
-

A.OUT (V) 9/9/73 A.OUT(V)

NAME
a.out− assembler and link editor output

DESCRIPTION
A.out is the output file of the assembleras and the link editorld. Both programs make a.out executable if
there were no errors and no unresolved external references.

This file has four sections: a header, the program and data text, a symbol table, and relocation bits (in that
order). Thelast two may be empty if the program was loaded with the ‘‘−s’’ option of ld or if the symbols
and relocation have been removed by strip.

The header always contains 8 words:

1 A magic number (407, 410, or 411(8))
2 The size of the program text segment
3 The size of the initialized portion of the data segment
4 The size of the uninitialized (bss) portion of the data segment
5 The size of the symbol table
6 The entry location (always 0 at present)
7 Unused
8 A flag indicating relocation bits have been suppressed

The sizes of each segment are in bytes but are even. Thesize of the header is not included in any of the
other sizes.

When a file produced by the assembler or loader is loaded into core for execution, three logical segments
are set up: the text segment, the data segment (with uninitialized data, which starts off as all 0, following
initialized), and a stack. The text segment begins at 0 in the core image; the header is not loaded. If the
magic number (word 0) is 407, it indicates that the text segment is not to be write-protected and shared, so
the data segment is immediately contiguous with the text segment. If the magic number is 410, the data
segment begins at the first 0 mod 8K byte boundary following the text segment, and the text segment is not
writable by the program; if other processes are executing the same file, they will share the text segment. If
the magic number is 411, the text segment is again pure, write-protected, and shared, and moreover instruc-
tion and data space are separated; the text and data segment both begin at location 0.See the 11/45 hand-
book for restrictions which apply to this situation.

The stack will occupy the highest possible locations in the core image: from 177776(8) and growing down-
wards. Thestack is automatically extended as required. The data segment is only extended as requested by
thebreak system call.

The start of the text segment in the file is 20(8); the start of the data segment is 20+St (the size of the text)
the start of the relocation information is 20+St+Sd; the start of the symbol table is 20+2(St+Sd) if the reloca-
tion information is present, 20+St+Sd if not.

The symbol table consists of 6-word entries. The first four words contain the ASCII name of the symbol,
null-padded. Thenext word is a flag indicating the type of symbol. The following values are possible:

00 undefined symbol
01 absolutesymbol
02 text segment symbol
03 datasegment symbol
37 file name symbol (produced by ld)
04 bsssegment symbol
40 undefined external (.globl) symbol
41 absoluteexternal symbol
42 text segment external symbol
43 datasegment external symbol
44 bsssegment external symbol

Values other than those given above may occur if the user has defined some of his own instructions.

- 1 -

-

A.OUT (V) 9/9/73 A.OUT(V)

The last word of a symbol table entry contains the value of the symbol.

If the symbol’s type is undefined external, and the value field is non-zero, the symbol is interpreted by the
loaderld as the name of a common region whose size is indicated by the value of the symbol.

The value of a word in the text or data portions which is not a reference to an undefined external symbol is
exactly that value which will appear in core when the file is executed. Ifa word in the text or data portion
involves a reference to an undefined external symbol, as indicated by the relocation bits for that word, then
the value of the word as stored in the file is an offset from the associated external symbol. When the file is
processed by the link editor and the external symbol becomes defined, the value of the symbol will be
added into the word in the file.

If relocation information is present, it amounts to one word per word of program text or initialized data.
There is no relocation information if the ‘‘suppress relocation’’ f lag in the header is on.

Bits 3-1 of a relocation word indicate the segment referred to by the text or data word associated with the
relocation word:

00 indicatesthe reference is absolute
02 indicatesthe reference is to the text segment
04 indicatesthe reference is to initialized data
06 indicatesthe reference is to bss (uninitialized data)
10 indicatesthe reference is to an undefined external symbol.

Bit 0 of the relocation word indicates ifon that the reference is relative to the pc (e.g. ‘‘clr x’’); if off, that
the reference is to the actual symbol (e.g., ‘‘clr *$x’’).

The remainder of the relocation word (bits 15-4) contains a symbol number in the case of external refer-
ences, and is unused otherwise. The first symbol is numbered 0, the second 1, etc.

SEE ALSO
as (I), ld (I), strip (I), nm (I)

- 2 -

-

ARCHIVE (V) 9/10/73 ARCHIVE(V)

NAME
ar − archive (library) file format

DESCRIPTION
The archive commandar is used to combine several files into one.Archives are used mainly as libraries to
be searched by the link-editorld.

A file produced byar has a magic number at the start, followed by the constituent files, each preceded by a
fi le header. The magic number is 177555(8) (it was chosen to be unlikely to occur anywhere else).The
header of each file is 16 bytes long:

0-7 file name, null padded on the right
8-11 modification time of the file
12 userID of file owner
13 file mode
14-15 file size

Each file begins on a word boundary; a null byte is inserted between files if necessary. Nev ertheless the
size give reflects the actual size of the file exclusive of padding.

Notice there is no provision for empty areas in an archive file.

SEE ALSO
ar (I), ld (I)

BUGS
Names are only 8 characters, not 14. More important, there isn’t enough room to store the proper mode, so
ar always extracts in mode 666.

- 3 -

-

ASCII (V) 6/12/72 ASCII(V)

NAME
ascii− map of ASCII character set

SYNOPSIS
cat /usr/pub/ascii

DESCRIPTION
Ascii is a map of the ASCII character set, to be printed as needed. It contains:

000 nul	001 soh	002 s tx	003 et x	004 eo t	005 enq	006 ack	007 be l	
010 bs	011 ht	012 nl	013 vt	014 np	015 cr	016 so	017 si	
020 dl e	021 dc1	022 dc2	023 dc3	024 dc4	025 nak	026 syn	027 e tb	
030 can	031 em	032 sub	033 e s c	034 fs	035 gs	036 rs	037 us	
040 sp	041 !	042 "	043 #	044 $	045 %	046 &	047 ´	
050 (051)	052 *	053 +	054 ,	055 −	056 .	057 /	
060 0	061 1	062 2	063 3	064 4	065 5	066 6	067 7	
070 8	071 9	072 :	073 ;	074 <	075 =	076 >	077 ?	
100 @	101 A	102 B	103 C	104 D	105 E	106 F	107 G	
110 H	111 I	112 J	113 K	114 L	115 M	116 N	117 O	
120 P	121 Q	122 R	123 S	124 T	125 U	126 V	127 W	
130 X	131 Y	132 Z	133 [134 \	135]	136 ˆ	137	
140 `	141 a	142 b	143 c	144 d	145 e	146 f	147 g	
150 h	151 i	152 j	153 k	154 l	155 m	156 n	157 o	
160 p	161 q	162 r	163 s	164 t	165 u	166 v	167 w	
170 x	171 y	172 z	173 {	174		175 }	176 ˜	177 de l

FILES
found in /usr/pub

- 4 -

-

CORE (V) 2/11/75 CORE(V)

NAME
core− format of core image file

DESCRIPTION
UNIX writes out a core image of a terminated process when any of various errors occur. Seesignal (II) for
the list of reasons; the most common are memory violations, illegal instructions, bus errors, and user-gener-
ated quit signals. The core image is called ‘‘core’’ and is written in the process’s working directory (pro-
vided it can be; normal access controls apply).

The first 1024 bytes of the core image are a copy of the system’s per-user data for the process, including the
registers as they were at the time of the fault. Theremainder represents the actual contents of the user’s
core area when the core image was written. If the text segment is write-protected and shared, it is not
dumped; otherwise the entire address space is dumped.

The format of the information in the first 1024 bytes is described by theuser structure of the system.The
important stuff not detailed therein is the locations of the registers. Hereare their offsets. Theparenthe-
sized numbers for the floating registers are used if the floating-point hardware is in single precision mode,
as indicated in the status register.

fpsr 0004
fr0 0006 (0006)
fr1 0036 (0022)
fr2 0046 (0026)
fr3 0056 (0032)
fr4 0016 (0012)
fr5 0026 (0016)
r0 1772
r1 1766
r2 1750
r3 1752
r4 1754
r5 1756
sp 1764
pc 1774
ps 1776

In general the debuggersdb (I) andcdb (I) are sufficient to deal with core images.

SEE ALSO
cdb (I), db (I), signal (II)

- 5 -

-

DIRECTORY (V) 9/10/73 DIRECTORY (V)

NAME
dir − format of directories

DESCRIPTION
A directory behaves exactly like an ordinary file, save that no user may write into a directory. The fact that
a file is a directory is indicated by a bit in the flag word of its i-node entry. Directory entries are 16 bytes
long. Thefi rst word is the i-number of the file represented by the entry, if non-zero; if zero, the entry is
empty.

Bytes 2-15 represent the (14-character) file name, null padded on the right. These bytes are not cleared for
empty slots.

By convention, the first two entries in each directory are for ‘‘ .’’ and ‘‘ ..’’ . The first is an entry for the di-
rectory itself. The second is for the parent directory. The meaning of ‘‘ ..’’ i s modified for the root directory
of the master file system and for the root directories of removable file systems. In the first case, there is no
parent, and in the second, the system does not permit off-device references. Therefore in both cases ‘‘ ..’’
has the same meaning as ‘‘.’’ .

SEE ALSO
fi le system (V)

- 6 -

-

DUMP (V) 2/11/75 DUMP(V)

NAME
dump− incremental dump tape format

DESCRIPTION
Thedump andrestor commands are used to write and read incremental dump magnetic tapes.

The dump tape consists of blocks of 512-bytes each. The first block has the following structure.

struct {
int isize;
int fsize;
int date[2];
int ddate[2];
int tsize;

};

Isize, andfsize are the corresponding values from the super block of the dumped file system. (See file sys-
tem (V).) Date is the date of the dump.Ddate is the incremental dump date. The incremental dump con-
tains all files modified betweenddate anddate. Tsize is the number of blocks per reel. This block check-
sums to the octal value 031415.

Next there are enough whole tape blocks to contain one word per file of the dumped file system.This is
isize divided by 16 rounded to the next higher integer. The first word corresponds to i-node 1, the second to
i-node 2, and so forth. If a word is zero, then the corresponding file exists, but was not dumped.(Was not
modified afterddate) If the word is−1, the file does not exist. Othervalues for the word indicate that the
fi le was dumped and the value is one more than the number of blocks it contains.

The rest of the tape contains for each dumped file a header block and the data blocks from the file. The
header contains an exact copy of the i-node (see file system (V)) and also checksums to 031415. The next-
to-last word of the block contains the tape block number, to aid in (unimplemented) recovery after tape er-
rors. Thenumber of data blocks per file is directly specified by the control word for the file and indirectly
specified by the size in the i-node. If these numbers differ, the file was dumped with a ‘phase error’.

SEE ALSO
dump (VIII), restor (VIII), file system(V)

- 7 -

-

FILE SYSTEM(V) 2/9/75 FILESYSTEM (V)

NAME
fs − format of file system volume

DESCRIPTION
Every file system storage volume (e.g. RF disk, RK disk, RP disk, DECtape reel) has a common format for
certain vital information.Every such volume is divided into a certain number of 256 word (512 byte)
blocks. Block0 is unused and is available to contain a bootstrap program, pack label, or other information.

Block 1 is thesuper block. Starting from its first word, the format of a super-block is

struct {
int isize;
int fsize;
int nfree;
int free[100];
int ninode;
int inode[100];
char flock;
char ilock;
char fmod;
int time[2];

};

Isize is the number of blocks devoted to the i-list, which starts just after the super-block, in block 2.Fsize
is the first block not potentially available for allocation to a file. Thesenumbers are used by the system to
check for bad block numbers; if an ‘‘impossible’’ block number is allocated from the free list or is freed, a
diagnostic is written on the on-line console.Moreover, the free array is cleared, so as to prevent further al-
location from a presumably corrupted free list.

The free list for each volume is maintained as follows. The free array contains, infree[1], ... ,
free[nfree−1], up to 99 numbers of free blocks.Fr ee[0] is the block number of the head of a chain of
blocks constituting the free list. The first word in each free-chain block is the number (up to 100) of free-
block numbers listed in the next 100 words of this chain member. The first of these 100 blocks is the link
to the next member of the chain.To allocate a block: decrementnfree, and the new block is free[nfree]. If
the new block number is 0, there are no blocks left, so give an error. If nfree became 0, read in the block
named by the new block number, replacenfree by its first word, and copy the block numbers in the next
100 words into thefree array. To free a block, check ifnfree is 100; if so, copy nfree and thefree array into
it, write it out, and setnfree to 0. In any event setfree[nfree] to the freed block’s number and increment
nfree.

Ninode is the number of free i-numbers in theinode array. To allocate an i-node: ifninode is greater than 0,
decrement it and returninode[ninode]. If it was 0, read the i-list and place the numbers of all free inodes
(up to 100) into theinode array, then try again. To free an i-node, provided ninode is less than 100, place
its number intoinode[ninode] and incrementninode. If ninode is already 100, don’t bother to enter the
freed i-node into any table. Thislist of i-nodes is only to speed up the allocation process; the information
as to whether the inode is really free or not is maintained in the inode itself.

Flock andilock are flags maintained in the core copy of the file system while it is mounted and their values
on disk are immaterial. The value offmod on disk is likewise immaterial; it is used as a flag to indicate that
the super-block has changed and should be copied to the disk during the next periodic update of file system
information.

Time is the last time the super-block of the file system was changed, and is a double-precision representa-
tion of the number of seconds that have elapsed since 0000 Jan. 1 1970 (GMT).During a reboot, thetime
of the super-block for the root file system is used to set the system’s idea of the time.

I-numbers begin at 1, and the storage for i-nodes begins in block 2. Also, i-nodes are 32 bytes long, so 16
of them fit into a block. Therefore, i-nodei is located in block (i + 31) / 16,and begins 32.((i + 31) (mod
16) bytes from its start. I-node 1 is reserved for the root directory of the file system, but no other i-number
has a built-in meaning. Each i-node represents one file. Theformat of an i-node is as follows.

- 8 -

-

FILE SYSTEM(V) 2/9/75 FILESYSTEM (V)

struct {
int flags; /* +0: see below */
char nlinks; /* +2: number of links to file */
char uid; /* +3: user ID of owner */
char gid; /* +4: group ID of owner */
char size0; /* +5: high byte of 24-bit size */
int size1; /* +6: low word of 24-bit size */
int addr[8]; /* +8: block numbers or device number */
int actime[2]; /* +24: time of last access */
int modtime[2]; /* +28: time of last modification */

};

The flags are as follows:

100000 i-nodeis allocated
060000 2-bitfi le type:

000000 plainfi le
040000 directory
020000 character-type special file
060000 block-typespecial file.

010000 large file
004000 setuser-ID on execution
002000 setgroup-ID on execution
000400 read(owner)
000200 write(owner)
000100 execute (owner)
000070 read,write, execute (group)
000007 read,write, execute (others)

Special files are recognized by their flags and not by i-number. A block-type special file is basically one
which can potentially be mounted as a file system; a character-type special file cannot, though it is not nec-
essarily character-oriented. For special files the high byte of the first address word specifies the type of de-
vice; the low byte specifies one of several devices of that type. The device type numbers of block and char-
acter special files overlap.

The address words of ordinary files and directories contain the numbers of the blocks in the file (if it is
small) or the numbers of indirect blocks (if the file is large). Bytenumbern of a file is accessed as follows.
N is divided by 512 to find its logical block number (sayb) in the file. If the file is small (flag 010000 is
0), thenb must be less than 8, and the physical block number isaddr[b].

If the file is large,b is divided by 256 to yieldi. If i is less than 7, thenaddr[i] is the physical block num-
ber of the indirect block. The remainder from the division yields the word in the indirect block which con-
tains the number of the block for the sought-for byte.

If i is equal to 7, then the file has become extra-large (huge), andaddr[7] is the address of a first indirect
block. Eachword in this block is the number of a second-level indirect block; each word in the second-lev-
el indirect blocks points to a data block. Notice that extra-large files are not marked by any mode bit, but
only by having addr[7] non-zero; and that although this scheme allows for more than 256×256×512 =
33,554,432 bytes per file, the length of files is stored in 24 bits so in practice a file can be at most
16,777,216 bytes long.

For block b in a file to exist, it is not necessary that all blocks less thanb exist. A zero block number either
in the address words of the i-node or in an indirect block indicates that the corresponding block has never
been allocated. Such a missing block reads as if it contained all zero words.

SEE ALSO
icheck, dcheck (VIII)

- 9 -

-

GREEK (V) 10/31/72 GREEK(V)

NAME
greek− graphics for extended TTY-37 type-box

SYNOPSIS
cat /usr/pub/greek

DESCRIPTION
Greek gives the mapping from ascii to the ‘‘shift out’’ graphics in effect between SO and SI on model 37
Teletypes with a 128-character type-box. It contains:

alpha α A beta β B gamma γ \
GAMMA Γ G delta δ D DELTA ∆ W
epsilon ε S zeta ζ Q eta η N
THETA Θ T theta θ O lambda λ L
LAMBDA Λ E mu µ M nu ν @
xi ξ X pi π J PI Π P
rho ρ K sigma σ Y SIGMA Σ R
tau τ I phi φ U PHI Φ F
psi ψ V PSI Ψ H omega ω C
OMEGA Ω Z nabla ∇ [not ¬
partial ∂] integral ∫ ˆ

SEE ALSO
ascii (VII)

- 10 -

-

GROUP (V) 2/10/75 GROUP (V)

NAME
group− group file

DESCRIPTION
Group contains for each group the following information:

group name
encrypted password
numerical group ID
a comma separated list of all users allowed in the group

This is an ASCII file. Thefields are separated by colons; Each group is separated from the next by a new-
line. If the password field is null, no password is demanded.

This file resides in directory /etc. Because of the encrypted passwords, it can and does have general read
permission and can be used, for example, to map numerical group ID’s to names.

FILES
/etc/group

SEE ALSO
newgrp (I), login (I), crypt (III), passwd (I)

- 11 -

-

MTAB (V) 1/6/74 MTAB (V)

NAME
mtab− mounted file system table

DESCRIPTION
Mtab resides in directory/etc and contains a table of devices mounted by themount command.Umount re-
moves entries.

Each entry is 64 bytes long; the first 32 are the null-padded name of the place where the special file is
mounted; the second 32 are the null-padded name of the special file. Thespecial file has all its directories
stripped away; that is, everything through the last ‘‘/’’ is thrown away.

This table is present only so people can look at it. It does not matter tomount if there are duplicated entries
nor toumount if a name cannot be found.

FILES
/etc/mtab

SEE ALSO
mount (VIII), umount (VIII)

BUGS

- 12 -

-

PASSWD (V) 9/10/73 PASSWD (V)

NAME
passwd− password file

DESCRIPTION
Passwd contains for each user the following information:

name (login name, contains no upper case)
encrypted password
numerical user ID
numerical group ID (for now, always 1)
GCOS job number, box number, optional GCOS user-id
initial working directory
program to use as Shell

This is an ASCII file. Eachfield within each user’s entry is separated from the next by a colon. The GCOS
field is used only when communicating with that system, and in other installations can contain any desired
information. Eachuser is separated from the next by a new-line. If the password field is null, no password
is demanded; if the Shell field is null, the Shell itself is used.

This file resides in directory /etc. Because of the encrypted passwords, it can and does have general read
permission and can be used, for example, to map numerical user ID’s to names.

FILES
/etc/passwd

SEE ALSO
login (I), crypt (III), passwd (I), group (V)

- 13 -

-

TABS (V) 6/15/72 TABS (V)

NAME
tabs− set tab stops

SYNOPSIS
cat /usr/pub/tabs

DESCRIPTION
Printing this file on a suitable terminal sets tab stops every 8 columns. Suitable terminals include the Tele-
type model 37 and the GE TermiNet 300.

These tab stop settings are desirable because UNIX assumes them in calculating delays.

- 14 -

-

TP (V) 9/10/73 TP(V)

NAME
tp − DEC/mag tape formats

DESCRIPTION
The commandtp dumps files to and extracts files from DECtape and magtape.The formats of these tapes
are the same except that magtapes have larger directories.

Block zero contains a copy of a stand-alone bootstrap program. See boot procedures (VIII).

Blocks 1 through 24 for DECtape (1 through 62 for magtape) contain a directory of the tape.There are 192
(resp. 496) entries in the directory; 8 entries per block; 64 bytes per entry. Each entry has the following for-
mat:

path name 32 bytes
mode 2bytes
uid 1byte
gid 1byte
unused 1byte
size 3bytes
time modified 4bytes
tape address 2 bytes
unused 16bytes
check sum 2 bytes

The path name entry is the path name of the file when put on the tape. If the pathname starts with a zero
word, the entry is empty. It is at most 32 bytes long and ends in a null byte.Mode, uid, gid, size and time
modified are the same as described under i-nodes (file system (V)).The tape address is the tape block
number of the start of the contents of the file. Every file starts on a block boundary. The file occupies
(size+511)/512 blocks of continuous tape.The checksum entry has a value such that the sum of the 32
words of the directory entry is zero.

Blocks 25 (resp. 63) on are available for file storage.

A fake entry (see tp (I)) has a size of zero.

SEE ALSO
fi le system (V), tp (I)

- 15 -

-

TTYS (V) 2/11/75 TTYS(V)

NAME
ttys − typewriter initialization data

DESCRIPTION
The ttys fi le is read by theinit program and specifies which typewriter special files are to have a process
created for them which will allow people to log in. It consists of lines of 3 characters each.

The first character is either ‘0’ or ‘1’; the former causes the line to be ignored, the latter causes it to be ef-
fective. The second character is the last character in the name of a typewriter; e.g.x refers to the file
‘/dev/ttyx’. The third character is used as an argument to thegetty program, which performs such tasks as
baud-rate recognition, reading the login name, and callinglogin. For normal lines, the character is ‘0’; oth-
er characters can be used, for example, with hard-wired terminals where speed recognition is unnecessary
or which have special characteristics. (Getty will have to be fixed in such cases.)

FILES
/etc/ttys

SEE ALSO
init (VIII), getty (VIII), login (I)

- 16 -

-

UTMP (V) 9/10/73 UTMP(V)

NAME
utmp− user information

DESCRIPTION
This file allows one to discover information about who is currently using UNIX. The file is binary; each
entry is 16(10) bytes long.The first eight bytes contain a user’s login name or are null if the table slot is
unused. Thelow order byte of the next word contains the last character of a typewriter name. The next two
words contain the user’s login time. The last word is unused.

FILES
/etc/utmp

SEE ALSO
init (VIII) and login (I), which maintain the file; who (I), which interprets it.

- 17 -

-

WTMP (V) 2/22/74 WTMP(V)

NAME
wtmp − user login history

DESCRIPTION
This file records all logins and logouts. Its format is exactly like utmp (V) except that a null user name in-
dicates a logout on the associated typewriter. Furthermore, the typewriter name ‘˜’ indicates that the system
was rebooted at the indicated time; the adjacent pair of entries with typewriter names ‘|’ and ‘}’ indicate the
system-maintained time just before and just after adate command has changed the system’s idea of the
time.

Wtmp is maintained by login (I) and init (VIII). Neither of these programs creates the file, so if it is re-
moved record-keeping is turned off. It is summarized by ac (VIII).

FILES
/usr/adm/wtmp

SEE ALSO
utmp (V), login (I), init (VIII), ac (VIII), who (I)

- 18 -

