
-

CR ( VII ) 1/4/75 CR ( VII )

NAME
crfork, crexit, crread, crwrite, crexch, crprior − coroutine scheme

SYNOPSIS
int crfork( [ stack, nwords ] )
int stack[];
int nwords;

crexit()

int crread(connector, buffer, nbytes)
int *connector[2];
char *buffer;
int nbytes;

crwrite(connector, buffer, nbytes)
int *connector[2];
char *buffer;
int nbytes;

crexch(conn1, conn2, i)
int *conn1[2], *conn2[2];
int i;

#define logical char *
crprior(p)
logical p;

DESCRIPTION
These functions are named by analogy to fork, exit, read, write (II). They establish and synchronize ‘corou-
tines’, which behave in many respects like a set of processes working in the same address space. The func-
tions live in /usr/lib/cr.a.

Coroutines are placed on queues to indicate their state of readiness. One coroutine is always distinguished
as ‘running’. Coroutines that are runnable but not running are registered on a ‘ready queue’. The head
member of the ready queue is started whenever no other coroutine is specifically caused to be running.

Each connector heads two queues: Connector[0] is the queue of unsatisfied crreads outstanding on the con-
nector. Connector[1] is the queue of crwrites. All queues must start empty, i.e. with heads set to zero.

Crfork is normally called with no arguments. It places the running coroutine at the head of the ready
queue, creates a new coroutine, and starts the new one running. Crfork returns immediately in the new
coroutine with value 0, and upon restarting of the old coroutine with value 1.

Crexit stops the running coroutine and does not place it in any queue.

Crread copies characters from the buffer of the crwrite at the head of the connector’s write queue to the
buffer of crread. If the write queue is empty, copying is delayed and the running coroutine is placed on the
read queue. The number of characters copied is the minimum of nbytes and the number of characters re-
maining in the write buffer, and is returned as the value of crread. After copying, the location of the write
buffer and the corresponding nbytes are updated appropriately. If zero characters remain, the coroutine of
the crwrite is moved to the head of the ready queue. If the write queue remains nonempty, the head mem-
ber of the read queue is moved to the head of the ready queue.

Crwrite queues the running coroutine on the connector’s write queue, and records the fact that nbytes (zero
or more) characters in the string buffer are available to crreads. If the read queue is not empty, its head
member is started running.

Crexch exchanges the read queues of connectors conn1 and conn2 if i=0; and it exchanges the write queues
if i=1. If a nonempty read queue that had been paired with an empty write queue becomes paired with a
nonempty write queue, crexch moves the head member of that read queue to the head of the ready queue.

- 1 -



-

CR ( VII ) 1/4/75 CR ( VII )

Crprior sets a priority on the running coroutine to control the queuing of crreads and crwrites. When
queued, the running coroutine will take its place before coroutines whose priorities exceed its own priority
and after others. Priorities are compared as logical, i.e. unsigned, quantities. Initially each coroutine’s pri-
ority is set as large as possible, so default queuing is FIFO.

Storage allocation. The old and new coroutine share the same activation record in the function that in-
voked crfork, so only one may return from the invoking function, and then only when the other has com-
pleted execution in that function.

The activation record for each function execution is dynamically allocated rather than stacked; a factor of 3
in running time overhead can result if function calls are very frequent. The overhead may be overcome by
providing a separate stack for each coroutine and dispensing with dynamic allocation. The base (lowest)
address and size of the new coroutine’s stack are supplied to crfork as optional arguments stack and nwords.
Stacked allocation and dynamic allocation cannot be mixed in one run. For stacked operation, obtain the
coroutine functions from /usr/lib/scr.a instead of /usr/lib/cr.a.

FILES
/usr/lib/cr.a
/usr/lib/scr.a

DIAGNOSTICS
‘rsave doesn’t work’ − an old C compilation has called ‘rsave’. It must be recompiled to work with the
coroutine scheme.

BUGS
Under /usr/lib/cr.a each function has just 12 words of anonymous stack for hard expressions and arguments
of further calls, regardless of actual need. There is no checking for stack overflow.
Under /usr/lib/scr.a stack overflow checking is not rigorous.

- 2 -



-

MS ( VII ) 11/6/74 MS ( VII )

NAME
ms − macros for formatting manuscripts

SYNOPSIS
nroff −ms [ options ] file ...
troff −ms [ options ] file ...

DESCRIPTION
This package of nroff and troff macro definitions provides a canned formatting facility for technical papers.
When producing 2-column output on a terminal, its output should be filtered through col (I).

The package supports three different formats: BTL technical memorandum with cover sheet, released paper
with cover sheet, and an abbreviated ‘debugging’ form without cover sheet.

The macro requests are defined in the attached Request Reference. Many nroff and troff requests are unsafe
in conjunction with this package, however the requests listed below may be used with impunity after the
first .PP.

.bp begin new page

.br break output line here

.sp n insert n spacing lines

.ls n (line spacing) n=1 single, n=2 double space

.na no alignment of right margin

Output of the eqn, neqn and tbl (I) preprocessors for equations and tables is acceptable as input.

FILES
/usr/lib/tmac.s

SEE ALSO
eqn (I), nroff (I), troff (I), tbl (VI)

BUGS

- 3 -



-

MS ( VII ) 11/6/74 MS ( VII )

REQUEST REFERENCE

Request Initial Cause
Form Value Break Explanation

.1C yes yes One column format on a new page.

.2C no yes Two column format.

.AB no yes Begin abstract.

.AE - yes End abstract.

.AI no yes Author’s institution follows. Suppressed in TM.

.AU x y no yes Author’s name follows. x is location and y is extension, ignored except in TM.

.B no no Boldface text follows.

.CS x... - yes Cover sheet info if TM format, suppressed otherwise. Arguments are number of text
pages, other pages, total pages, figures, tables, references.

.DA x nroff no ‘Date line’ at bottom of page is x. Default is today.

.DE - yes End displayed text. Implies .KE.

.DS x no yes Start of displayed text, to appear verbatim line-by-line. x=I for indented display (default),
x=L for left-justified on the page, x=C for centered. Implies .KS.

.EN - yes Space after equation produced by eqn or neqn.

.EQ x - yes Space before equation. Equation number is x.

.FE - yes End footnote.

.FS no no Start footnote. The note will be moved to the bottom of the page.

.HO - no ‘Bell Laboratories, Holmdel, New Jersey 07733’.

.I no no Italic text follows.

.IP x y no yes Start indented paragraph, with hanging tag x. Indentation is y ens (default 5).

.KE - yes End keep. Put kept text on next page if not enough room.

.KF no yes Start floating keep. If the kept text must be moved to the next page, float later text back
to this page.

.KS no yes Start keeping following text.

.LG no no Make letters larger.

.LP yes yes Start left-blocked paragraph.

.MH - no ‘Bell Laboratories, Murray Hill, New Jersey 07974’.

.ND troff no No date line at bottom of page.

.NH n - yes Same as .SH, with section number supplied automatically. Numbers are multilevel, like
1.2.3, where n tells what level is wanted (default is 1).

.NL yes no Make letters normal size.

.OK - yes ‘Other keywords’ for TM cover sheet follow.

.PP no yes Begin paragraph. First line indented.

.R yes no Roman text follows.

.RE - yes End relative indent level.

.RP no - Cover sheet and first page for released paper. Must precede other requests.

.RS - yes Start level of relative indentation. Following .IP’s measured from current indentation.

.SG x no yes Insert signature(s) of author(s), ignored except in TM. x is the reference line (initials of
author and typist).

.SH - yes Section head follows, font automatically bold.

.SM no no Make letters smaller.

.TL no yes Title follows.

.TM x y z no - BTL TM cover sheet and first page, x=TM number, y=(quoted list of) case number(s),
z=file number. Must precede other requests.

.WH - no ‘Bell Laboratories, Whippany, New Jersey 07981’.

- 4 -



-

PLOT ( VII ) 2/25/75 PLOT ( VII )

NAME
plot: openpl et al. − graphics interface

SYNOPSIS
openpl( )

erase( )

label(s)
char s[ ];

line(x1, y1, x2, y2)

circle(x, y, r)

arc(x, y, x0, y0, x1, y1)

dot(x, y, dx, n, pattern)
int pattern[ ];

move(x, y)

point(x, y)

linemod(s)
char s[ ];

space(x0, y0, x1, y1)

closepl( )

DESCRIPTION
These subroutines generate graphic output in a relatively device-independent manner. See plot (VI) for a
description of the meaning of the subroutines.

There are four libraries containing these routines, one that produces general graphics commands on the
standard output, and one each for the vt0 storage scope, the Diablo plotting terminal and the Tektronix 4014
terminal. Openpl must be used before any of the others to open the device for writing. Closepl flushes the
output.

FILES
/usr/lib/plot.a produces output for plotting filters
/usr/lib/vt0.a produces output on vt0 storage scope
/usr/lib/gsip.a produces output on Diablo terminal
/usr/lib/tek.a produces output for the Tektronix 4014 terminal

SEE ALSO
plot (VI), graph (VI)

BUGS

- 5 -



-

SALLOC ( VII ) 6/15/72 SALLOC ( VII )

NAME
salloc − string allocation and manipulation

SYNOPSIS
(get size in r0)
jsr pc,allocate
(header address in r1)

(get source header address in r0,
destination header address in r1)
jsr pc,copy

jsr pc,wc

(all following routines assume r1 contains header address)

jsr pc,release

(get character in r0)
jsr pc,putchar

jsr pc,lookchar
(character in r0)

jsr pc,getchar
(character in r0)

(get character in r0)
jsr pc,alterchar

(get position in r0)
jsr pc,seekchar

jsr pc,backspace
(character in r0)

(get word in r0)
jsr pc,putword

jsr pc,lookword
(word in r0)

jsr pc,getword
(word in r0)

(get word in r0)
jsr pc,alterword

jsr pc,backword
(word in r0)

jsr pc,length
(length in r0)

jsr pc,position
(position in r0)

jsr pc,rewind

jsr pc,create

jsr pc,fsfile

jsr pc,zero

DESCRIPTION
This package is a complete set of routines for dealing with almost arbitrary length strings of words and
bytes. It lives in /lib/libs.a. The strings are stored on a disk file, so the sum of their lengths can be consid-

- 6 -



-

SALLOC ( VII ) 6/15/72 SALLOC ( VII )

erably larger than the available core. A small buffer cache makes for reasonable speed.

For each string there is a header of four words, namely a write pointer, a read pointer and pointers to the be-
ginning and end of the block containing the string. Initially the read and write pointers point to the begin-
ning of the string. All routines that refer to a string require the header address in r1. Unless the string is
destroyed by the call, upon return r1 will point to the same string, although the string may have grown to
the extent that it had to be be moved.

Allocate obtains a string of the requested size and returns a pointer to its header in r1.

Release releases a string back to free storage.

Putchar and putword write a byte or word respectively into the string and advance the write pointer.

Lookchar and lookword read a byte or word respectively from the string but do not advance the read point-
er.

Getchar and getword read a byte or word respectively from the string and advance the read pointer.

Alterchar and alterword write a byte or word respectively into the string where the read pointer is pointing
and advance the read pointer.

Backspace and backword read the last byte or word written and decrement the write pointer.

All write operations will automatically get a larger block if the current block is exceeded. All read opera-
tions return with the error bit set if attempting to read beyond the write pointer.

Seekchar moves the read pointer to the offset specified in r0.

Length returns the current length of the string (beginning pointer to write pointer) in r0.

Position returns the current offset of the read pointer in r0.

Rewind moves the read pointer to the beginning of the string.

Create returns the read and write pointers to the beginning of the string.

Fsfile moves the read pointer to the current position of the write pointer.

Zero zeros the whole string and sets the write pointer to the beginning of the string.

Copy copies the string whose header pointer is in r0 to the string whose header pointer is in r1. Care should
be taken in using the copy instruction since r1 will be changed if the contents of the source string is bigger
than the destination string.

Wc forces the contents of the internal buffers and the header blocks to be written on disc.

An in-core version of this allocator exists in dc (I), and a permanent-file version exists in form and fed (VI).

FILES
/lib/libs.a library, accessed by ld ... -ls
alloc.d temporary file for string storage

SEE ALSO
alloc (III)

DIAGNOSTICS
‘error in copy’ − disk write error encountered in copy.
‘error in allocator’ − routine called with bad header pointer.
‘cannot open output file’ − temp file alloc.d cannot be created or opened.
‘out of space’ − no sufficiently large block or no header is available for a new or growing block.

BUGS

- 7 -


