search. Search for next line which con-
tains this string of characters. Print it.Dot is set to line
where string found. Search starts at ‘‘ .+1’’, wraps
around from ‘‘$’ ’ to 1, and continues to dot, if neces-
sary.

?-----? Context search in reverse direction. Start
search at ‘‘.−1’’, scan to 1, wrap around to ‘‘$’’.

