
-

AR (I) 3/15/72 AR(I)

NAME
ar − archive and library maintainer

SYNOPSIS
ar key afi le name ...

DESCRIPTION
Ar maintains groups of files combined into a single archive file. Its main use is to create and update library
fi les as used by the loader. It can be used, though, for any similar purpose.

Ke y is one character from the setdrtux, optionally concatenated withv. Afile is the archive file. The
namesare constituent files in the archive file. Themeanings of thekey characters are:

d means delete the named files from the archive file.

r means replace the named files in the archive file. If the archive file does not exist, r creates it. If the
named files are not in the archive file, they are appended.

t prints a table of contents of the archive file. If no names are given, all files in the archive are tabled. If
names are given, only those files are tabled.

u is similar tor except that only those files that have been modified are replaced. If no names are given, all
fi les in the archive that have been modified are replaced by the modified version.

x extracts the named files. If no names are given, all files in the archive are extracted. Inneither case does
x alter the archive file.

v means verbose. Underthe verbose option,ar gives a file-by-file description of the making of a new
archive file from the old archive and the constituent files. Thefollowing abbreviations are used:

c copy
a append
d delete
r replace
x extract

FILES
/tmp/vtm? temporary

SEE ALSO
ld (I), archive (V)

BUGS
Optiontv should be implemented as a table with more information.

There should be a way to specify the placement of a new file in an archive. Currently, it is placed at the
end.

Sincear has not been rewritten to deal properly with the new file system modes, extracted files have mode
666.

For the same reason, only the first 8 characters of file names are significant.

If the same file is mentioned twice in an argument list, it may be put in the archive twice.

- 1 -

-

AS (I) 1/15/73 AS(I)

NAME
as− assembler

SYNOPSIS
as[−] name ...

DESCRIPTION
As assembles the concatenation of the named files. If the optional first argument− is used, all undefined
symbols in the assembly are treated as global.

The output of the assembly is left on the file a.out. It is executable if no errors occurred during the assem-
bly, and if there were no unresolved external references.

FILES
/lib/as2 pass2 of the assembler
/tmp/atm[1-3]? temporary
a.out object

SEE ALSO
ld (I), nm (I), db (I), a.out (V), ‘UNIX Assembler Manual’.

DIAGNOSTICS
When an input file cannot be read, its name followed by a question mark is typed and assembly ceases.
When syntactic or semantic errors occur, a single-character diagnostic is typed out together with the line
number and the file name in which it occurred. Errors in pass 1 cause cancellation of pass 2.The possible
errors are:

) Parentheses error
] Parentheses error
< String not terminated properly
* I ndirection used illegally
. Illegal assignment to ‘.’
A Error in address
B Branch instruction is odd or too remote
E Error in expression
F Error in local (‘f’ or ‘ b’) type symbol
G Garbage (unknown) character
I End of file inside an if
M Multiply defined symbol as label
O Word quantity assembled at odd address
P ‘.’ different in pass 1 and 2
R Relocation error
U Undefined symbol
X Syntax error

BUGS
Symbol table overflow is not checked.x errors can cause incorrect line numbers in following diagnostics.

- 2 -

-

BAS (I) 5/15/74 BAS (I)

NAME
bas− basic

SYNOPSIS
bas[f ile]

DESCRIPTION
Basis a dialect of Basic. If a file argument is provided, the file is used for input before the console is read.
Basaccepts lines of the form:

statement
integer statement

Integer numbered statements (known as internal statements) are stored for later execution. They are stored
in sorted ascending order. Non-numbered statements are immediately executed. Theresult of an immedi-
ate expression statement (that does not have ‘=’ as its highest operator) is printed.

Statements have the following syntax:

expression
The expression is executed for its side effects (assignment or function call) or for printing as de-
scribed above.

comment...
This statement is ignored. It is used to interject commentary in a program.

done
Return to system level.

draw expression expression expression
A l ine is drawn on the Tektronix 611 display ‘/dev/vt0’ from the current display position to the XY
co-ordinates specified by the first two expressions. Thescale is zero to one in both X and Y direc-
tions. If the third expression is zero, the line is invisible. Thecurrent display position is set to the
end point.

display list
The list of expressions and strings is concatenated and displayed (i.e. printed) on the 611 starting at
the current display position. The current display position is not changed.

dump
The name and current value of every variable is printed.

edit
The UNIX editor, ed, is invoked with thefile argument. Afterthe editor exits, this file is recompiled.

erase
The 611 screen is erased.

for name= expression expression statement
for name= expression expression

...
next

The for statement repetitively executes a statement (first form) or a group of statements (second
form) under control of a named variable. Thevariable takes on the value of the first expression, then
is incremented by one on each loop, not to exceed the value of the second expression.

gotoexpression
The expression is evaluated, truncated to an integer and execution goes to the corresponding integer
numbered statment. If executed from immediate mode, the internal statements are compiled first.

if expression statement
if expression

...
[else

- 3 -

-

BAS (I) 5/15/74 BAS (I)

...]
fi

The statement (first form) or group of statements (second form) is executed if the expression evalu-
ates to non-zero. In the second form, an optionalelseallows for a group of statements to be executed
when the first group is not.

list [expression [expression]]
is used to print out the stored internal statements.If no arguments are given, all internal statements
are printed. If one argument is given, only that internal statement is listed.If two arguments are giv-
en, all internal statements inclusively between the arguments are printed.

print list
The list of expressions and strings are concatenated and printed. (A string is delimited by " charac-
ters.)

prompt list
Promptis the same asprint except that no newline character is printed.

return [expression]
The expression is evaluated and the result is passed back as the value of a function call. If no expres-
sion is given, zero is returned.

run
The internal statements are compiled.The symbol table is re-initialized. The random number gener-
ator is reset. Control is passed to the lowest numbered internal statement.

save [expression [expression]]
Saveis like list except that the output is written on thefile argument. Ifno argument is given on the
command,b.out is used.

Expressions have the following syntax:

name
A name is used to specify a variable. Namesare composed of a letter followed by letters and digits.
The first four characters of a name are significant.

number
A number is used to represent a constant value. Anumber is written in Fortran style, and contains
digits, an optional decimal point, and possibly a scale factor consisting of ane followed by a possibly
signed exponent.

(expression)
Parentheses are used to alter normal order of evaluation.

expression
The result is the negation of the expression.

expression operator expression
Common functions of two arguments are abbreviated by the two arguments separated by an operator
denoting the function.A complete list of operators is given below.

expression([expression [, expression] ...])
Functions of an arbitrary number of arguments can be called by an expression followed by the argu-
ments in parentheses separated by commas. The expression evaluates to the line number of the entry
of the function in the internally stored statements. This causes the internal statements to be com-
piled. If the expression evaluates negative, a builtin function is called.The list of builtin functions
appears below.

name[expression [, expression] ...]
Each expression is truncated to an integer and used as a specifier for the name. The result is syntacti-
cally identical to a name.a[1,2] is the same asa[1][2]. The truncated expressions are restricted to
values between 0 and 32767.

The following is the list of operators:

- 4 -

-

BAS (I) 5/15/74 BAS (I)

=
= is the assignment operator. The left operand must be a name or an array element. The result is the
right operand. Assignment binds right to left, all other operators bind left to right.

& |
& (logical and) has result zero if either of its arguments are zero. It has result one if both its argu-
ments are non-zero.| (logical or) has result zero if both of its arguments are zero. It has result one if
either of its arguments are non-zero.

< <= > >= == <>
The relational operators (< less than, <= less than or equal, > greater than, >= greater than or equal,
== equal to, <> not equal to) return one if their arguments are in the specified relation. They return
zero otherwise. Relational operators at the same level extend as follows: a>b>c is the same as
a>b&b>c.

+ −
Add and subtract.

* /
Multiply and divide.

ˆ
Exponentiation.

The following is a list of builtin functions:

arg(i)
is the value of thei -th actual parameter on the current level of function call.

exp(x)
is the exponential function ofx.

log(x)
is the natural logarithm ofx.

sqr(x)
is the square root ofx.

sin(x)
is the sine ofx (radians).

cos(x)
is the cosine ofx (radians).

atn(x)
is the arctangent ofx. Its value is between−π/2 andπ/2.

rnd()
is a uniformly distributed random number between zero and one.

expr()
is the only form of program input.A l ine is read from the input and evaluated as an expression. The
resultant value is returned.

abs(x)
is the absolute value ofx.

int(x)
returnsx truncated (towards 0) to an integer.

FILES
/tmp/btm? temporary
b.out save file

DIAGNOSTICS
Syntax errors cause the incorrect line to be typed with an underscore where the parse failed. All other diag-
nostics are self explanatory.

- 5 -

-

BAS (I) 5/15/74 BAS (I)

BUGS
Has been known to give core images.

- 6 -

-

BC (I) 2/20/75 BC(I)

NAME
bc − arbitrary precision interactive language

SYNOPSIS
bc [−l] [f ile ...]

DESCRIPTION
Bc is an interactive processor for a language which resembles C but provides unlimited precision arith-
metic. It takes input from any files given, then reads the standard input. The ‘−l’ argument stands for the
name of a library of mathematical subroutines which contains sine (named ‘s’), cosine (‘c’), arctangent
(‘a’), natural logarithm (‘l’), and exponential (‘e’). The syntax forbc programs is as follows; E means ex-
pression, S means statement.

Comments
are enclosed in /* and */.

Names
letters a−z
array elements: letter[E]
The words ‘ibase’, ‘obase’, and ‘scale’

Other operands
arbitrarily long numbers with optional sign and decimal point.
(E)
sqrt (E)
<letter> (E , ... , E)

Operators
+ − * / % ˆ
++ −− (prefix and postfix; apply to names)
== <= >= != < >
= =+ =− =* =/ =% =̂

Statements
E
{ S ; ... ; S }
if (E) S
while (E) S
for (E ; E ; E) S
null statement
break
quit

Function definitions are exemplified by
define <letter> (<letter> ,..., <letter>) {

auto <letter>, ... , <letter>
S; ... S
return (E)

}

All function arguments are passed by value.

The value of a statement that is an expression is printed unless the main operator is an assignment.Either
semicolons or newlines may separate statements.Assignment toscaleinfluences the number of digits to be
retained on arithmetic operations. Assignments toibaseor obaseset the input and output number radix re-
spectively.

The same letter may be used as an array name, a function name, and a simple variable simultaneously. ‘Au-
to’ variables are saved and restored during function calls. All other variables are global to the program.
When using arrays as function arguments or defining them as automatic variables empty square brackets
must follow the array name.

- 7 -

-

BC (I) 2/20/75 BC(I)

For example

scale = 20
define e(x){

auto a, b, c, i, s
a = 1
b = 1
s = 1
for(i=1; 1==1; i++){

a = a*x
b = b*i
c = a/b
if(c == 0) return(s)
s = s+c

}
}

defines a function to compute an approximate value of the exponential function and

for(i=1; i<=10; i++) e(i)

prints approximate values of the exponential function of the first ten integers.

FILES
/usr/lib/lib.b mathematicallibrary

SEE ALSO
dc (I), C Reference Manual, ‘‘BC − An Arbitrary Precision Desk-Calculator Language.’’

BUGS
No &&, | | yet.
for statement must have all three E’s
quit is interpreted when read, not when executed.

- 8 -

-

CAT (I) 1/15/73 CAT (I)

NAME
cat− concatenate and print

SYNOPSIS
cat fi le ...

DESCRIPTION
Cat reads each file in sequence and writes it on the standard output. Thus

cat file

prints the file, and

cat file1 file2 >file3

concatenates the first two files and places the result on the third.

If no input file is given, or if the argument ‘−’ is encountered,cat reads from the standard input file.

SEE ALSO
pr(I), cp(I)

DIAGNOSTICS
none; if a file cannot be found it is ignored.

BUGS
cat x y >xandcat x y >ycause strange results.

- 9 -

-

CC (I) 5/15/74 CC(I)

NAME
cc − C compiler

SYNOPSIS
cc [−c] [−p] [−f] [−O] [−S] [−P] f ile ...

DESCRIPTION
Cc is the UNIX C compiler. It accepts three types of arguments:

Arguments whose names end with ‘.c’ are taken to be C source programs; they are compiled, and each ob-
ject program is left on the file whose name is that of the source with ‘.o’ substituted for ‘.c’. The ‘.o’ file is
normally deleted, however, if a single C program is compiled and loaded all at one go.

The following flags are interpreted bycc. Seeld (I) for load-time flags.

−c Suppress the loading phase of the compilation, and force an object file to be produced even if only
one program is compiled.

−p Arrange for the compiler to produce code which counts the number of times each routine is called;
also, if loading takes place, replace the standard startup routine by one which automatically calls the
monitorsubroutine (III) at the start and arranges to write out amon.outfi le at normal termination of
execution of the object program. An execution profile can then be generated by use ofprof (I).

−f In systems without hardware floating-point, use a version of the C compiler which handles floating-
point constants and loads the object program with the floating-point interpreter. Do not use if the
hardware is present.

−O Invoke an object-code optimizer.

−S Compile the named C programs, and leave the assembler-language output on corresponding files
suffixed ‘.s’.

−P Run only the macro preprocessor on the named C programs, and leave the output on corresponding
fi les suffixed ‘.i’.

Other arguments are taken to be either loader flag arguments, or C-compatible object programs, typically
produced by an earliercc run, or perhaps libraries of C-compatible routines.These programs, together with
the results of any compilations specified, are loaded (in the order given) to produce an executable program
with namea.out.

FILES
fi le.c inputfi le
fi le.o objectfi le
a.out loadedoutput
/tmp/ctm? temporary
/lib/c[01] compiler
/lib/fc[01] floating-pointcompiler
/lib/c2 optionaloptimizer
/lib/crt0.o runtimestartoff
/lib/mcrt0.o runtimestartoff of profiling
/lib/fcrt0.o runtimestartoff for floating-point interpretation
/lib/libc.a Clibrary; see section III.
/lib/liba.a Assemblerlibrary used by some routines in libc.a

SEE ALSO
‘‘ Programming in C— a tutorial,’’ C Reference Manual, monitor (III), prof (I), cdb (I), ld (I).

DIAGNOSTICS
The diagnostics produced by C itself are intended to be self-explanatory. Occasional messages may be pro-
duced by the assembler or loader. Of these, the most mystifying are from the assembler, in particular ‘‘m,’’
which means a multiply-defined external symbol (function or data).

- 10 -

-

CC (I) 5/15/74 CC(I)

BUGS

- 11 -

-

CDB (I) 2/8/75 CDB(I)

NAME
cdb− C debugger

SYNOPSIS
cdb [a.out [core]]

DESCRIPTION
Cdb is a debugger for use with C programs. It is useful for both post-mortem and interactive debugging.
An important feature ofcdb is that even in the interactive case no advance planning is necessary to use it; in
particular it is not necessary to compile or load the program in any special way nor to include any special
routines in the object file.

The first argument tocdb is an object program, preferably containing a symbol table; if not given ‘‘a.out’’ i s
used. Thesecond argument is the name of a core-image file; if it is not given, ‘‘core’’ is used. Thecore file
need not be present.

Commands tocdb consist of an address, followed by a single command character, possibly followed by a
command modifier. Usually if no address is given the last-printed address is used. An address may be fol-
lowed by a comma and a number, in which case the command applies to the appropriate number of succes-
sive addresses.

Addresses are expressions composed of names, decimal numbers, and octal numbers (which begin with
‘‘ 0’’) and separated by ‘‘+’’ and ‘‘−’’ . Evaluation proceeds left-to-right.

Names of external variables are written just as they are in C. For various reasons the external names gener-
ated by C all begin with an underscore, which is automatically tacked on bycdb. Currently it is not possi-
ble to suppress this feature, so symbols (defined in assembly-language programs) which do not begin with
underscore are inaccessible.

Variables local to a function (automatic, static, and arguments) are accessible by writing the name of the
function, a colon ‘‘:’ ’, and the name of the local variable (e.g. ‘‘main:argc’’). There is no notion of the
‘‘ current’’ f unction; its name must always be written explicitly.

A number which begins with ‘‘0’ ’ is taken to be octal; otherwise numbers are decimal, just as in C.There
is no provision for input of floating numbers.

The construction ‘‘name[expression]’’ assumes thatnameis a pointer to an integer and is equivalent to the
contents of the named cell plus twice the expression. Noticethatnamehas to be a genuine pointer and that
arrays are not accessible in this way. This is a consequence of the fact that types of variables are not cur-
rently saved in the symbol table.

The command characters are:

/m print the addressed words. m indicates the mode of printout; specifying a mode sets the mode until it
is explicitly changed again:
o octal (default)
i decimal
f single-precision floating-point
d double-precision floating-point

\ Print the specified bytes in octal.

= print the value of the addressed expression in octal.

´ print the addressed bytes as characters. Control and non-ASCII characters are escaped in octal.

" take the contents of the address as a pointer to a sequence of characters, and print the characters up to
a null byte. Control and non-ASCII characters are escaped as octal.

& Try to interpret the contents of the address as a pointer, and print symbolically where the pointer
points. Thetypeout contains the name of an external symbol and, if required, the smallest possible
positive offset. Onlyexternal symbols are considered.

- 12 -

-

CDB (I) 2/8/75 CDB(I)

? Interpret the addressed location as a PDP-11 instruction.

$m If no m is given, print a stack trace of the terminated or stopped program. The last call made is listed
fi rst; the actual arguments to each routine are given in octal. (If this is inappropriate, the arguments
may be examined by name in the desired format using ‘‘/’ ’.) If m is ‘‘r’ ’, the contents of the PDP-11
general registers are listed.If m is ‘‘f ’ ’, the contents of the floating-point registers are listed. In all
cases, the reason why the program stopped or terminated is indicated.

%m According tom,set or delete a breakpoint, or run or continue the program:

b An address within the program must be given; a breakpoint is set there.Ordinarily, breakpoints
will be set on the entry points of functions, but any location is possible as long as it is the first
word of an instruction. (Labels don’t appear in the symbol table yet.) Stopping at the actual first
instruction of a function is undesirable because to make symbolic printouts work, the function’s
save sequence has to be completed; thereforecdbautomatically moves breakpoints at the start of
functions down to the first real code.

It is impossible to set breakpoints on pure-procedure programs (−n flag on cc or ld) because the
program text is write-protected.

d An address must be given; the breakpoint at that address is removed.

r Run the program being debugged. Following the ‘‘%r’ ’, arguments may be given; they cannot
specify I/O redirection (‘‘>’ ’, ‘ ‘<’ ’) or filters. No address is permissible, and the program is
restarted from scratch, not continued. Breakpoints should have been set if any were desired.The
program will stop if any signal is generated, such as illegal instruction (including simulated float-
ing point), bus error, or interrupt (see signal(II)); it will also stop when a breakpoint occurs and in
any case announce the reason. Then a stack trace can be printed, named locations examined, etc.

c Continue after a breakpoint. It is possible but probably useless to continue after an error since
there is no way to repair the cause of the error.

SEE ALSO
cc (I), db (I), C Reference Manual

BUGS
Use caution in believing values of register variables at the lowest levels of the call stack; the value of a reg-
ister is found by looking at the place where it was supposed to have been saved by the callee.

Some things are still needed to make cdbuniformly better thandb: non-C symbols, patching files, patching
core images of programs being run. It would be desirable to have the types of variables around to make the
correct style printout more automatic. Structure members should be available.

Naturally, there are all sorts of neat features not handled, like conditional breakpoints, optional stopping on
certain signals (like illegal instructions, to allow breakpointing of simulated floating-point programs).

- 13 -

-

CHDIR (I) 5/15/74 CHDIR(I)

NAME
chdir − change working directory

SYNOPSIS
chdir directory

DESCRIPTION
Directorybecomes the new working directory. The process must have execute (search) permission indirec-
tory.

Because a new process is created to execute each command,chdir would be ineffective if it were written as
a normal command. It is therefore recognized and executed by the Shell.

SEE ALSO
sh (I), pwd (I)

BUGS

- 14 -

-

CHMOD (I) 2/8/75 CHMOD(I)

NAME
chmod− change mode

SYNOPSIS
chmodoctal file ...

DESCRIPTION
The octal mode replaces the mode of each of the files. Themode is constructed from the OR of the follow-
ing modes:

4000 setuser ID on execution
2000 setgroup ID on execution
1000 sticky bit for shared, pure-procedure programs (see below)
0400 readby owner
0200 writeby owner
0100 execute (search in directory) by owner
0070 read,write, execute (search) by group
0007 read,write, execute (search) by others

Only the owner of a file (or the super-user) may change its mode.

If an executable file is set up for sharing (‘‘−n’’ option of ld (I)), then mode 1000 prevents the system from
abandoning the swap-space image of the program-text portion of the file when its last user terminates.
Thus when the next user of the file executes it, the text need not be read from the file system but can simply
be swapped in, saving time. Ability to set this bit is restricted to the super-user since swap space is con-
sumed by the images; it is only worth while for heavily used commands.

SEE ALSO
ls (I), chmod (II)

BUGS

- 15 -

-

CMP (I) 5/15/74 CMP(I)

NAME
cmp− compare two files

SYNOPSIS
cmp [−l] [−s] f ile1 file2

DESCRIPTION
The two files are compared.(If file1 is ‘−’, the standard input is used.) Under default options,cmpmakes
no comment if the files are the same; if they differ, it announces the byte and line number at which the dif-
ference occurred.If one file is an initial subsequence of the other, that fact is noted.Moreover, return code
0 is yielded for identical files, 1 for different files, and 2 for an inaccessible or missing argument.

Options:

−l Print the byte number (decimal) and the differing bytes (octal) for each difference.

−s Print nothing for differing files; return codes only.

SEE ALSO
diff (I), comm (I)

BUGS

- 16 -

-

COMM (I) 5/15/74 COMM(I)

NAME
comm− print lines common to two files

SYNOPSIS
comm [− [123]] f ile1 file2

DESCRIPTION
Commreadsfile1 andfile2,which should be in sort, and produces a three column output: lines only infile1;
lines only infile2; and lines in both files. Thefi lename ‘−’ means the standard input.

Flags 1, 2, or 3 suppress printing of the corresponding column.Thuscomm −12 prints only the lines com-
mon to the two files; comm −23 prints only lines in the first file but not in the second;comm −123 is a no-
op.

SEE ALSO
cmp (I), diff (I)

BUGS

- 17 -

-

CP (I) 2/8/75 CP(I)

NAME
cp − copy

SYNOPSIS
cp fi le1 file2

DESCRIPTION
The first file is copied onto the second.The mode and owner of the target file are preserved if it already ex-
isted; the mode of the source file is used otherwise.

If file2 is a directory, then the target file is a file in that directory with the file-name offile1.

It is forbidden to copy a file onto itself.

SEE ALSO
cat (I), pr (I), mv (I)

BUGS

- 18 -

-

CREF (I) 2/5/73 CREF(I)

NAME
cref − make cross reference listing

SYNOPSIS
cref [−acilostux123] name ...

DESCRIPTION
Cref makes a cross reference listing of program files in assembler or C format. The files named as argu-
ments in the command line are searched for symbols in the appropriate syntax.

The output report is in four columns:

(1) (2) (3) (4)
symbol file see text as it appears in file

below

Cref uses either anignore fi le or anonly fi le. If the−i option is given, the next argument is taken to be an
ignore fi le; if the−o option is given, the next argument is taken to be anonly fi le. Ignoreandonly fi les are
lists of symbols separated by new lines. All symbols in anignore fi le are ignored in columns (1) and (3) of
the output. If anonly fi le is given, only symbols in that file appear in column (1). At most one of−i and−o
may be used. The default setting is−i. Assembler predefined symbols or C keywords are ignored.

The −s option causes current symbols to be put in column 3. In the assembler, the current symbol is the
most recent name symbol; in C, the current function name.The−l option causes the line number within the
fi le to be put in column 3.

The−t option causes the next available argument to be used as the name of the intermediate temporary file
(instead of /tmp/crt??). The file is created and is not removed at the end of the process.

Options:

a assembler format (default)
c C format input
i useignorefi le (see above)
l put line number in col. 3 (instead of current symbol)
o useonly fi le (see above)
s current symbol in col. 3 (default)
t user supplied temporary file
u print only symbols that occur exactly once
x print only C external symbols
1 sort output on column 1 (default)
2 sort output on column 2
3 sort output on column 3

FILES
/tmp/crt?? temporaries
/usr/lib/aign default assemblerignorefi le
/usr/lib/cign default Cignorefi le
/usr/bin/crpost postprocessor
/usr/bin/upost postprocessor for−u option
/bin/sort usedto sort temporaries

SEE ALSO
as (I), cc (I)

BUGS

- 19 -

-

DATE (I) 11/1/74 DATE (I)

NAME
date− print and set the date

SYNOPSIS
date [s] [mmddhhmm[yy]]

DESCRIPTION
If no argument is given, the current date and time are printed.If an argument is given, the current date is
set. Thefi rst mmis the month number;dd is the day number in the month;hh is the hour number (24 hour
system); the secondmmis the minute number;yy is the last 2 digits of the year number and is optional.For
example:

date 10080045

sets the date to Oct 8, 12:45 AM.The current year is the default if no year is mentioned. The system oper-
ates in GMT.Datetakes care of the conversion to and from local standard and daylight time.

If the argument is ‘‘s,’’ datecalls the network file store via the TIU interface (if present) and sets the clock
to the time thereby obtained.

DIAGNOSTICS
‘‘ No permission’’ if y ou aren’t the super-user and you try to change the date; ‘‘bad conversion’’ if t he date
set is syntactically incorrect.

FILES
/dev/tiu/d0

BUGS

- 20 -

-

DB (I) 8/20/73 DB(I)

NAME
db − debug

SYNOPSIS
db [core [namelist]] [−]

DESCRIPTION
Unlike many debugging packages (including DEC’s ODT, on which db is loosely based),db is not loaded
as part of the core image which it is used to examine; instead it examines files. Typically, the file will be ei-
ther a core image produced after a fault or the binary output of the assembler. Core is the file being de-
bugged; if omittedcore is assumed.Namelistis a file containing a symbol table. If it is omitted, the sym-
bol table is obtained from the file being debugged, or if not there froma.out. If no appropriate name list
fi le can be found,dbcan still be used but some of its symbolic facilities become unavailable.

For the meaning of the optional third argument, see the last paragraph below.

The format for mostdb requests is an address followed by a one character command.Addresses are ex-
pressions built up as follows:

1. A name has the value assigned to it when the input file was assembled. It may be relocatable or not
depending on the use of the name during the assembly.

2. Anoctal number is an absolute quantity with the appropriate value.

3. A decimal number immediately followed by ‘.’ is an absolute quantity with the appropriate value.

4. Anoctal number immediately followed byr is a relocatable quantity with the appropriate value.

5. Thesymbol. indicates the current pointer ofdb. The current pointer is set by manydb requests.

6. A * before an expression forms an expression whose value is the number in the word addressed by the
fi rst expression. A* alone is equivalent to ‘*. ’.

7. Expressionsseparated by+ or blank are expressions with value equal to the sum of the components.
At most one of the components may be relocatable.

8. Expressionsseparated by− form an expression with value equal to the difference to the components.
If the right component is relocatable, the left component must be relocatable.

9. Expressionsare evaluated left to right.

Names for registers are built in:

r0 ... r5
sp
pc
fr0 ... fr5

These may be examined. Theirvalues are deduced from the contents of the stack in a core image file.
They are meaningless in a file that is not a core image.

If no address is given for a command, the current address (also specified by ‘‘ .’’) is assumed. Ingeneral,
‘‘ .’’ points to the last word or byte printed bydb.

There aredb commands for examining locations interpreted as numbers, machine instructions, ASCII char-
acters, and addresses.For numbers and characters, either bytes or words may be examined. Thefollowing
commands are used to examine the specified file.

/ The addressed word is printed in octal.

\ The addressed byte is printed in octal.

" The addressed word is printed as two ASCII characters.

´ The addressed byte is printed as an ASCII character.

- 21 -

-

DB (I) 8/20/73 DB(I)

` The addressed word is printed in decimal.

? The addressed word is interpreted as a machine instruction and a symbolic form of the instruction, in-
cluding symbolic addresses, is printed.Often, the result will appear exactly as it was written in the
source program.

& The addressed word is interpreted as a symbolic address and is printed as the name of the symbol
whose value is closest to the addressed word, possibly followed by a signed offset.

<nl>(i. e., the character ‘‘new line’’) This command advances the current location counter ‘‘ .’’ and prints
the resulting location in the mode last specified by one of the above requests.

ˆ This character decrements ‘‘ .’’ and prints the resulting location in the mode last selected one of the
above requests. Itis a converse to <nl>.

% Exit.

Odd addresses to word-oriented commands are rounded down. Theincrementing and decrementing of ‘‘ .’’
done by the<nl> andˆ requests is by one or two depending on whether the last command was word or byte
oriented.

The address portion of any of the above commands may be followed by a comma and then by an expres-
sion. Inthis case that number of sequential words or bytes specified by the expression is printed.‘‘ .’’ i s ad-
vanced so that it points at the last thing printed.

There are two commands to interpret the value of expressions.

= When preceded by an expression, the value of the expression is typed in octal. When not preceded by
an expression, the value of ‘‘.’’ i s indicated. Thiscommand does not change the value of ‘‘.’’ .

: An attempt is made to print the given expression as a symbolic address. If the expression is relocat-
able, that symbol is found whose value is nearest that of the expression, and the symbol is typed, fol-
lowed by a sign and the appropriate offset. If the value of the expression is absolute, a symbol with
exactly the indicated value is sought and printed if found; if no matching symbol is discovered, the oc-
tal value of the expression is given.

The following command may be used to patch the file being debugged.

! This command must be preceded by an expression. Thevalue of the expression is stored at the loca-
tion addressed by the current value of ‘‘ .’’ . The opcodes do not appear in the symbol table, so the user
must assemble them by hand.

The following command is used after a fault has caused a core image file to be produced.

$ causes the fault type and the contents of the general registers and several other registers to be printed
both in octal and symbolic format. The values are as they were at the time of the fault.

For some purposes, it is important to know how addresses typed by the user correspond with locations in
the file being debugged. Themapping algorithm employed bydb is non-trivial for two reasons: First, in an
a.out fi le, there is a 20(8) byte header which will not appear when the file is loaded into core for execution.
Therefore, apparent location 0 should correspond with actual file offset 20.Second, addresses in core im-
ages do not correspond with the addresses used by the program because in a core image there is a header
containing the system’s per-process data for the dumped process, and also because the stack is stored con-
tiguously with the text and data part of the core image rather than at the highest possible locations.Db
obeys the following rules:

If exactly one argument is given, and if it appears to be ana.out fi le, the 20-byte header is skipped during
addressing, i.e., 20 is added to all addresses typed. As a consequence, the header can be examined begin-
ning at location−20.

If exactly one argument is given and if the file does not appear to be ana.out fi le, no mapping is done.

If zero or two arguments are given, the mapping appropriate to a core image file is employed. Thismeans
that locations above the program break and below the stack effectively do not exist (and are not, in fact,
recorded in the core file). Locationsabove the user’s stack pointer are mapped, in looking at the core file,
to the place where they are really stored. The per-process data kept by the system, which is stored in the
fi rst part of the core file, cannot currently be examined (except by$).

- 22 -

-

DB (I) 8/20/73 DB(I)

If one wants to examine a file which has an associated name list, but is not a core image file, the last argu-
ment ‘‘−’’ can be used (actually the only purpose of the last argument is to make the number of arguments
not equal to two). Thisfeature is used most frequently in examining the memory file /dev/mem.

SEE ALSO
as (I), core (V), a.out (V), od (I)

DIAGNOSTICS
‘‘ File not found’’ if t he first argument cannot be read; otherwise ‘‘?’’ .

BUGS
There should be some way to examine the registers and other per-process data in a core image; also there
should be some way of specifying double-precision addresses. It does not know yet about shared text seg-
ments.

- 23 -

-

DC (I) 2/8/75 DC(I)

NAME
dc − desk calculator

SYNOPSIS
dc [f ile]

DESCRIPTION
Dc is an arbitrary precision arithmetic package.Ordinarily it operates on decimal integers, but one may
specify an input base, output base, and a number of fractional digits to be maintained.The overall structure
of dc is a stacking (reverse Polish) calculator. If an argument is given, input is taken from that file until its
end, then from the standard input. The following constructions are recognized:

number
The value of the number is pushed on the stack.A number is an unbroken string of the digits 0-9.
It may be preceded by an underscoreto input a negative number. Numbers may contain decimal
points.

+ − * % ˆ
The top two values on the stack are added (+), subtracted (−), multiplied (*), divided (/), remain-
dered (%), or exponentiated (ˆ). The two entries are popped off the stack; the result is pushed on the
stack in their place. Any fractional part of an exponent is ignored.

sx The top of the stack is popped and stored into a register namedx, wherex may be any character. If
thes is capitalized,x is treated as a stack and the value is pushed on it.

lx The value in registerx is pushed on the stack. The registerx is not altered. All registers start with
zero value. If the l is capitalized, registerx is treated as a stack and its top value is popped onto the
main stack.

d The top value on the stack is duplicated.

p The top value on the stack is printed. The top value remains unchanged.

f All values on the stack and in registers are printed.

q exits the program. If executing a string, the recursion level is popped by two. If q is capitalized, the
top value on the stack is popped and the string execution level is popped by that value.

x treats the top element of the stack as a character string and executes it as a string of dc commands.

[...] puts the bracketed ascii string onto the top of the stack.

<x >x =x
The top two elements of the stack are popped and compared.Registerx is executed if they obey the
stated relation.

v replaces the top element on the stack by its square root.Any existing fractional part of the argument
is taken into account, but otherwise the scale factor is ignored.

! interprets the rest of the line as a UNIX command.

c All values on the stack are popped.

i The top value on the stack is popped and used as the number radix for further input.

o The top value on the stack is popped and used as the number radix for further output.

k the top of the stack is popped, and that value is used as a non-negative scale factor: the appropriate
number of places are printed on output, and maintained during multiplication, division, and expo-
nentiation. Theinteraction of scale factor, input base, and output base will be reasonable if all are
changed together.

z The stack level is pushed onto the stack.

? A l ine of input is taken from the input source (usually the console) and executed.

- 24 -

-

DC (I) 2/8/75 DC(I)

An example which prints the first ten values of n! is

[la1+dsa*pla10>y]sy
0sa1
lyx

SEE ALSO
bc (I), which is a preprocessor fordc providing infix notation and a C-like syntax which implements func-
tions and reasonable control structures for programs.

DIAGNOSTICS
(x) ? for unrecognized character x.
(x) ? for not enough elements on the stack to do what was asked by command x.
‘Out of space’ when the free list is exhausted (too many digits).
‘Out of headers’ for too many numbers being kept around.
‘Out of pushdown’ for too many items on the stack.
‘Nesting Depth’ for too many lev els of nested execution.

BUGS

- 25 -

-

DD (I) 5/15/74 DD(I)

NAME
dd − convert and copy a file

SYNOPSIS
dd [option=value] ...

DESCRIPTION
Dd copies the specified input file to the specified output with possible conversions. Thestandard input and
output are used by default. Theinput and output block size may be specified to take advantage of raw
physical I/O.

option values
if= input fi le name; standard input is default
of= outputfi le name; standard output is default
ibs= inputblock size (default 512)
obs= outputblock size (default 512)
bs= setboth input and output block size, supersedingibs andobs; also, if no conversion is

specified, it is particularly efficient since no copy need be done
cbs=n conversion buffer size
skip=n skipn input records before starting copy
count=n copy only n input records
conv=ascii convert EBCDIC to ASCII

ebcdic convert ASCII to EBCDIC
lcase mapalphabetics to lower case
ucase mapalphabetics to upper case
swab swap every pair of bytes
noerror donot stop processing on an error
sync padev ery input record toibs
... , ... several comma-separated conversions

Where sizes are specified, a number of bytes is expected. Anumber may end withk, b or w to specify
multiplication by 1024, 512, or 2 respectively. Also a pair of numbers may be separated byx to indicate a
product.

Cbsis used only ifascii or ebcdicconversion is specified. Inthe former casecbscharacters are placed into
the conversion buffer, converted to ASCII, and trailing blanks trimmed and new-line added before sending
the line to the output.In the latter case ASCII characters are read into the conversion buffer, converted to
EBCDIC, and blanks added to make up an output record of sizecbs.

After completion,dd reports the number of whole and partial input and output blocks.

For example, to read an EBCDIC tape blocked ten 80-byte EBCDIC card images per record into the ASCII
fi le x:

dd if=/dev/rmt0 of=x ibs=800 cbs=80 conv=ascii,lcase

Note the use of raw magtape.Dd is especially suited to I/O on the raw physical devices because it allows
reading and writing in arbitrary record sizes.

SEE ALSO
cp (I)

BUGS
The ASCII/EBCDIC conversion tables are taken from the 256 character standard in the CACM Nov, 1968.
It is not clear how this relates to real life.

Newlines are inserted only on conversion to ASCII; padding is done only on conversion to EBCDIC.There
should be separate options.

- 26 -

-

DIFF (I) 5/15/74 DIFF(I)

NAME
diff − differential file comparator

SYNOPSIS
diff [−] name1 name2

DESCRIPTION
Diff tells what lines must be changed in two files to bring them into agreement. The normal output contains
lines of these forms:

n1an3,n4
n1,n2d n3
n1,n2c n3,n4

These lines resembleed commands to convert file name1into file name2. The numbers after the letters
pertain to file name2. In fact, by exchanging ‘a’ for ‘d’ and reading backward one may ascertain equally
how to convert file name2into name1.As in ed,identical pairs wheren1= n2or n3= n4are abbreviated as
a single number.

Following each of these lines come all the lines that are affected in the first file flagged by ‘*’, then all the
lines that are affected in the second file flagged by ‘.’.

Under the− option, the output ofdiff is a script ofa, candd commands for the editored,which will change
the contents of the first file into the contents of the second. In this connection, the following shell program
may help maintain multiple versions of a file. Only an ancestral file ($1) and a chain of version-to-version
edscripts ($2,$3,...) made bydiff need be on hand.A ‘ latest version’ appears on the standard output.

(cat $2 ... $9; echo "1,$p") ed− $1

Except for occasional ‘jackpots’,diff finds a smallest sufficient set of file differences.

SEE ALSO
cmp (I), comm (I), ed (I)

DIAGNOSTICS
‘jackpot’ − To speed things up, the program uses hashing.You hav estumbled on a case where there is a
chance that this has resulted in a difference being called where none actually existed. Sometimesreversing
the order of files will make a jackpot go away.

BUGS
Editing scripts produced under the− option are naive about creating lines consisting of a single ‘.’.

- 27 -

-

DSW (I) 3/15/72 DSW(I)

NAME
dsw − delete interactively

SYNOPSIS
dsw [directory]

DESCRIPTION
For each file in the given directory (‘.’ i f not specified) dswtypes its name.If y is typed, the file is deleted;
if x, dswexits; if new-line, the file is not deleted; if anything else,dswasks again.

SEE ALSO
rm (I)

BUGS
The namedswis a carryover from the ancient past. Its etymology is amusing.

- 28 -

-

DU (I) 1/20/73 DU(I)

NAME
du − summarize disk usage

SYNOPSIS
du [−s] [−a] [name ...]

DESCRIPTION
Du gives the number of blocks contained in all files and (recursively) directories within each specified di-
rectory or filename. If nameis missing, ‘.’ i s used.

The optional argument−s causes only the grand total to be given. Theoptional argument−a causes an en-
try to be generated for each file. Absenceof either causes an entry to be generated for each directory only.

A file which has two links to it is only counted once.

BUGS
Non-directories given as arguments (not under−a option) are not listed.

Removable file systems do not work correctly since i-numbers may be repeated while the corresponding
fi les are distinct.Du should maintain an i-number list per root directory encountered.

- 29 -

-

ECHO (I) 3/15/72 ECHO(I)

NAME
echo− echo arguments

SYNOPSIS
echo[arg ...]

DESCRIPTION
Echowrites its arguments in order as a line on the standard output file. It is mainly useful for producing di-
agnostics in command files.

BUGS

- 30 -

-

ED (I) 1/15/73 ED(I)

NAME
ed− text editor

SYNOPSIS
ed [−] [name]

DESCRIPTION
Ed is the standard text editor.

If a nameargument is given, edsimulates ane command (see below) on the named file; that is to say, the
fi le is read intoed’s buffer so that it can be edited. The optional− suppresses the printing of character
counts bye, r, andw commands.

Ed operates on a copy of any file it is editing; changes made in the copy hav eno effect on the file until aw
(write) commandis given. Thecopy of the text being edited resides in a temporary file called thebuffer.
There is only one buffer.

Commands toedhave a simple and regular structure: zero or moreaddressesfollowed by a single character
command,possibly followed by parameters to the command. These addresses specify one or more lines in
the buffer. Every command which requires addresses has default addresses, so that the addresses can often
be omitted.

In general, only one command may appear on a line. Certain commands allow the input of text. This text
is placed in the appropriate place in the buffer. While ed is accepting text, it is said to be ininput mode. In
this mode, no commands are recognized; all input is merely collected.Input mode is left by typing a period
‘ .’ alone at the beginning of a line.

Ed supports a limited form ofregular expressionnotation. Aregular expression specifies a set of strings of
characters. Amember of this set of strings is said to bematchedby the regular expression. Theregular ex-
pressions allowed byedare constructed as follows:

1. An ordinary character (not one of those discussed below) is a regular expression and matches that char-
acter.

2. A circumflex ‘ ˆ’ at the beginning of a regular expression matches the empty string at the beginning of a
line.

3. A currency symbol ‘$’ at the end of a regular expression matches the null character at the end of a line.

4. A period ‘.’ matches any character except a new-line character.

5. A regular expression followed by an asterisk ‘*’ matches any number of adjacent occurrences (includ-
ing zero) of the regular expression it follows.

6. A string of characters enclosed in square brackets ‘[]’ matches any character in the string but no others.
If, however, the first character of the string is a circumflex ‘ ˆ’ the regular expression matches any char-
acter except new-line and the characters in the string.

7. Theconcatenation of regular expressions is a regular expression which matches the concatenation of the
strings matched by the components of the regular expression.

8. A regular expression enclosed between the sequences ‘\(’ and ‘\)’is identical to the unadorned expres-
sion; the construction has side effects discussed under thes command.

9. Thenull regular expression standing alone is equivalent to the last regular expression encountered.

Regular expressions are used in addresses to specify lines and in one command (sees below) to specify a
portion of a line which is to be replaced.If it is desired to use one of the regular expression metacharacters
as an ordinary character, that character may be preceded by ‘\’. This also applies to the character bounding
the regular expression (often ‘/’) and to ‘\’ itself.

To understand addressing ined it is necessary to know that at any time there is acurrent line. Generally
speaking, the current line is the last line affected by a command; however, the exact effect on the current
line is discussed under the description of the command. Addresses are constructed as follows.

- 31 -

-

ED (I) 1/15/73 ED(I)

1. Thecharacter ‘.’ addresses the current line.

2. Thecharacter ‘$’ addresses the last line of the buffer.

3. A decimal numbern addresses then-th line of the buffer.

4. ‘´x’ addresses the line marked with the mark name characterx, which must be a lower-case letter.
Lines are marked with thek command described below.

5. A regular expression enclosed in slashes ‘/’ addresses the first line found by searching toward the
end of the buffer and stopping at the first line containing a string matching the regular expression.
If necessary the search wraps around to the beginning of the buffer.

6. A regular expression enclosed in queries ‘?’ addresses the first line found by searching toward the
beginning of the buffer and stopping at the first line containing a string matching the regular expres-
sion. If necessary the search wraps around to the end of the buffer.

7. An address followed by a plus sign ‘+’ or a minus sign ‘−’ f ollowed by a decimal number specifies
that address plus (resp. minus) the indicated number of lines. The plus sign may be omitted.

8. If an address begins with ‘+’ or ‘−’ the addition or subtraction is taken with respect to the current
line; e.g. ‘−5’ is understood to mean ‘.−5’.

9. If an address ends with ‘+’ or ‘−’, then 1 is added (resp. subtracted).As a consequence of this rule
and rule 8, the address ‘−’ refers to the line before the current line.Moreover, trailing ‘+’ and ‘−’
characters have cumulative effect, so ‘−−’ refers to the current line less 2.

10. To maintain compatibility with earlier version of the editor, the character ‘ˆ’ in addresses is entirely
equivalent to ‘−’.

Commands may require zero, one, or two addresses. Commandswhich require no addresses regard the
presence of an address as an error. Commands which accept one or two addresses assume default addresses
when insufficient are given. If more addresses are given than such a command requires, the last one or two
(depending on what is accepted) are used.

Addresses are separated from each other typically by a comma ‘,’. They may also be separated by a semi-
colon ‘;’. In this case the current line ‘.’ is set to the previous address before the next address is interpreted.
This feature can be used to determine the starting line for forward and backward searches (‘/’, ‘?’). The
second address of any two-address sequence must correspond to a line following the line corresponding to
the first address.

In the following list ofedcommands, the default addresses are shown in parentheses. The parentheses are
not part of the address, but are used to show that the given addresses are the default.

As mentioned, it is generally illegal for more than one command to appear on a line.However, any com-
mand may be suffixed by ‘p’ or by ‘l’, in which case the current line is either printed or listed respectively
in the way discussed below.

(.) a
<text>
.

The append command reads the given text and appends it after the addressed line.‘ .’ is left on the
last line input, if there were any, otherwise at the addressed line. Address ‘0’ is legal for this com-
mand; text is placed at the beginning of the buffer.

(. , .) c
<text>
.

The change command deletes the addressed lines, then accepts input text which replaces these lines.
‘ .’ is left at the last line input; if there were none, it is left at the first line not deleted.

(. , .) d
The delete command deletes the addressed lines from the buffer. The line originally after the last line
deleted becomes the current line; if the lines deleted were originally at the end, the new last line be-
comes the current line.

- 32 -

-

ED (I) 1/15/73 ED(I)

e filename
The edit command causes the entire contents of the buffer to be deleted, and then the named file to be
read in. ‘ .’ is set to the last line of the buffer. The number of characters read is typed.‘f ilename’ is
remembered for possible use as a default file name in a subsequentr or w command.

f f ilename
The filename command prints the currently remembered file name. If ‘filename’ is given, the cur-
rently remembered file name is changed to ‘filename’.

(1,$) g/regular expression/command list
In the global command, the first step is to mark every line which matches the given regular expres-
sion. Thenfor every such line, the given command list is executed with ‘.’ i nitially set to that line.A
single command or the first of multiple commands appears on the same line with the global com-
mand. All lines of a multi-line list except the last line must be ended with ‘\’.A, i, andc commands
and associated input are permitted; the ‘.’ terminating input mode may be omitted if it would be on
the last line of the command list. The (global)commands,g, andv, are not permitted in the com-
mand list.

(.) i
<text>
.

This command inserts the given text before the addressed line.‘ .’ is left at the last line input; if there
were none, at the addressed line. This command differs from thea command only in the placement
of the text.

(.) kx
The mark command marks the addressed line with namex, which must be a lower-case letter. The
address form ‘x́’ then addresses this line.

(. , .) l
The list command prints the addressed lines in an unambiguous way: non-graphic characters are
printed in octal, and long lines are folded. Anl command may follow any other on the same line.

(. , .) ma
The move command repositions the addressed lines after the line addressed bya. The last of the
moved lines becomes the current line.

(. , .) p
The print command prints the addressed lines.‘ .’ i s left at the last line printed.The p command
may be placed on the same line after any command.

q
The quit command causesedto exit. No automatic write of a file is done.

($) r fi lename
The read command reads in the given file after the addressed line. If no file name is given, the re-
membered file name, if any, is used (seee and f commands) .The remembered file name is not
changed unless ‘filename’ is the very first file name mentioned.Address ‘0’ is legal for r and causes
the file to be read at the beginning of the buffer. If the read is successful, the number of characters
read is typed. ‘.’ is left at the last line read in from the file.

(. , .) s/regular expression/replacement/ or,
(. , .) s/regular expression/replacement/g

The substitute command searches each addressed line for an occurrence of the specified regular ex-
pression. Oneach line in which a match is found, all matched strings are replaced by the replace-
ment specified, if the global replacement indicator ‘g’ appears after the command.If the global indi-
cator does not appear, only the first occurrence of the matched string is replaced.It is an error for the
substitution to fail on all addressed lines.Any character other than space or new-line may be used in-
stead of ‘/’ to delimit the regular expression and the replacement.‘ .’ i s left at the last line substituted.

An ampersand ‘&’ appearing in the replacement is replaced by the string matching the regular ex-
pression. Thespecial meaning of ‘&’ in this context may be suppressed by preceding it by ‘\’. As a
more general feature, the characters ‘\n’, wheren is a digit, are replaced by the text matched by then-

- 33 -

-

ED (I) 1/15/73 ED(I)

th regular subexpression enclosed between ‘\(’ and ‘\)’.When nested, parenthesized subexpressions
are present,n is determined by counting occurrences of ‘\(’ starting from the left.

Lines may be split by substituting new-line characters into them.The new-line in the replacement
string must be escaped by preceding it by ‘\’.

(. , .) t a
This command acts just like them command, except that a copy of the addressed lines is placed after
addressa (which may be 0). ‘.’ is left on the last line of the copy.

(1,$) v/regular expression/command list
This command is the same as the global command except that the command list is executed with ‘.’
initially set to every line exceptthose matching the regular expression.

(1,$) wfi lename
The write command writes the addressed lines onto the given file. If the file does not exist, it is cre-
ated mode 666 (readable and writeable by everyone) . The remembered file name isnot changed un-
less ‘filename’ is the very first file name mentioned. If no file name is given, the remembered file
name, if any, is used (seee and f commands) .‘ .’ is unchanged. Ifthe command is successful, the
number of characters written is typed.

($) =
The line number of the addressed line is typed. ‘.’ is unchanged by this command.

!UNIX command
The remainder of the line after the ‘!’ is sent to UNIX to be interpreted as a command.‘ .’ is un-
changed.

(.+1) <newline>
An address alone on a line causes the addressed line to be printed.A blank line alone is equivalent to
‘.+1p’; it is useful for stepping through text.

If an interrupt signal (ASCII DEL) is sent,edprints a ‘?’ and returns to its command level.

Some size limitations: 512 characters per line, 256 characters per global command list, 64 characters per
fi le name, and 128K characters in the temporary file. The limit on the number of lines depends on the
amount of core: each line takes 1 word.

FILES
/tmp/#, temporary; ‘#’ is the process number (in octal).

DIAGNOSTICS
‘?’ for errors in commands; ‘TMP’ for temporary file overflow.

SEE ALSO
A Tutorial Introduction to the ED Text Editor (B. W. Kernighan)

BUGS
Thes command causes all marks to be lost on lines changed.

- 34 -

-

EQN (I) 2/22/74 EQN(I)

NAME
eqn − typeset mathematics

SYNOPSIS
eqn [f ile] ...

DESCRIPTION
Eqn is a troff (I) preprocessor for typesetting mathematics on the Graphics Systems phototypesetter. Usage
is almost always

eqn file ... | troff

If no files are specified,eqnreads from the standard input.A l ine beginning with ‘‘.EQ’’ marks the start of
an equation; the end of an equation is marked by a line beginning with ‘‘.EN’’. Neitherof these lines is al-
tered or defined byeqn,so you can define them yourself to get centering, numbering, etc.All other lines
are treated as comments, and passed through untouched.

Spaces, tabs, newlines, braces, double quotes, tilde and circumflex are the only delimiters. Braces ‘‘{}’ ’ are
used for grouping. Use tildes ‘‘˜’’ to get extra spaces in an equation.

Subscripts and superscripts are produced with the keywords sub andsup. Thusx sub i makesxi , a sub i

sup 2producesa2
i , and e sup {x sup 2 + y sup 2}gives ex2+y2

. Fractions are made withover. a over b is
a

b

and1 over sqrt {ax sup 2 +bx+c}is
1

√ ax2 + bx + c
. sqrt makes square roots.

The keywords from andto introduce lower and upper limits on arbitrary things:
n−>∞
lim

n

0
Σ xi is made withlim

from {n-> inf} sum from 0 to n x sub i.Left and right brackets, braces, etc., of the right height are made

with left and right: left [x sup 2 + y sup 2 over alpha right] ˜=˜1produces



x2 +

y2

α





= 1. Theright

clause is optional.

Vertical piles of things are made withpile, lpile, cpile, and rp ile: pile {a above b above c}produces

a

b

c

.

There can be an arbitrary number of elements in a pile.lpile left-justifies,pile andcpile center, with differ-
ent vertical spacing, andrp ile right justifies.

Diacritical marks are made withdot, dotdot, hat, bar: x dot = f(t) bar is ẋ = f (t). Default sizes and fonts
can be changed withsize nand various ofroman, italic, andbold.

Ke ywords like sum(Σ) int (∫) inf (∞) and shorthands like >= (≥) −> (− >), != (≠), are recognized.Spell

out Greek letters in the desired case, as inalpha, GAMMA.Mathematical words like sin, cos, log are made
Roman automatically. Troff (I) four-character escapes like \(ci () can be used anywhere. Stringsenclosed
in double quotes "..." are passed through untouched.

SEE ALSO

A System for Typesetting Mathematics (Computer Science Technical Report #17, Bell Laboratories, 1974.)
TROFF Users’ Manual (internal memorandum)
TROFF Made Trivial (internal memorandum)
troff (I), neqn (I)

BUGS

Undoubtedly. Watch out for small or large point sizes− it’ s tuned too well for size 10. Be cautious if in-
serting horizontal or vertical motions, and of backslashes in general.

- 35 -

-

EXIT (I) 3/15/72 EXIT(I)

NAME
exit − terminate command file

SYNOPSIS
exit

DESCRIPTION
Exit performs aseekto the end of its standard input file. Thus,if it is invoked inside a file of commands,
upon return fromexit the shell will discover an end-of-file and terminate.

SEE ALSO
if (I), goto (I), sh (I)

BUGS

- 36 -

-

FC (I) 8/20/73 FC(I)

NAME
fc − Fortran compiler

SYNOPSIS
fc [−c] sfi le1.f ... ofile1 ...

DESCRIPTION
Fc is the UNIX Fortran compiler. It accepts three types of arguments:

Arguments whose names end with ‘.f’ are assumed to be Fortran source program units; they are compiled,
and the object program is left on the file sfile1.o (i.e. the file whose name is that of the source with ‘.o’
substituted for ‘.f’).

Other arguments (except for−c) are assumed to be either loader flags, or object programs, typically pro-
duced by an earlierfc run, or perhaps libraries of Fortran-compatible routines. These programs, together
with the results of any compilations specified, are loaded (in the order given) to produce an executable pro-
gram with namea.out.

The −c argument suppresses the loading phase, as does any syntax error in any of the routines being com-
piled.

The following is a list of differences betweenfc and ANSI standard Fortran (also see the BUGS section):

1. Arbitrary combination of types is allowed in expressions. Notall combinations are expected to be
supported at runtime. All of the normal conversions involving integer, real, double precision and com-
plex are allowed.

2. Two forms of ‘‘implicit’’ statements are recognized:implicit integer /i −n/ or implicit integer (i−n).

3. Thetypes doublecomplex, logical*1, integer*1, integer*2, integer*4 (same as integer), real*4 (real),
and real*8 (double precision) are supported.

4. & as the first character of a line signals a continuation card.

5. c as the first character of a line signals a comment.

6. All keywords are recognized in lower case.

7. Thenotion of ‘column 7’ is not implemented.

8. G-formatinput is free form− leading blanks are ignored, the first blank after the start of the number
terminates the field.

9. A comma in any numeric or logical input field terminates the field.

10. Thereis no carriage control on output.

11. Asequence ofn characters in double quotes ‘"’ is equivalent ton h followed by those characters.

12. Indata statements, a hollerith string may initialize an array or a sequence of array elements.

13. Thenumber of storage units requested by a binaryread must be identical to the number contained in
the record being read.

14. If the first character in an input file is ‘‘#’ ’, a preprocessor identical to the C preprocessor is called,
which implements ‘‘#define’’ and ‘‘#include’’ preprocessor statements. (See the C reference manual
for details.) The preprocessor does not recognize Hollerith strings written withnh.

In I/O statements, only unit numbers 0-19 are supported. Unit numbern refers to file fortnn; (e.g. unit 9 is
fi le ‘fort09’). For input, the file must exist; for output, it will be created. Unit 5 is permanently associated
with the standard input file; unit 6 with the standard output file. Also seesetfil (III) for a way to associate
unit numbers with named files.

FILES
a.out loadedoutput
f.tmp[123] temporary(deleted)
/usr/fort/fc1 compilerproper

- 37 -

-

FC (I) 8/20/73 FC(I)

/lib/fr0.o runtimestartoff
/lib/filib .a interpreterlibrary
/lib/libf.a builtin functions, etc.
/lib/liba.a systemlibrary

SEE ALSO
rc (I), which announces a more pleasant Fortran dialect; the ANSI standard; ld (I) for loader flags.For
some subroutines, try ierror, getarg, setfil (III).

DIAGNOSTICS
Compile-time diagnostics are given in English, accompanied if possible with the offending line number and
source line with an underscore where the error occurred.Runtime diagnostics are given by number as fol-
lows:

1 inv alid log argument
2 bad arg count to amod
3 bad arg count to atan2
4 excessive argument to cabs
5 exp too large in cexp
6 bad arg count to cmplx
7 bad arg count to dim
8 excessive argument to exp
9 bad arg count to idim
10 badarg count to isign
11 badarg count to mod
12 badarg count to sign
13 illegal argument to sqrt
14 assigned/computedgoto out of range
15 subscriptout of range
16 real**realoverflow
17 (negative real)**real
100 illegal I /O unit number
101 inconsistentuse of I/O unit
102 cannotcreate output file
103 cannotopen input file
104 EOFon input file
105 illegal character in format
106 formatdoes not begin with (
107 noconversion in format but non-empty list
108 excessive parenthesis depth in format
109 illegal format specification
110 illegal character in input field
111 endof format in hollerith specification
112 badargument to setfil
120 badargument to ierror
999 unimplementedinput conversion

BUGS
The following is a list of those features not yet implemented:
arithmetic statement functions
scale factors on input
Backspacestatement.

- 38 -

-

FILE (I) 1/16/75 FILE(I)

NAME
fi le − determine file type

SYNOPSIS
fi le fi le ...

DESCRIPTION
File performs a series of tests on each argument in an attempt to classify it. If an argument appears to be
ascii,file examines the first 512 bytes and tries to guess its language.

BUGS

- 39 -

-

FIND (I) 5/15/74 FIND(I)

NAME
find − find files

SYNOPSIS
find pathname expression

DESCRIPTION
Find recursively descends the directory hierarchy from pathnameseeking files that match a booleanexpres-
sion written in the primaries given below. In the descriptions, the argumentn is used as a decimal integer
where+n means more thann, −n means less thann andn means exactlyn.

−name fi lename True if thefilenameargument matches the current file name.Normal Shellargument
syntax may be used if escaped (watch out for ‘[’, ‘?’ and ‘*’).

−perm onum True if the file permission flags exactly match the octal numberonum(see chmod(I)).
If onumis prefixed by a minus sign, more flag bits (017777, see stat(II)) become signif-
icant and the flags are compared:(flags&onum)==onum.

−type c True if the type of the file is c, wherec is b, c, d or f for block special file, character
special file, directory or plain file.

−links n True if the file hasn links.

−useruname True if the file belongs to the useruname.

−group gname Asit is for −userso shall it be for−group (someday).

−sizen True if the file isn blocks long (512 bytes per block).

−atime n True if the file has been accessed inn days.

−mtime n True if the file has been modified inn days.

−execcommand True if the executed command returns exit status zero (most commands do). The end of
the command is punctuated by an escaped semicolon.A command argument ‘{}’ is re-
placed by the current pathname.

−ok command Like −execexcept that the generated command line is printed with a question mark
fi rst, and is executed only if the user respondsy.

−print Always true; causes the current pathname to be printed.

The primaries may be combined with these operators (ordered by precedence):

! prefix not

−a infix and,second operand evaluated only if first is true

−o infix or, second operand evaluated only if first is false

(expression) parentheses for grouping. (Must be escaped.)

To remove files named ‘a.out’ and ‘*.o’ not accessed for a week:

find / "(" −name a.out−o −name "*.o" ")"−a −atime +7−a −exec rm {} " ;"

FILES
/etc/passwd

SEE ALSO
sh (I), if(I), file system (V)

BUGS
There is no way to check device type.
Syntax should be reconciled withif.

- 40 -

-

GOTO (I) 3/15/72 GOTO (I)

NAME
goto − command transfer

SYNOPSIS
goto label

DESCRIPTION
Goto is allowed only when the Shell is taking commands from a file. Thefi le is searched from the begin-
ning for a line beginning with ‘:’ followed by one or more spaces followed by thelabel. If such a line is
found, thegotocommand returns. Since the read pointer in the command file points to the line after the la-
bel, the effect is to cause the Shell to transfer to the labelled line.

‘:’ is a do-nothing command that is ignored by the Shell and only serves to place a label.

SEE ALSO
sh (I)

BUGS

- 41 -

-

GREP (I) 5/15/74 GREP(I)

NAME
grep− search a file for a pattern

SYNOPSIS
grep [−v] [−b] [−c] [−n] expression [file] ...

DESCRIPTION
Grep searches the input files (standard input default) for lines matching the regular expression. Normally,
each line found is copied to the standard output. If the−v flag is used, all lines but those matching are
printed. If the−c flag is used, only a count of matching lines is printed. If the−n flag is used, each line is
preceded its relative line number in the file. If the−b flag is used, each line is preceded by the block num-
ber on which it was found. This is sometimes useful in locating disk block numbers by context.

In all cases the file name is shown if there is more than one input file.

For a complete description of the regular expression, see ed (I).Care should be taken when using the char-
acters $ * [ˆ | () and \ in the regular expression as they are also meaningful to the Shell. It is generally nec-
essary to enclose the entireexpressionargument in quotes.

SEE ALSO
ed (I), sh (I)

BUGS
Lines are limited to 256 characters; longer lines are truncated.

- 42 -

-

IF (I) 5/2/74 IF(I)

NAME
if − conditional command

SYNOPSIS
if expr command [arg ...]

DESCRIPTION
If evaluates the expressionexpr, and if its value is true, executes the given commandwith the given argu-
ments.

The following primitives are used to construct theexpr:

−r fi le trueif the file exists and is readable.

−w fi le trueif the file exists and is writable.

s1= s2 trueif the stringss1ands2are equal.

s1!= s2 trueif the stringss1ands2are not equal.

{ command} The bracketed command is executed to obtain the exit status. Status zero is considered
true. The command must not be anotherif.

These primaries may be combined with the following operators:

! unary negation operator

−a binaryandoperator

−o binaryor operator

(expr) parentheses for grouping.

−a has higher precedence than−o. Notice that all the operators and flags are separate arguments toif and
hence must be surrounded by spaces.Notice also that parentheses are meaningful to the Shell and must be
escaped.

SEE ALSO
sh (I), find (I)

BUGS

- 43 -

-

KILL (I) 2/8/75 KILL (I)

NAME
kill − terminate a process

SYNOPSIS
kill [−signo] processid ...

DESCRIPTION
Kills the specified processes. The process number of each asynchronous process started with ‘&’ is report-
ed by the Shell. Process numbers can also be found by usingps(I).

If process number 0 is used, then all processes belonging to the current user and associated with the same
control typewriter are killed.

The killed process must belong to the current user unless he is the super-user.

If a signal number preceded by ‘‘−’’ i s giv en as first argument, that signal is sent instead ofkill (seesignal
(II)).

SEE ALSO
ps (I), sh (I), signal (II)

BUGS

- 44 -

-

LD (I) 8/16/73 LD(I)

NAME
ld − link editor

SYNOPSIS
ld [−sulxrdni] name ...

DESCRIPTION
Ld combines several object programs into one; resolves external references; and searches libraries. In the
simplest case the names of several object programs are given, andld combines them, producing an object
module which can be either executed or become the input for a furtherld run. (Inthe latter case, the−r op-
tion must be given to preserve the relocation bits.) The output ofld is left ona.out. This file is made ex-
ecutable only if no errors occurred during the load.

The argument routines are concatenated in the order specified. Theentry point of the output is the begin-
ning of the first routine.

If any argument is a library, it is searched exactly once at the point it is encountered in the argument list.
Only those routines defining an unresolved external reference are loaded. If a routine from a library refer-
ences another routine in the library, the referenced routine must appear after the referencing routine in the
library. Thus the order of programs within libraries is important.

Ld understands several flag arguments which are written preceded by a ‘−’. Exceptfor −l, they should ap-
pear before the file names.

−s ‘squash’ the output, that is, remove the symbol table and relocation bits to save space (but impair the
usefulness of the debugger). Thisinformation can also be removed by strip.

−u take the following argument as a symbol and enter it as undefined in the symbol table. This is useful
for loading wholly from a library, since initially the symbol table is empty and an unresolved reference
is needed to force the loading of the first routine.

−l This option is an abbreviation for a library name.−l alone stands for ‘/lib/liba.a’, which is the stan-
dard system library for assembly language programs.−lx stands for ‘/lib/libx.a’ wherex is any charac-
ter. A library is searched when its name is encountered, so the placement of a−l is significant.

−x do not preserve local (non-.globl) symbols in the output symbol table; only enter external symbols.
This option saves some space in the output file.

−X Save local symbols except for those whose names begin with ‘L’. This option is used bycc to discard
internally generated labels while retaining symbols local to routines.

−r generate relocation bits in the output file so that it can be the subject of anotherld run. Thisflag also
prevents final definitions from being given to common symbols, and suppresses the ‘undefined sym-
bol’ diagnostics.

−d force definition of common storage even if the−r flag is present.

−n Arrange that when the output file is executed, the text portion will be read-only and shared among all
users executing the file. This involves moving the data areas up the the first possible 4K word bound-
ary following the end of the text.

−i When the output file is executed, the program text and data areas will live in separate address spaces.
The only difference between this option and−n is that here the data starts at location 0.

FILES
/lib/lib?.a libraries
a.out outputfi le

SEE ALSO
as (I), ar (I)

BUGS

- 45 -

-

LN (I) 3/15/72 LN(I)

NAME
ln − make a link

SYNOPSIS
ln name1 [name2]

DESCRIPTION
A l ink is a directory entry referring to a file; the same file (together with its size, all its protection informa-
tion, etc) may have sev eral links to it. There is no way to distinguish a link to a file from its original direc-
tory entry; any changes in the file are effective independently of the name by which the file is known.

Ln creates a link to an existing file name1. If name2is given, the link has that name; otherwise it is placed
in the current directory and its name is the last component ofname1.

It is forbidden to link to a directory or to link across file systems.

SEE ALSO
rm (I)

BUGS
There is nothing particularly wrong withln, but tp doesn’t understand about links and makes one copy for
each name by which a file is known; thus if the tape is extracted several copies are restored and the infor-
mation that links were involved is lost.

- 46 -

-

LOGIN (I) 3/15/72 LOGIN(I)

NAME
login − sign onto UNIX

SYNOPSIS
login [username]

DESCRIPTION
The login command is used when a user initially signs onto UNIX, or it may be used at any time to change
from one user to another. The latter case is the one summarized above and described here. See ‘How to
Get Started’ for how to dial up initially.

If login is invoked without an argument, it asks for a user name, and, if appropriate, a password. Echoingis
turned off (if possible) during the typing of the password, so it will not appear on the written record of the
session.

After a successful login, accounting files are updated and the user is informed of the existence of and mes-
sage-of-the-day files. Login initializes the user and group IDs and the working directory, then executes a
command interpreter (usuallysh(I)) according to specifications found in a password file.

Login is recognized by the Shell and executed directly (without forking).

FILES
/etc/utmp accounting
/usr/adm/wtmp accounting
.mail mail
/etc/motd message-of-the-day
/etc/passwd password file

SEE ALSO
init (VIII), getty (VIII), mail (I), passwd (I), passwd (V)

DIAGNOSTICS
‘login incorrect,’ if t he name or the password is bad. ‘No Shell,’, ‘cannot open password file,’ ‘ no directo-
ry’: consult a UNIX programming counselor.

BUGS

- 47 -

-

LS (I) 3/20/74 LS(I)

NAME
ls − list contents of directory

SYNOPSIS
ls [−ltasdruifg] name ...

DESCRIPTION
For each directory argument,ls lists the contents of the directory; for each file argument,ls repeats its name
and any other information requested. The output is sorted alphabetically by default. Whenno argument is
given, the current directory is listed. When several arguments are given, the arguments are first sorted ap-
propriately, but file arguments appear before directories and their contents. There are several options:

−l list in long format, giving mode, number of links, owner, size in bytes, and time of last modification
for each file. (Seebelow.) If the file is a special file the size field will instead contain the major and
minor device numbers.

−t sort by time modified (latest first) instead of by name, as is normal

−a list all entries; usually those beginning with ‘.’ are suppressed

−s give size in blocks for each entry

−d if argument is a directory, list only its name, not its contents (mostly used with−l to get status on di-
rectory)

−r reverse the order of sort to get reverse alphabetic or oldest first as appropriate

−u use time of last access instead of last modification for sorting (−t) or printing (−l)

−i print i-number in first column of the report for each file listed

−f force each argument to be interpreted as a directory and list the name found in each slot. This option
turns off −l, −t, −s,and−r, and turns on−a; the order is the order in which entries appear in the direc-
tory.

−g Give group ID instead of owner ID in long listing.

The mode printed under the−l option contains 11 characters which are interpreted as follows: the first char-
acter is

d if the entry is a directory;
b if the entry is a block-type special file;
c if the entry is a character-type special file;
− if the entry is a plain file.

The next 9 characters are interpreted as three sets of three bits each. The first set refers to owner permis-
sions; the next to permissions to others in the same user-group; and the last to all others.Within each set
the three characters indicate permission respectively to read, to write, or to execute the file as a program.
For a directory, ‘execute’ permission is interpreted to mean permission to search the directory for a speci-
fied file. Thepermissions are indicated as follows:

r if the file is readable
w if the file is writable
x if the file is executable
− if the indicated permission is not granted

The group-execute permission character is given as s if the file has set-group-ID mode; likewise the user-
execute permission character is given as s if the file has set-user-ID mode.

The last character of the mode is normally blank but is printed as ‘‘t’ ’ if t he 1000 bit of the mode is on.See
chmod (I)for the current meaning of this mode.

FILES
/etc/passwd to get user ID’s for ls −l.

- 48 -

-

LS (I) 3/20/74 LS(I)

BUGS

- 49 -

-

MAIL (I) 2/21/75 MAIL(I)

NAME
mail − send mail to designated users

SYNOPSIS
mail [−yn] [person ...]

DESCRIPTION
Mail with no argument searches for a file called prints it if it is nonempty, then asks if it should be saved. If
the answer isy, the mail is added tombox. Finally is truncated to zero length.To leave the mailbox un-
touched, hit ‘delete.’ The question can be answered on the command line with the argument ‘−y’ or ‘−n’.

Whenpersonsare named,mail takes the standard input up to an end of file and adds it to eachperson’sfi le.
The message is preceded by the sender’s name and a postmark.

A personis either a user name recognized bylogin (I), in which case the mail is sent to the default working
directory of that user; or the path name of a directory, in which case in that directory is used.

When a user logs in he is informed of the presence of mail.No mail will be received from a sender to
whom is inaccessible or unwritable.

FILES
/etc/passwd toidentify sender and locate persons
/etc/utmp toidentify sender
.mail inputmail
mbox saved mail
/tmp/m# tempfi le

SEE ALSO
write (I)

BUGS

- 50 -

-

MAN (I) 8/20/73 MAN(I)

NAME
man− run off section of UNIX manual

SYNOPSIS
man [section] [title ...]

DESCRIPTION
Man is a shell command file which locates and prints one or more sections of this manual.Sectionis the
section number of the manual, as an Arabic not Roman numeral, and is optional.Title is one or more sec-
tion names; these names bear a generally simple relation to the page captions in the manual.If the section
is missing,1 is assumed.For example,

man man

would reproduce this page.

FILES
/usr/man/man?/*

BUGS
The manual is supposed to be reproducible either on the phototypesetter or on a typewriter. Howev er, on a
typewriter some information is necessarily lost.

- 51 -

-

MESG (I) 3/15/72 MESG(I)

NAME
mesg − permit or deny messages

SYNOPSIS
mesg[n] [y]

DESCRIPTION
Mesgwith argumentn forbids messages viawrite by revoking non-user write permission on the user’s
typewriter. Mesgwith argumenty reinstates permission. All by itself,mesgreverses the current permis-
sion. Inall cases the previous state is reported.

FILES
/dev/tty?

SEE ALSO
write (I)

DIAGNOSTICS
‘?’ if the standard input file is not a typewriter

BUGS

- 52 -

-

MKDIR (I) 3/15/72 MKDIR(I)

NAME
mkdir − make a directory

SYNOPSIS
mkdir dirname ...

DESCRIPTION
Mkdir creates specified directories in mode 777. The standard entries ‘.’ and ‘..’ are made automatically.

SEE ALSO
rmdir (I)

BUGS

- 53 -

-

MV (I) 8/20/73 MV(I)

NAME
mv − move or rename a file

SYNOPSIS
mv name1 name2

DESCRIPTION
Mv changes the name ofname1to name2. If name2is a directory, name1is moved to that directory with
its original file-name. Directoriesmay only be moved within the same parent directory (just renamed).

If name2already exists, it is removed beforename1is renamed.If name2has a mode which forbids writ-
ing, mv prints the mode and reads the standard input to obtain a line; if the line begins withy, the move
takes place; if not,mvexits.

If name2would lie on a different file system, so that a simple rename is impossible,mvcopies the file and
deletes the original.

BUGS
It should take a−f flag, like rm, to suppress the question if the target exists and is not writable.

- 54 -

-

NEQN (I) 4/30/74 NEQN(I)

NAME
neqn− typeset mathematics on terminal

SYNOPSIS
neqn [f ile] ...

DESCRIPTION
Neqnis an nroff (I) preprocessor. The input language is the same as that of eqn (I). Normal usage is almost
always

neqn file ... | nroff

Output is meant for terminals with forward and reverse capabilities, such as the Model 37 teletype or GSI
terminal.

If no arguments are specified,neqnreads the standard input, so it may be used as a filter.

SEE ALSO
eqn (I), gsi (VI)

BUGS
Because of some interactions withnroff there may not always be enough space left before and after lines
containing equations.

- 55 -

-

NEWGRP (I) 4/8/75 NEWGRP(I)

NAME
newgrp− log in to a new group

SYNOPSIS
newgrp group

DESCRIPTION
Newgrp changes the group identification of its caller, analogously tologin. The same person remains
logged in, and the current directory is unchanged, but calculations of access permissions to files are per-
formed with respect to the new group ID.

A password is demanded if the group has a password and the user himself does not.

When most users log in, they are members of the group named ‘other.’

FILES
/etc/group, /etc/passwd

SEE ALSO
login (I), group (V)

BUGS

- 56 -

-

NICE (I) 2/8/75 NICE(I)

NAME
nice− run a command at low priority

SYNOPSIS
nice [−number] command [arguments]

DESCRIPTION
Niceexecutescommandwith low scheduling priority. If a numerical argument is given, that priority (in the
range 1-20) is used; if not, priority 4 is used.

The super-user may run commands with priority higher than normal by using a negative priority, e.g.
‘−−10’.

SEE ALSO
nohup (I), nice (II)

BUGS

- 57 -

-

NM (I) 8/20/73 NM(I)

NAME
nm − print name list

SYNOPSIS
nm [−cnrupg] [name]

DESCRIPTION
Nm prints the symbol table from the output file of an assembler or loader run. Each symbol name is pre-
ceded by its value (blanks if undefined) and one of the lettersU (undefined)A (absolute)T (text segment
symbol),D (data segment symbol),B (bss segment symbol), orC (common symbol).If the symbol is local
(non-external) the type letter is in lower case. The output is sorted alphabetically.

If no file is given, the symbols ina.out are listed.

Options are:

−c list only C-style external symbols, that is those beginning with underscore ‘ ’.

−g print only global (external) symbols

−n sort by value instead of by name

−p don’t sort; print in symbol-table order

−r sort in reverse order

−u print only undefined symbols.

FILES
a.out

BUGS

- 58 -

-

NOHUP (I) 11/1/73 NOHUP(I)

NAME
nohup− run a command immune to hangups

SYNOPSIS
nohup command [arguments]

DESCRIPTION
Nohupexecutescommandwith hangups, quits and interrupts all ignored.

SEE ALSO
nice (I), signal (II)

BUGS

- 59 -

-

NROFF (I) 4/15/75 NROFF (I)

NAME
nroff − format text

SYNOPSIS
nroff [+n] [−n] [−nn] [−ran] [−mx] [−s] [−h] [−q] f iles

DESCRIPTION
Nroff formats text according to control lines embedded in the text files. Nroff reads the standard input if no
fi le arguments are given. An argument of just ‘‘−’ ’ refers to the standard input. The non-file option argu-
ments are interpreted as follows:

+n Output commences at the first page whose page number isn or larger.

−n Printing stops after pagen.

−nn First generated (not necessarily printed) page is given numbern; simulates ‘‘.pn|n’’ .

−ran Set number register to the valuen.

−mname Prepends a standard macro file; simulates ‘‘.so /usr/lib/tmac.name’’ .

−s Stop prior to each page to permit paper loading.Printing is restarted by typing a ‘newline’
character.

−h Spaces are replaced where possible with tabs to speed up output (or reduce the size of the out-
put file).

−q Prompt names for insertions are not printed and the bell character is sent instead; the insertion
is not echoed.

FILES
/usr/lib/suftab suffix hyphenation tables
/tmp/rtm? temporary
/usr/lib/tmac.* standardmacro files

SEE ALSO
NROFF User’s Manual (internal memorandum).
neqn (I), col (I)

BUGS

- 60 -

-

OD (I) 1/15/73 OD(I)

NAME
od − octal dump

SYNOPSIS
od [−abcdho] [f ile] [[+] offset[.][b]]

DESCRIPTION
Od dumpsfile in one or more formats as selected by the first argument. Ifthe first argument is missing−o
is default. Themeanings of the format argument characters are:

a interprets words as PDP-11 instructions and dis-assembles the operation code.Unknown operation
codes print as ???.

b interprets bytes in octal.

c interprets bytes in ascii. Unknown ascii characters are printed as \?.

d interprets words in decimal.

h interprets words in hex.

o interprets words in octal.

The file argument specifies which file is to be dumped. If no file argument is specified, the standard input
is used. Thusodcan be used as a filter.

The offset argument specifies the offset in the file where dumping is to commence. This argument is nor-
mally interpreted as octal bytes.If ‘ .’ is appended, the offset is interpreted in decimal. If ‘b’ is appended,
the offset is interpreted in blocks. (A block is 512 bytes.) If the file argument is omitted, the offset argu-
ment must be preceded by ‘+’.

Dumping continues until end-of-file.

SEE ALSO
db (I)

BUGS

- 61 -

-

OPR (I) 7/17/74 OPR(I)

NAME
opr − off l ine print

SYNOPSIS
opr [−destination] [−crm] [name ...]

DESCRIPTION
Opr causes the named files to be printed off l ine at the specified destination. If no names appear the stan-
dard input is assumed.

At the mother system the following destinations are recognized. The default destination ismh.

lp Local line printer.

mh GCOS at Murray Hill Comp Center. GCOS identification must be registered in the UNIX password
fi le (see passwd (V)).

sp Spider network printer.

xx The two-character codexx is taken to be a Murray Hill GCOS station id. Useful codes are ‘r1’ for
quality print and ‘q1’ for quality print with special ribbon.

Opr uses spooling daemons that do the job when facilities become available. Flag−r causes the named
fi les to be removed when spooled.Flag −c causes copies to be made so as to insulate the daemons from
any intervening changes to the files.

Flag −m causes mail to be sent when UNIX is finished transmitting the file. For GCOS jobs the mail in-
cludes the snumb.

FILES
/etc/passwd personalident cards
/lib/dpr dataphonespooler
/etc/dpd dataphonedaemon
/usr/dpd/* spoolarea
/lib/lpr line printer spooler
/etc/lpd lineprinter daemon
/usr/lpd/* spoolarea
/lib/npr spidernetwork spooler

SEE ALSO
fsend (I), dpd (VIII), lpd (VIII)

BUGS
Line printer spooler doesn’t handle flags.
Spider network spooler doesn’t spool.

- 62 -

-

PASSWD (I) 9/1/72 PASSWD (I)

NAME
passwd− change login password

SYNOPSIS
passwdname password

DESCRIPTION
Thepasswordbecomes associated with the given login name.This can only be done by corresponding user
or by the super-user. An explicit null argument ("") for the password argument removes any password.

FILES
/etc/passwd

SEE ALSO
login (I), passwd (V), crypt (III)

BUGS

- 63 -

-

PFE (I) 11/1/73 PFE(I)

NAME
pfe − print floating exception

SYNOPSIS
pfe

DESCRIPTION
Pfe examines the floating point exception register and prints a diagnostic for the last floating point excep-
tion.

SEE ALSO
signal (II)

BUGS
Since the system does not save the exception register in a core image file, the message refers to the last er-
ror encountered by anyone. Floatingexceptions are therefore volatile.

- 64 -

-

PR (I) 3/20/74 PR(I)

NAME
pr − print file

SYNOPSIS
pr [−h header] [−n] [+n] [−wn] [−ln] [−t] [−sc] [−m] name . . .

DESCRIPTION
Pr produces a printed listing of one or more files. Theoutput is separated into pages headed by a date, the
name of the file or a specified header, and the page number. If there are no file arguments,pr prints its
standard input, and is thus usable as a filter.

Options apply to all following files but may be reset between files:

−n producen-column output

+n begin printing with pagen

−h treat the next argument as a header to be used instead of the file name

−wn for purposes of multi-column output, take the width of the page to ben characters instead of the de-
fault 72

−ln take the length of the page to ben lines instead of the default 66

−t do not print the 5-line header or the 5-line trailer normally supplied for each page

−sc separate columns by the single characterc instead of by the appropriate amount of white space.A
missingc is taken to be a tab.

−m print all files simultaneously, each in one column

Interconsole messages via write(I) are forbidden during apr.

FILES
/dev/tty? tosuspend messages.

SEE ALSO
cat (I), cp (I)

DIAGNOSTICS
none; files not found are ignored

BUGS

- 65 -

-

PROF (I) 3/12/73 PROF (I)

NAME
prof − display profile data

SYNOPSIS
prof [−v] [−a] [−l] [f ile]

DESCRIPTION
Prof interprets the file mon.outproduced by themonitorsubroutine. Underdefault modes, the symbol table
in the named object file (a.outdefault) is read and correlated with themon.outprofile file. For each exter-
nal symbol, the percentage of time spent executing between that symbol and the next is printed (in decreas-
ing order), together with the number of times that routine was called and the number of milliseconds per
call.

If the −a option is used, all symbols are reported rather than just external symbols. If the−l option is used,
the output is listed by symbol value rather than decreasing percentage.If the −v option is used, all printing
is suppressed and a profile plot is produced on the 611 display.

In order for the number of calls to a routine to be tallied, the−p option ofccmust have been given when the
fi le containing the routine was compiled. This option also arranges for themon.outfi le to be produced au-
tomatically.

FILES
mon.out forprofile
a.out fornamelist
/dev/vt0 for plotting

SEE ALSO
monitor (III), profil (II), cc (I)

BUGS
Beware of quantization errors.

- 66 -

-

PS (I) 3/20/74 PS(I)

NAME
ps− process status

SYNOPSIS
ps [aklx] [namelist]

DESCRIPTION
Ps prints certain indicia about active processes. Thea flag asks for information about all processes with
typewriters (ordinarily only one’s own processes are displayed);x asks even about processes with no type-
writer; l asks for a long listing. Ordinarily only the typewriter number (if not one’s own), the process num-
ber, and an approximation to the command line are given. If thek flag is specified, the file /usr/sys/coreis
used in place of/dev/mem.This is used for postmortem system debugging. Ifa second argument is given,
it is taken to be the file containing the system’s namelist.

The long listing is columnar and contains

The name of the process’s control typewriter.

Flags associated with the process.01: in core; 02: system process; 04: locked in code (e.g. for physi-
cal I/O); 10: being swapped; 20: being traced by another process.

The state of the process. 0: nonexistent; S: sleeping; W: waiting; R: running; Z: terminated; T:
stopped.

The user ID of the process owner.

The process ID of the process; as in certain cults it is possible to kill a process if you know its true
name.

The priority of the process; high numbers mean low priority.

The size in blocks of the core image of the process.

The event for which the process is waiting or sleeping; if blank, the process is running.

The command and its arguments.

Psmakes an educated guess as to the file name and arguments given when the process was created by ex-
amining core memory or the swap area. The method is inherently somewhat unreliable and in any event a
process is entitled to destroy this information, so the names cannot be counted on too much.

FILES
/unix systemnamelist
/dev/mem corememory
/usr/sys/core alternatecore file
/dev searched to find swap device and typewriter names

SEE ALSO
kill (I)

BUGS

- 67 -

-

PWD (I) 5/15/74 PWD(I)

NAME
pwd − working directory name

SYNOPSIS
pwd

DESCRIPTION
Pwdprints the pathname of the working (current) directory.

SEE ALSO
chdir (I)

BUGS

- 68 -

-

RC (I) 5/15/74 RC(I)

NAME
rc − Ratfor compiler

SYNOPSIS
rc [−c] [−r] [−f] [−v] f ile ...

DESCRIPTION
Rc invokes the Ratfor preprocessor on a set of Ratfor source files. It accepts three types of arguments:

Arguments whose names end with ‘.r’ are taken to be Ratfor source programs; they are preprocessed into
Fortran and compiled. Each subroutine or function ‘name’ is placed on a separate file name.f,and its object
code is left onname.o.The main routine is onMAIN.f andMAIN.o; block data subprograms go onblock-
data?.fandblockdata?.o.The files resulting from a ‘.r’ file are loaded into a single object file file.o, and
the intermediate object and Fortran files are removed.

The following flags are interpreted byrc. Seeld (I) for load-time flags.

−c Suppresses the loading phase of the compilation, as does any error in anything.

−f Save Fortran intermediate files. Thisis primarily for debugging.

−r Ratfor only; don’t try to compile the Fortran. Thisimplies−f and−c.

−v Don’t list intermediate file names while compiling.

Arguments whose names end with ‘.f’ are taken to be Fortran source programs; they are compiled in the
normal manner. (Only one Fortran routine is allowed in a ‘.f’ f ile.) Otherarguments are taken to be either
loader flag arguments, or Fortran-compatible object programs, typically produced by an earlierrc run, or
perhaps libraries of Fortran-compatible routines. These programs, together with the results of any compila-
tions specified, are loaded to produce an executable program with namea.out.

FILES
ratjunk temporary
/usr/bin/ratfor preprocessor
/usr/fort/fc1 Fortran compiler

SEE ALSO
‘‘ RATFOR− A Rational Fortran’’.
fc(I) for Fortran error messages.

DIAGNOSTICS
Yes, both fromrc itself and from Fortran.

BUGS
Limit of about 50 arguments, 10 block data files.

#define and #include lines in ‘‘.f ’ ’ f iles are not processed.

- 69 -

-

REV (I) 4/24/75 REV(I)

NAME
rev − reverse lines of a file

SYNOPSIS
re v

DESCRIPTION
Revcopies the standard input to the standard output, reversing the order of characters in every line.

BUGS

- 70 -

-

RM (I) 1/20/73 RM(I)

NAME
rm − remove (unlink) files

SYNOPSIS
rm [−f] [−r] name ...

DESCRIPTION
Rmremoves the entries for one or more files from a directory. If an entry was the last link to the file, the
fi le is destroyed. Removal of a file requires write permission in its directory, but neither read nor write per-
mission on the file itself.

If a file has no write permission,rm prints the file name and its mode, then reads a line from the standard
input. If the line begins withy, the file is removed, otherwise it is not. The question is not asked if option
−f was giv en or if the standard input is not a typewriter.

If a designated file is a directory, an error comment is printed unless the optional argument−r has been
used. Inthat case,rm recursively deletes the entire contents of the specified directory. To remove directo-
riesper sesee rmdir(I).

FILES
/etc/glob to implement the−r flag

SEE ALSO
rmdir (I)

BUGS
Whenrm removes the contents of a directory under the−r flag, full pathnames are not printed in diagnos-
tics.

- 71 -

-

RMDIR (I) 3/15/72 RMDIR(I)

NAME
rmdir − remove directory

SYNOPSIS
rmdir dir ...

DESCRIPTION
Rmdir removes (deletes) directories.The directory must be empty (except for the standard entries ‘.’ and
‘ ..’, which rmdir itself removes). Writepermission is required in the directory in which the directory to be
removed appears.

BUGS
Needs a−r flag.
Actually, write permission in the directory’s parent isnot required.
Mildly unpleasant consequences can follow removal of your own or someone else’s current directory.

- 72 -

-

ROFF (I) 11/4/74 ROFF (I)

NAME
roff − format text

SYNOPSIS
roff [+n] [−n] [−s] [−h] f ile ...

DESCRIPTION
Roff formats text according to control lines embedded in the text in the given files. Encounteringa nonexis-
tent file terminates printing.Incoming interconsole messages are turned off during printing. The optional
flag arguments mean:

+n Start printing at the first page with numbern.

−n Stop printing at the first page numbered higher thann.

−s Stop before each page (including the first) to allow paper manipulation; resume on receipt of an inter-
rupt signal.

−h Insert tabs in the output stream to replace spaces whenever appropriate.

Input consists of intermixed text lines,which contain information to be formatted, andrequest lines,which
contain instructions about how to format it. Request lines begin with a distinguishedcontrol character,nor-
mally a period.

Output lines may befilled as nearly as possible with words without regard to input lineation.Line breaks
may be caused at specified places by certain commands, or by the appearance of an empty input line or an
input line beginning with a space.

The capabilities ofroff are specified in the attached Request Summary. Numerical values are denoted there
by n or +n, titles by t, and single characters by c.Numbers denoted +n may be signed + or−, in which case
they signify relative changes to a quantity, otherwise they signify an absolute resetting.Missing n fields are
ordinarily taken to be 1, missing t fields to be empty, and c fields to shut off the appropriate special inter-
pretation.

Running titles usually appear at top and bottom of every page. They are set by requests like

.he′part1′part2′part3′
Part1 is left justified, part2 is centered, and part3 is right justified on the page.Any % sign in a title is re-
placed by the current page number. Any nonblank may serve as a quote.

ASCII tab characters are replaced in the input by areplacement character,normally a space, according to
the column settings given by a .ta command. (See .tr for how to convert this character on output.)

Automatic hyphenation of filled output is done under control of .hy. When a word contains a designated
hyphenation character, that character disappears from the output and hyphens can be introduced into the
word at the marked places only.

FILES
/usr/lib/suftab suffix hyphenation tables
/tmp/rtm? temporary

SEE ALSO
nroff (I), troff (I)

BUGS
Roff is the simplest of the runoff programs, but is utterly frozen.

- 73 -

-

ROFF (I) 11/4/74 ROFF (I)

REQUEST SUMMARY

Request Break Initial Meaning
.ad yes yes Begin adjusting right margins.
.ar no arabic Arabicpage numbers.
.br yes - Causes a line break− the filling of the current line is stopped.
.bl n yes - Insert of n blank lines, on new page if necessary.
.bp +n yes n=1 Begin new page and number it n; no n means ‘+1’.
.cc c no c=. Control character becomes ‘c’.
.ce n yes - Center the next n input lines, without filling.
.de xx no - Define parameterless macro to be invoked by request ‘.xx’ (definition ends

on line beginning ‘..’).
.ds yes no Doublespace; same as ‘.ls 2’.
.ef t no t=´´´´ Even foot title becomes t.
.eh t no t=´´´´ Even head title becomes t.
.fi yes yes Begin filling output lines.
.fo no t=´´´´ All foot titles are t.
.hc c no none Hyphenation character becomes ‘c’.
.he t no t=´´´´ All head titles are t.
.hx no - Title lines are suppressed.
.hy n no n=1 Hyphenationis done, if n=1; and is not done, if n=0.
.ig no - Ignore input lines through a line beginning with ‘..’.
.in +n yes - Indent n spaces from left margin.
.ix +n no - Same as ‘.in’ but without break.
.li n no - Literal, treat next n lines as text.
.ll +n no n=65 Line length including indent is n characters.
.ls +n yes n=1 Line spacing set to n lines per output line.
.m1 n no n=2 Put n blank lines between the top of page and head title.
.m2 n no n=2 n blank lines put between head title and beginning of text on page.
.m3 n no n=1 n blank lines put between end of text and foot title.
.m4 n no n=3 n blank lines put between the foot title and the bottom of page.
.na yes no Stopadjusting the right margin.
.ne n no - Begin new page, if n output lines cannot fit on present page.
.nn +n no - The next n output lines are not numbered.
.n1 no no Add5 to page offset; number lines in margin from 1 on each page.
.n2 n no no Add5 to page offset; number lines from n; stop if n=0.
.ni +n no n=0 Line numbers are indented n.
.nf yes no Stopfi lling output lines.
.nx filename - Change to input file ‘filename’.
.of t no t=´´´´ Odd foot title becomes t.
.oh t no t=´´´´ Odd head title becomes t.
.pa +n yes n=1 Same as ‘.bp’.
.pl +n no n=66 Total paper length taken to be n lines.
.po +n no n=0 Page offset. All lines are preceded by n spaces.
.ro no arabic Romanpage numbers.
.sk n no - Produce n blank pages starting next page.
.sp n yes - Insert block of n blank lines, except at top of page.
.ss yes yes Singlespace output lines, equivalent to ‘.ls 1’.
.ta n n.. - Pseudotab settings. Initial tab settings are columns 9 17 25 ...
.tc c no space Tab replacement character becomes ‘c’.
.ti +n yes - Temporarily indent next output line n spaces.
.tr cdef.. no - Translate c into d, e into f, etc.
.ul n no - Underline the letters and numbers in the next n input lines.

- 74 -

-

SH (I) 5/15/74 SH(I)

NAME
sh − shell (command interpreter)

SYNOPSIS
sh [−t] [−c] [name [arg1 ... [arg9]]]

DESCRIPTION
Shis the standard command interpreter. It is the program which reads and arranges the execution of the
command lines typed by most users. It may itself be called as a command to interpret files of commands.
Before discussing the arguments to the Shell used as a command, the structure of command lines them-
selves will be given.

Commands. Each command is a sequence of non-blank command arguments separated by blanks. The
fi rst argument specifies the name of a command to be executed. Exceptfor certain types of special argu-
ments discussed below, the arguments other than the command name are passed without interpretation to
the invoked command.

If the first argument is the name of an executable file, it is invoked; otherwise the string ‘/bin/’ is prepended
to the argument. (Inthis way most standard commands, which reside in ‘/bin’, are found.) If no such com-
mand is found, the string ‘/usr’ is further prepended (to give ‘/usr/bin/command’) and another attempt is
made to execute the resulting file. (Certainlesser-used commands live in ‘/usr/bin’.)

If a non-directory file has executable mode, but not the form of an executable program (does not begin with
the proper magic number) then it is assumed to be an ASCII file of commands and a new Shell is created to
execute it. See ‘‘A rgument passing’’ below.

If the file cannot be found, a diagnostic is printed.

Command lines. One or more commands separated by ‘|’ or ‘ˆ’ constitute a chain offilters. The standard
output of each command but the last is taken as the standard input of the next command. Each command is
run as a separate process, connected by pipes (see pipe(II)) to its neighbors.A command line contained in
parentheses ‘()’ may appear in place of a simple command as a filter.

A command lineconsists of one or more pipelines separated, and perhaps terminated by ‘;’ or ‘ &’. The
semicolon designates sequential execution. Theampersand causes the preceding pipeline to be executed
without waiting for it to finish. Theprocess id of such a pipeline is reported, so that it may be used if nec-
essary for a subsequentwait or kill.

Termination Reporting. If a command (not followed by ‘&’) terminates abnormally, a message is printed.
(All terminations other than exit and interrupt are considered abnormal.)Termination reports for com-
mands followed by ‘&’ are given upon receipt of the first command subsequent to the termination of the
command, or when await is executed. Thefollowing is a list of the abnormal termination messages:

Bus error
Trace/BPT trap
Illegal instruction
IOT trap
EMT trap
Bad system call
Quit
Floating exception
Memory violation
Killed
Broken Pipe

If a core image is produced, ‘− Core dumped’ is appended to the appropriate message.

Redirection of I/O. There are three character sequences that cause the immediately following string to be
interpreted as a special argument to the Shell itself. Such an argument may appear anywhere among the ar-
guments of a simple command, or before or after a parenthesized command list, and is associated with that
command or command list.

- 75 -

-

SH (I) 5/15/74 SH(I)

An argument of the form ‘<arg’ causes the file ‘arg’ to be used as the standard input (file descriptor 0) of
the associated command.

An argument of the form ‘>arg’ causes file ‘arg’ to be used as the standard output (file descriptor 1) for the
associated command.‘A rg’ is created if it did not exist, and in any case is truncated at the outset.

An argument of the form ‘>>arg’ causes file ‘arg’ to be used as the standard output for the associated com-
mand. If‘arg’ did not exist, it is created; if it did exist, the command output is appended to the file.

For example, either of the command lines

ls >junk; cat tail >>junk
(ls; cat tail) >junk

creates, on file ‘junk’, a listing of the working directory, followed immediately by the contents of file ‘tail’.

Either of the constructs ‘>arg’ or ‘>>arg’ associated with any but the last command of a pipeline is ineffec-
tual, as is ‘<arg’ in any but the first.

In commands called by the Shell, file descriptor 2 refers to the standard output of the Shell before any redi-
rection. Thusfi lters may write diagnostics to a location where they hav ea chance to be seen.

Generation of argument lists. If any argument contains any of the characters ‘?’, ‘*’ or ‘[’, it is treated
specially as follows. Thecurrent directory is searched for files whichmatchthe given argument.

The character ‘*’ in an argument matches any string of characters in a file name (including the null string).

The character ‘?’ matches any single character in a file name.

Square brackets ‘[...]’ specify a class of characters which matches any single file-name character in the
class. Within the brackets, each ordinary character is taken to be a member of the class.A pair of charac-
ters separated by ‘−’ places in the class each character lexically greater than or equal to the first and less
than or equal to the second member of the pair.

Other characters match only the same character in the file name.

For example, ‘*’ matches all file names; ‘?’ matches all one-character file names; ‘[ab]*.s’ matches all file
names beginning with ‘a’ or ‘b’ and ending with ‘.s’; ‘?[zi−m]’ matches all two-character file names ending
with ‘z’ or the letters ‘i’ through ‘m’.

If the argument with ‘*’ or ‘?’ also contains a ‘/’, a slightly different procedure is used: instead of the cur-
rent directory, the directory used is the one obtained by taking the argument up to the last ‘/’ before a ‘*’ or
‘?’. Thematching process matches the remainder of the argument after this ‘/’ against the files in the de-
rived directory. For example: ‘/usr/dmr/a*.s’ matches all files in directory ‘/usr/dmr’ which begin with ‘a’
and end with ‘.s’.

In any event, a list of names is obtained which match the argument. Thislist is sorted into alphabetical or-
der, and the resulting sequence of arguments replaces the single argument containing the ‘*’, ‘[’, or ‘?’.
The same process is carried out for each argument (the resulting lists arenotmerged) and finally the com-
mand is called with the resulting list of arguments.

Quoting. The character ‘\’ causes the immediately following character to lose any special meaning it may
have to the Shell; in this way ‘<’, ‘>’, and other characters meaningful to the Shell may be passed as part
of arguments. Aspecial case of this feature allows the continuation of commands onto more than one line:
a new-line preceded by ‘\’ is translated into a blank.

Sequences of characters enclosed in double (") or single (´) quotes are also taken literally. For example:

ls | pr−h "My directory"

causes a directory listing to be produced byls, and passed on topr to be printed with the heading ‘My di-
rectory’. Quotespermit the inclusion of blanks in the heading, which is a single argument topr.

Argument passing. When the Shell is invoked as a command, it has additional string processing capabili-
ties. Recallthat the form in which the Shell is invoked is

sh [name [arg1 ... [arg9]]]

- 76 -

-

SH (I) 5/15/74 SH(I)

Thenameis the name of a file which is read and interpreted. If not given, this subinstance of the Shell con-
tinues to read the standard input file.

In command lines in the file (not in command input), character sequences of the form ‘$n’, wheren is a
digit, are replaced by thenth argument to the invocation of the Shell (argn). ‘$0’ is replaced byname.

The argument ‘−t,’ used alone, causesshto read the standard input for a single line, execute it as a com-
mand, and then exit. This facility replaces the older ‘mini-shell.’ I t is useful for interactive programs
which allow users to execute system commands.

The argument ‘−c’ (used with one following argument) causes the next argument to be taken as a command
line and executed. Nonew-line need be present, but new-line characters are treated appropriately. This fa-
cility is useful as an alternative to ‘−t’ where the caller has already read some of the characters of the com-
mand to be executed.

End of file. An end-of-file in the Shell’s input causes it to exit. A side effect of this fact means that the
way to log out from UNIX is to type an EOT.

Special commands.The following commands are treated specially by the Shell.

chdir is done without spawning a new process by executingsys chdir(II).

login is done by executing /bin/login without creating a new process.

wait is done without spawning a new process by executingsys wait(II).

shift is done by manipulating the arguments to the Shell.

‘ :’ is simply ignored.

Command file errors; interrupts. Any Shell-detected error, or an interrupt signal, during the execution of
a command file causes the Shell to cease execution of that file.

Processes that are created with ‘&’ ignore interrupts. Also if such a process has not redirected its input
with a ‘<’, its input is automatically redirected to the zero length file /dev/null.

FILES
/etc/glob, which interprets ‘*’, ‘?’, and ‘[’.
/dev/null as a source of end-of-file.

SEE ALSO
‘The UNIX Time-Sharing System’, CACM, July, 1974, which gives the theory of operation of the Shell.
chdir (I), login (I), wait (I), shift (I)

BUGS
There is no way to redirect the diagnostic output.

- 77 -

-

SHIFT (I) 8/21/73 SHIFT(I)

NAME
shift − adjust Shell arguments

SYNOPSIS
shift

DESCRIPTION
Shift is used in Shell command files to shift the argument list left by 1, so that old$2can now be referred to
by $1and so forth.Shift is useful to iterate over sev eral arguments to a command file. For example, the
command file

: loop
if $1x = x exit
pr −3 $1
shift
goto loop

prints each of its arguments in 3-column format.

Shift is executed within the Shell.

SEE ALSO
sh (I)

BUGS

- 78 -

-

SIZE (I) 9/2/72 SIZE(I)

NAME
size− size of an object file

SYNOPSIS
size[object ...]

DESCRIPTION
Sizeprints the (decimal) number of bytes required by the text, data, and bss portions, and their sum in octal
and decimal, of each object-file argument. Ifno file is specified,a.out is used.

BUGS

- 79 -

-

SLEEP (I) 11/1/73 SLEEP(I)

NAME
sleep− suspend execution for an interval

SYNOPSIS
sleeptime

DESCRIPTION
Sleepsuspends execution fortimeseconds. Itis used to execute a command in a certain amount of time as
in:

(sleep 105; command)&

Or to execute a command every so often as in this shell command file:

: loop
command
sleep 37
goto loop

SEE ALSO
sleep (II)

BUGS
Timemust be less than 65536 seconds.

- 80 -

-

SORT (I) 5/13/75 SORT (I)

NAME
sort, usort− sort or merge files

SYNOPSIS
sort [−abdnrtx] [+pos [−pos]] . . . [−mo] [name] . . .
usort [−umo] [name] . . .

DESCRIPTION
Sortsorts all the named files together and writes the result on the standard output. The name ‘−’ means the
standard input. The standard input is also used if no input file names are given. Thussort may be used as a
fi lter.

The default sort key is an entire line. Default ordering is lexicographic in ASCII collating sequence, except
that lower-case letters are considered the same as the corresponding upper-case letters. Non-ASCII bytes
are ignored. The ordering is affected by the flags−abdnrt , one or more of which may appear:

a Do not map lower case letters.

b Leading blanks (spaces and tabs) are not included in fields.

d ‘Dictionary’ order: only letters, digits and blanks are significant in ASCII comparisons.

n An initial numeric string, consisting of optional minus sign, digits and optionally included decimal
point, is sorted by arithmetic value.

r Reverse the sense of comparisons.

tx Tab character between fields isx.

Selected parts of the line, specified by+posand−pos, may be used as sort keys. Pos has the formm.n,
wherem specifies a number of fields to skip, andn a number of characters to skip further into the next field.
A missing is taken to be 0.+posdenotes the beginning of the key; −posdenotes the first position after the
key (end of line by default). Theordering rule may be overridden for a particular key by appending one or
more of the flagsabdnr to +pos.

When no tab character has been specified, a field consists of nonblanks and any preceding blanks. Under
the−b flag, leading blanks are excluded from a field. Whena tab character has been specified, a field is a
string ending with a tab character.

When keys are specified, later keys are compared only when all earlier ones compare equal. Lines that
compare equal are ordered with all bytes significant.

These flag arguments are also understood:

−m Merge only, the input files are already sorted.

−o The next argument is the name of an output file to use instead of the standard output. This file may be
the same as one of the inputs, except under the merge flag−m.

Usort is a somewhat specialized version ofsort which accepts no collating sequence options: order is al-
ways plain ASCII. It also strips out the second and following copies of duplicated lines. Au flag prevents
this stripping.Usortalso understands them ando options in the same way assort.

FILES
/usr/tmp/stm???

BUGS

- 81 -

-

SPELL (I) 4/15/75 SPELL(I)

NAME
spell− find spelling errors

SYNOPSIS
spell [−v] f ile ...

DESCRIPTION
Spellcollects the words from the named documents, and looks them up in a dictionary. The words not
found are printed on the standard output.Words which are reasonable transformations of dictionary entries
(e.g. a dictionary entry pluss) are not printed. If no files are given, the input is from the standard input.

If the −v flag is given, all words which are not literally in the dictionary are printed; those which can be
transformed to lie in the dictionary are so marked, and the others are marked with asterisks.

The process takes several minutes.

FILES
/usr/lib/w2006, /usr/dict/words, /usr/lib/spell[123]

SEE ALSO
typo (I)

BUGS

Because of the mapping into lower case and the stripping of special characters, words may be hard to locate
in the original text.

The escape sequences of troff (I) are not correctly recognized.

More suffixes, and perhaps some prefixes, should be added.

The dictionary cannot be distributed because of copyright limitations.

- 82 -

-

SPLIT (I) 1/15/73 SPLIT(I)

NAME
split − split a file into pieces

SYNOPSIS
split −n [f ile [name]]

DESCRIPTION
Split readsfile and writes it inn-line pieces (default 1000), as many as necessary, onto a set of output files.
The name of the first output file isnamewith aaappended, and so on lexicographically. If no output name
is given, x is default.

If no input file is given, or if − is given in its stead, then the standard input file is used.

BUGS

- 83 -

-

STRIP (I) 3/15/72 STRIP(I)

NAME
strip − remove symbols and relocation bits

SYNOPSIS
strip name ...

DESCRIPTION
Strip removes the symbol table and relocation bits ordinarily attached to the output of the assembler and
loader. This is useful to save space after a program has been debugged.

The effect ofstrip is the the same as use of the−s option ofld.

FILES
/tmp/stm? temporaryfi le

SEE ALSO
ld (I), as (I)

BUGS

- 84 -

-

STTY (I) 6/12/72 STTY(I)

NAME
stty − set typewriter options

SYNOPSIS
stty [option ...]

DESCRIPTION
Sttysets certain I/O options on the current output typewriter. With no argument, it reports the current set-
tings of the options. The option strings are selected from the following set:

ev en allow even parity
−ev en disallow even parity
odd allow odd parity
−odd disallow odd parity
raw raw mode input (no erase, kill, interrupt, quit, EOT; parity bit passed back)
−raw negate raw mode
cooked same as ‘−raw’
−nl allow carriage return for new-line, and output CR-LF for carriage return or new-line
nl accept only new-line to end lines
echo echo back every character typed
−echo do not echo characters
lcase map upper case to lower case
−lcase do not map case
−tabs replace tabs by spaces when printing
tabs preserve tabs
ek reset erase and kill characters back to normal # and @.
erasec set erase character toc.
kill c set kill character toc.
cr0 cr1 cr2 cr3

select style of delay for carriage return (see below)
nl0 nl1 nl2 nl3

select style of delay for linefeed (see below)
tab0 tab1 tab2 tab3

select style of delay for tab (see below)
ff0 ff1

select style of delay for form feed (see below)
tty33 set all modes suitable for Teletype model 33
tty37 set all modes suitable for Teletype model 37
vt05 set all modes suitable for DEC VT05 terminal
tn300 set all modes suitable for GE Terminet 300
ti700 set all modes suitable for Texas Instruments 700 terminal
tek set all modes suitable for Tektronix 4014 terminal
hup hang up dataphone on last close.
−hup do not hang up dataphone on last close.
0 hang up phone line immediately
50 75 110 134 150 200 300 600 1200 1800 2400 4800 9600 exta extb

Set typewriter baud rate to the number given, if possible. (These are the speeds supported by
the DH-11 interface).

The various delay algorithms are tuned to various kinds of terminals. In general the specifications ending
in ‘0’ mean no delay for the corresponding character.

SEE ALSO
stty (II)

BUGS

- 85 -

-

TEE (I) 3/6/74 TEE(I)

NAME
tee− pipe fitting

SYNOPSIS
tee[name ...]

DESCRIPTION
Tee transcribes the standard input to the standard output and makes copies in the named files.

BUGS

- 86 -

-

TIME (I) 8/16/73 TIME(I)

NAME
time − time a command

SYNOPSIS
time command

DESCRIPTION
The given command is executed; after it is complete,timeprints the elapsed time during the command, the
time spent in the system, and the time spent in execution of the command.

The execution time can depend on what kind of memory the program happens to land in; the user time in
MOS is often half what it is in core.

The times are printed on the diagnostic output stream.

BUGS
Elapsed time is accurate to the second, while the CPU times are measured to the 60th second. Thus the
sum of the CPU times can be up to a second larger than the elapsed time.

- 87 -

-

TP (I) 10/15/73 TP(I)

NAME
tp − manipulate DECtape and magtape

SYNOPSIS
tp [key] [name ...]

DESCRIPTION
Tp saves and restores files on DECtape or magtape. Its actions are controlled by thekey argument. Thekey
is a string of characters containing at most one function letter and possibly one or more function modifiers.
Other arguments to the command are file or directory names specifying which files are to be dumped, re-
stored, or listed. In all cases, appearance of a directory name refers to the files and (recursively) subdirecto-
ries of that directory.

The function portion of the key is specified by one of the following letters:

r The named files are written on the tape. If files with the same names already exist, they are re-
placed. ‘Same’is determined by string comparison, so ‘./abc’ can never be the same as
‘/usr/dmr/abc’ even if ‘ /usr/dmr’ is the current directory. If no file argument is given, ‘.’ is the de-
fault.

u updates the tape.u is like r, but a file is replaced only if its modification date is later than the
date stored on the tape; that is to say, if it has changed since it was dumped.u is the default com-
mand if none is given.

d deletes the named files from the tape. At least one name argument must be given. Thisfunction
is not permitted on magtapes.

x extracts the named files from the tape to the file system. The owner and mode are restored. If no
fi le argument is given, the entire contents of the tape are extracted.

t lists the names of the specified files. If no file argument is given, the entire contents of the tape is
listed.

The following characters may be used in addition to the letter which selects the function desired.

m Specifies magtape as opposed to DECtape.

0,...,7 This modifier selects the drive on which the tape is mounted.For DECtape, ‘x’ is default; for
magtape ‘0’ is the default.

v Normally tp does its work silently. Thev (verbose) option causes it to type the name of each
fi le it treats preceded by the function letter. With thet function,v gives more information
about the tape entries than just the name.

c means a fresh dump is being created; the tape directory is zeroed before beginning. Usableon-
ly with r andu. This option is assumed with magtape since it is impossible to selectively over-
write magtape.

f causes new entries on tape to be ‘fake’ in that no data is present for these entries. Such fake
entries cannot be extracted. Usableonly with r andu.

i Errors reading and writing the tape are noted, but no action is taken. Normally, errors cause a
return to the command level.

w causestp to pause before treating each file, type the indicative letter and the file name (as with
v) and await the user’s response. Responsey means ‘yes’, so the file is treated. Null response
means ‘no’, and the file does not take part in whatever is being done. Responsex means ‘exit’;
thetp command terminates immediately. In thex function, files previously asked about have
been extracted already. With r, u, andd no change has been made to the tape.

FILES
/dev/tap?
/dev/mt?

- 88 -

-

TP (I) 10/15/73 TP(I)

DIAGNOSTICS
Several; the non-obvious one is ‘Phase error’, which means the file changed after it was selected for dump-
ing but before it was dumped.

BUGS
A single file with several links to it is treated like sev eral files.

- 89 -

-

TR (I) 5/20/74 TR(I)

NAME
tr − transliterate

SYNOPSIS
tr [−cds] [string1 [string2]]

DESCRIPTION
Tr copies the standard input to the standard output with substitution or deletion of selected characters. In-
put characters found instring1are mapped into the corresponding characters ofstring2. Any combination
of the options−cdsmay be used.−c complements the set of characters instring1with respect to the uni-
verse of characters whose ascii codes are 001 through 377 octal.−d deletes all input characters instring1.
−s squeezes all strings of repeated output characters that are instring2to single characters.

The following abbreviation conventions may be used to introduce ranges of characters or repeated charac-
ters into the strings:

[a−b] stands for the string of characters whose ascii codes run from charactera to characterb.

[a*n], wheren is an integer or empty, stands forn-fold repetition of charactera. n is taken to be octal or
decimal according as its first digit is or is not zero.A zero or missingn is taken to be huge; this facility is
useful for paddingstring2.

The escape character ‘\’ may be used as inshto remove special meaning from any character in a string. In
addition, ‘\’ followed by 1, 2 or 3 octal digits stands for the character whose ascii code is given by those
digits.

The following example creates a list of all the words in ‘file1’ one per line in ‘file2’, where a word is taken
to be a maximal string of alphabetics. The strings are quoted to protect the special characters from interpre-
tation by the Shell; 012 is the ascii code for newline.

tr −cs "[A−Z][a−z]" "[\012*]" <file1 >file2

SEE ALSO
sh (I), ed (I), ascii (V)

BUGS
Won’t handle ascii NUL instring1or string2;always deletes NUL from input.

- 90 -

-

TROFF (I) 4/15/75 TROFF (I)

NAME
troff − format text

SYNOPSIS
troff [+n] [−n] [−sn] [−nn] [−ran] [−mname] [−t] [−f] [−w] [−a] [−pn] f iles

DESCRIPTION
Tr off formats text for a Graphic Systems phototypesetter according to control lines embedded in the text
fi les. Itreads the standard input if no file arguments are given. Anargument of just ‘‘−’’ refers to the stan-
dard input. The non-file option arguments are interpreted as follows:

+n Commence typesetting at the first page numberedn or larger.

−n Stop after pagen.

−sn Print output in groups ofn pages, stopping the typesetter after each group.

−nn First generated (not necessarily printed) page is given the numbern; simulates ‘‘.pn|n’’ .

−ran Set number registera to the valuen.

−mname Prepends a standard macro file; simulates ‘‘.so /usr/lib/tmac.name’’ .

−t Place output on standard output instead of the phototypesetter.

−f Refrain from feeding out paper and stopping the phototypesetter at the end.

−w Wait until phototypesetter is available, if currently busy.

−a Send a printable approximation of the results to the standard output.

−pn Print all characters with point-sizen while retaining all prescribed spacings and motions.

FILES
/usr/lib/suftab suffix hyphenation tables
/tmp/rtm? temporary
/usr/lib/tmac.* standardmacro files

SEE ALSO
TROFF User’s Manual (internal memorandum).
TROFF Made Trivial (internal memorandum).
nroff (I), eqn (I), catsim (VI)

BUGS

- 91 -

-

TTY (I) 3/15/72 TTY(I)

NAME
tty − get typewriter name

SYNOPSIS
tty

DESCRIPTION
Tty gives the name of the user’s typewriter in the form ‘ttyn’ f or n a digit or letter. The actual path name is
then ‘/dev/ttyn’.

DIAGNOSTICS
‘not a tty’ if the standard input file is not a typewriter.

BUGS

- 92 -

-

TYPO (I) 5/15/74 TYPO(I)

NAME
typo − find possible typos

SYNOPSIS
typo [−1] [−n] f ile ...

DESCRIPTION
Typohunts through a document for unusual words, typographic errors, andhapax legomenaand prints them
on the standard output.

The words used in the document are printed out in decreasing order of peculiarity along with an index of
peculiarity. An index of 10 or more is considered peculiar. Printing of certain very common English words
is suppressed.

The statistics for judging words are taken from the document itself, with some help from known statistics of
English. The−n option suppresses the help from English and should be used if the document is written in,
for example, Urdu.

The−1 option causes the final output to appear in a single column instead of three columns. The normal
header and pagination is also suppressed.

Roff (I) and nroff (I) control lines are ignored. Upper case is mapped into lower case. Quote marks, verti-
cal bars, hyphens, and ampersands within words are equivalent to spaces.Words hyphenated across lines
are put back together.

FILES
/tmp/ttmp??
/usr/lib/salt
/usr/lib/w2006

BUGS
Because of the mapping into lower case and the stripping of special characters, words may be hard to locate
in the original text.

The escape sequences of troff (I) are not correctly recognized.

- 93 -

-

UNIQ (I) 12/1/72 UNIQ(I)

NAME
uniq − report repeated lines in a file

SYNOPSIS
uniq [−udc [+n] [−n]] [i nput [output]]

DESCRIPTION
Uniq reads the input file comparing adjacent lines. In the normal case, the second and succeeding copies of
repeated lines are removed; the remainder is written on the output file. Notethat repeated lines must be ad-
jacent in order to be found; see sort(I). If the−u flag is used, just the lines that are not repeated in the origi-
nal file are output. The−d option specifies that one copy of just the repeated lines is to be written. The
normal mode output is the union of the−u and−d mode outputs.

The−c option supersedes−u and−d and generates an output report in default style but with each line pre-
ceded by a count of the number of times it occurred.

Then arguments specify skipping an initial portion of each line in the comparison:

−n The firstn fields together with any blanks before each are ignored.A field is defined as a string
of non-space, non-tab characters separated by tabs and spaces from its neighbors.

+n The firstn characters are ignored. Fields are skipped before characters.

SEE ALSO
sort (I), comm (I)

BUGS

- 94 -

-

WAIT (I) 4/9/73 WAIT (I)

NAME
wait − aw ait completion of process

SYNOPSIS
wait

DESCRIPTION
Wait until all processes started with& have completed, and report on abnormal terminations.

Becausesys waitmust be executed in the parent process, the Shell itself executeswait, without creating a
new process.

SEE ALSO
sh (I)

BUGS
After executingwait you are committed to waiting until termination, because interrupts and quits are ig-
nored by all processes concerned. The only out, if the process does not terminate, is tokill it from another
terminal or to hang up.

- 95 -

-

WC (I) 7/26/74 WC(I)

NAME
wc − word count

SYNOPSIS
wc [name ...]

DESCRIPTION
Wccounts lines and words in the named files, or in the standard input if no name appears.A word is a
maximal string of printing characters delimited by spaces, tabs or newlines. All other characters are simply
ignored.

BUGS

- 96 -

-

WHO (I) 3/15/72 WHO(I)

NAME
who − who is on the system

SYNOPSIS
who [who-file] [am I]

DESCRIPTION
Who,without an argument, lists the name, typewriter channel, and login time for each current UNIX user.

Without an argument,whoexamines the /etc/utmp file to obtain its information. If a file is given, that file is
examined. Typically the given file will be /usr/adm/wtmp, which contains a record of all the logins since it
was created. Thenwho lists logins, logouts, and crashes since the creation of the wtmp file. Eachlogin is
listed with user name, typewriter name (with ‘/dev/’ suppressed), and date and time. When an argument is
given, logouts produce a similar line without a user name. Reboots produce a line with ‘x’ in the place of
the device name, and a fossil time indicative of when the system went down.

With two arguments,whobehaves as if it had no arguments except for restricting the printout to the line for
the current typewriter. Thus ‘who am I’ (and also ‘who are you’) tells you who you are logged in as.

FILES
/etc/utmp

SEE ALSO
login (I), init (VIII)

BUGS

- 97 -

-

WRITE (I) 8/5/73 WRITE(I)

NAME
write − write to another user

SYNOPSIS
write user [ttyno]

DESCRIPTION
Write copies lines from your typewriter to that of another user. When first called, it sends the message

message from yourname...

The recipient of the message should write back at this point. Communication continues until an end of file
is read from the typewriter or an interrupt is sent. At that pointwrite writes ‘EOT’ on the other terminal
and exits.

If you want to write to a user who is logged in more than once, thettynoargument may be used to indicate
the last character of the appropriate typewriter name.

Permission to write may be denied or granted by use of themesgcommand. Atthe outset writing is al-
lowed. Certaincommands, in particularroff andpr, disallow messages in order to prevent messy output.

If the character ‘!’ is found at the beginning of a line,write calls the shell to execute the rest of the line as a
command.

The following protocol is suggested for usingwrite: when you first write to another user, wait for him to
write back before starting to send. Each party should end each message with a distinctive signal ((o) for
‘over’ is conventional) that the other may reply.(oo) (for ‘over and out’) is suggested when conversation is
about to be terminated.

FILES
/etc/utmp tofind user
/bin/sh toexecute ‘!’

SEE ALSO
mesg (I), who (I), mail (I)

BUGS

- 98 -

-

YA CC (I) 11/25/74 YACC (I)

NAME
yacc− yet another compiler-compiler

SYNOPSIS
yacc[−vor] [grammar]

DESCRIPTION
Yaccconverts a context-free grammar into a set of tables for a simple automaton which executes an LR(1)
parsing algorithm. The grammar may be ambiguous; specified precedence rules are used to break ambigui-
ties.

The output isy.tab.c,which must be compiled by the C compiler and loaded with any other routines re-
quired (perhaps a lexical analyzer) and the Yacc library:

cc y.tab.c other.o−ly

If the −v flag is given, the filey.outputis prepared, which contains a description of the parsing tables and a
report on conflicts generated by ambiguities in the grammar.

The−o flag calls an optimizer for the tables; the optimized tables, with parser included, appear on file
y.tab.c

The−r flag causes Yacc to accept grammars with Ratfor actions, and produce Ratfor output ony.tab.r; −r
implies the−o flag. Typical usage is then

rc y.tab.r other.o

SEE ALSO
‘‘ LR Parsing’’, by A. V. Aho and S. C. Johnson, Computing Surveys, June, 1974.‘‘ The YACC Compiler-
compiler’’, internal memorandum.

AUTHOR
S. C. Johnson

FILES
y.output
y.tab.c
y.tab.r whenratfor output is obtained
yacc.tmp whenoptimizer is called
/lib/liby.a runtimelibrary for compiler
/usr/yacc/fpar.r ratforparser
/usr/yacc/opar.c parserfor optimized tables
/usr/yacc/yopti optimizerpostpass

DIAGNOSTICS
The number of reduce-reduce and shift-reduce conflicts is reported on the standard output; a more detailed
report is found in they.outputfi le.

BUGS
Because file names are fixed, at most one Yacc process can be active in a giv en directory at a time.

- 99 -

