
-

UNIX PROGRAMMER’S MANUAL

Sixth Edition

K. Thompson

D. M. Ritchie

May, 1975

-

This manual was set by a Graphic Systems phototypeset-
ter driven by thetroff formatting program operating un-
der theUNIX system. The text of the manual was pre-
pared using theedtext editor.

-

PREFACE
to the Sixth Edition

We are grateful to L. L. Cherry, R. C. Haight, S. C. Johnson, B. W. Kernighan, M. E. Lesk, and E. N. Pin-
son for their contributions to the system software, and to L. E. McMahon for software and for his contribu-
tions to this manual. We are particularly appreciative of the invaluable technical, editorial, and administra-
tive efforts of J. F. Ossanna, M. D. McIlroy, and R. Morris. They all contributed greatly to the stock of
UNIX software and to this manual. Their inventiveness, thoughtful criticism, and ungrudging support in-
creased immeasurably not only whatever success theUNIX system enjoys, but also our own enjoyment in its
creation.

i

-

INTRODUCTION TO THIS MANUAL

This manual gives descriptions of the publicly available features ofUNIX . It provides neither a general
overview� see ‘‘TheUNIX Time-sharing System’’ (Comm. ACM17 7, July 1974, pp. 365-375) for that�

nor details of the implementation of the system, which remain to be disclosed.

Within the area it surveys, this manual attempts to be as complete and timely as possible. A conscious de-
cision was made to describe each program in exactly the state it was in at the time its manual section was
prepared. In particular, the desire to describe something as it should be, not as it is, was resisted. In-
evitably, this means that many sections will soon be out of date.

This manual is divided into eight sections:

I. Commands
II. System calls
III. Subroutines
IV. Special files
V. File formats and conventions
VI. User-maintained programs
VII. User-maintained subroutines
VIII. Maintenance

Commands are programs intended to be invoked directly by the user, in contradistinction to subroutines,
which are intended to be called by the user’s programs. Commands generally reside in directory/bin (for
binary programs). Some programs also reside in/ usr/ bin, to save space in/bin. These directories are
searched automatically by the command interpreter.

System calls are entries into theUNIX supervisor. In assembly language, they are coded with the use of the
opcodesys, a synonym for thetrap instruction. In this edition, the C language interface routines to the sys-
tem calls have been incorporated in section II.

A small assortment of subroutines is available; they are described in section III. The binary form of most
of them is kept in the system library/ lib/ liba.a. The subroutines available from C and from Fortran are
also included; they reside in/ lib/ libc.a and/ lib/ libf.a respectively.

The special files section IV discusses the characteristics of each system ‘‘file’’ which actually refers to an
I/O device. The names in this section refer to the DEC device names for the hardware, instead of the names
of the special files themselves.

The file formats and conventions section V documents the structure of particular kinds of files; for exam-
ple, the form of the output of the loader and assembler is given. Excluded are files used by only one com-
mand, for example the assembler’s intermediate files.

User-maintained programs and subroutines (sections VI and VII) are not considered part of theUNIX sys-
tem, and the principal reason for listing them is to indicate their existence without necessarily giving a com-
plete description. The authors of the individual programs should be consulted for more information.

Section VIII discusses commands which are not intended for use by the ordinary user, in some cases be-
cause they disclose information in which he is presumably not interested, and in others because they per-
form privileged functions.

Each section consists of a number of independent entries of a page or so each. The name of the entry is in
the upper corners of its pages, its preparation date in the upper middle. Entries within each section are al-
phabetized. The page numbers of each entry start at 1. (The earlier hope for frequent, partial updates of the
manual is clearly in vain, but in any event it is not feasible to maintain consecutive page numbering in a
document like this.)

ii

-

All entries are based on a common format, not all of whose subsections will always appear.

Thenamesection repeats the entry name and gives a very short description of its purpose.

The synopsissummarizes the use of the program being described. A few conventions are used,
particularly in the Commands section:

Boldfacewords are considered literals, and are typed just as they appear.

Square brackets ([]) around an argument indicate that the argument is optional. When
an argument is given as ‘‘name’’, it always refers to a file name.

Ellipses ‘‘. . .’’ are used to show that the previous argument-prototype may be repeated.

A final convention is used by the commands themselves. An argument beginning with a
minus sign ‘‘_’’ is often taken to mean some sort of flag argument even if it appears in a
position where a file name could appear. Therefore, it is unwise to have files whose
names begin with ‘‘_’’.

Thedescriptionsection discusses in detail the subject at hand.

Thefiles section gives the names of files which are built into the program.

A see alsosection gives pointers to related information.

A diagnosticssection discusses the diagnostic indications which may be produced. Messages
which are intended to be self-explanatory are not listed.

Thebugssection gives known bugs and sometimes deficiencies. Occasionally also the suggested
fix is described.

At the beginning of this document is a table of contents, organized by section and alphabetically within
each section. There is also a permuted index derived from the table of contents. Within each index entry,
the title of the writeup to which it refers is followed by the appropriate section number in parentheses. This
fact is important because there is considerable name duplication among the sections, arising principally
from commands which exist only to exercise a particular system call.

This manual was prepared using theUNIX text editoredand the formatting programtroff.

iii

-

HOW TO GET STARTED

This section provides the basic information you need to get started onUNIX : how to log in and log out, how
to communicate through your terminal, and how to run a program. See ‘‘UNIX for Beginners’’ by Brian W.
Kernighan for a more complete introduction to the system.

Logging in. You must callUNIX from an appropriate terminal.UNIX supportsASCII terminals typified by
the TTY 37, the GE Terminet 300, the Dasi 300, and various graphical terminals. You must also have a
valid user name, which may be obtained, together with the telephone number, from the system administra-
tors. The same telephone number serves terminals operating at all the standard speeds. After a data con-
nection is established, the login procedure depends on what kind of terminal you are using.

300-baud terminals: Such terminals include the GE Terminet 300, most display terminals, Exe-
cuport, TI, GSI, and certain Anderson-Jacobson terminals. These terminals generally have a speed
switch which should be set at ‘‘300’’ (or ‘‘30’’ for 30 characters per second) and a half/full duplex
switch which should be set at full-duplex. (This switch will often have to be changed since many
other systems require half-duplex). When a connection is established, the system types ‘‘login:’’;
you type your user name, followed by the ‘‘return’’ key. If you have a password, the system asks
for it and turns off the printer on the terminal so the password will not appear. After you have
logged in, the ‘‘return’’, ‘‘new line’’, or ‘‘linefeed’’ keys will give exactly the same results.

TTY 37 terminal: When you have established a data connection, the system types out a few gar-
bage characters (the ‘‘login:’’ message at the wrong speed). Depress the ‘‘break’’ (or ‘‘interrupt’’)
key; this is a speed-independent signal toUNIX that a 150-baud terminal is in use. The system then
will type ‘‘login:,’’ this time at the correct speed; you respond with your user name. From theTTY

37 terminal, and any other which has the ‘‘new-line’’ function (combined carriage return and line-
feed), terminate each line you type with the ‘‘new-line’’ key (not the ‘‘return’’ key).

For all these terminals, it is important that you type your name in lower-case if possible; if you type upper-
case letters,UNIX will assume that your terminal cannot generate lower-case letters and will translate all
subsequent upper-case letters to lower case.

The evidence that you have successfully logged in is that the Shell program will type a ‘‘%’’ to you. (The
Shell is described below under ‘‘How to run a program.’’)

For more information, consultgetty(VIII), which discusses the login sequence in more detail, andtty (IV),
which discusses typewriter I/O.

Logging out. There are three ways to log out:

You can simply hang up the phone.

You can log out by typing an end-of-file indication (EOT character, control ‘‘d’’) to the Shell.
The Shell will terminate and the ‘‘login: ’’ message will appear again.

You can also log in directly as another user by giving alogin command (I).

How to communicate through your terminal. When you type toUNIX , a gnome deep in the system is gath-
ering your characters and saving them in a secret place. The characters will not be given to a program until
you type a return (or new-line), as described above inLogging in.

UNIX typewriter I/O is full-duplex. It has full read-ahead, which means that you can type at any time, even
while a program is typing at you. Of course, if you type during output, the output will have the input char-
acters interspersed. However, whatever you type will be saved up and interpreted in correct sequence.
There is a limit to the amount of read-ahead, but it is generous and not likely to be exceeded unless the sys-
tem is in trouble. When the read-ahead limit is exceeded, the system throws away all the saved characters.

On a typewriter input line, the character ‘‘@’’ kills all the characters typed before it, so typing mistakes can
be repaired on a single line. Also, the character ‘‘#’’ erases the last character typed. Successive uses of

iv

-

‘‘#’’ erase characters back to, but not beyond, the beginning of the line. ‘‘@’’ and ‘‘#’’ can be transmitted
to a program by preceding them with ‘‘\’’. (So, to erase ‘‘\’’, you need two ‘‘#’’s).

TheASCII ‘‘delete’’ (a.k.a. ‘‘rubout’’) character is not passed to programs but instead generates aninterrupt
signal. This signal generally causes whatever program you are running to terminate. It is typically used to
stop a long printout that you don’t want. However, programs can arrange either to ignore this signal alto-
gether, or to be notified when it happens (instead of being terminated). The editor, for example, catches in-
terrupts and stops what it is doing, instead of terminating, so that an interrupt can be used to halt an editor
printout without losing the file being edited.

Thequit signal is generated by typing theASCII FS character. It not only causes a running program to ter-
minate but also generates a file with the core image of the terminated process. Quit is useful for debugging.

Besides adapting to the speed of the terminal,UNIX tries to be intelligent about whether you have a terminal
with the new-line function or whether it must be simulated with carriage-return and line-feed. In the latter
case, all input carriage returns are turned to new-line characters (the standard line delimiter) and both a car-
riage return and a line feed are echoed to the terminal. If you get into the wrong mode, thesttycommand
(I) will rescue you.

Tab characters are used freely inUNIX source programs. If your terminal does not have the tab function,
you can arrange to have them turned into spaces during output, and echoed as spaces during input. The sys-
tem assumes that tabs are set every eight columns. Again, thesttycommand (I) will set or reset this mode.
Also, there is a file which, if printed onTTY 37 or TermiNet 300 terminals, will set the tab stops correctly
(tabs(V)).

Sectiontty (IV) discusses typewriter I/O more fully.

How to run a program; the Shell. When you have successfully logged intoUNIX , a program called the
Shell is listening to your terminal. The Shell reads typed-in lines, splits them up into a command name and
arguments, and executes the command. A command is simply an executable program. The Shell looks
first in your current directory (see next section) for a program with the given name, and if none is there,
then in a system directory. There is nothing special about system-provided commands except that they are
kept in a directory where the Shell can find them.

The command name is always the first word on an input line; it and its arguments are separated from one
another by spaces.

When a program terminates, the Shell will ordinarily regain control and type a ‘‘%’’ at you to indicate that
it is ready for another command.

The Shell has many other capabilities, which are described in detail in sectionsh(I).

The current directory. UNIX has a file system arranged in a hierarchy of directories. When the system ad-
ministrator gave you a user name, he also created a directory for you (ordinarily with the same name as
your user name). When you log in, any file name you type is by default in this directory. Since you are the
owner of this directory, you have full permissions to read, write, alter, or destroy its contents. Permissions
to have your will with other directories and files will have been granted or denied to you by their owners.
As a matter of observed fact, fewUNIX users protect their files from destruction, let alone perusal, by other
users.

To change the current directory (but not the set of permissions you were endowed with at login) usechdir
(I).

Path names. To refer to files not in the current directory, you must use a path name. Full path names be-
gin with ‘‘/’’, the name of the root directory of the whole file system. After the slash comes the name of
each directory containing the next sub-directory (followed by a ‘‘/’’) until finally the file name is reached.
E.g.: / usr/ lem/ filexrefers to the filefilex in the directorylem; lem is itself a subdirectory ofusr; usr
springs directly from the root directory.

If your current directory has subdirectories, the path names of files therein begin with the name of the sub-

v

-

directory (no prefixed ‘‘/’’).

Without important exception, a path name may be used anywhere a file name is required.

Important commands which modify the contents of files arecp (I), mv (I), and rm (I), which respectively
copy, move (i.e. rename) and remove files. To find out the status of files or directories, usels (I). See
mkdir (I) for making directories;rmdir (I) for destroying them.

For a fuller discussion of the file system, see ‘‘TheUNIX Time-Sharing System,’’ by the present authors. It
may also be useful to glance through section II of this manual, which discusses system calls, even if you
don’t intend to deal with the system at that level.

Writing a program. To enter the text of a source program into aUNIX file, useed (I). The three principal
languages inUNIX are assembly language (seeas (I)), Fortran (seefc (I)), and C (seecc (I)). After the pro-
gram text has been entered through the editor and written on a file, you can give the file to the appropriate
language processor as an argument. The output of the language processor will be left on a file in the cur-
rent directory named ‘‘a.out’’. (If the output is precious, usemv to move it to a less exposed name soon.)
If you wrote in assembly language, you will probably need to load the program with library subroutines;
seeld (I). The other two language processors call the loader automatically.

When you have finally gone through this entire process without provoking any diagnostics, the resulting
program can be run by giving its name to the Shell in response to the ‘‘%’’ prompt.

Next, you will needcdb (I) or db (I) to examine the remains of your program. The former is useful for C
programs, the latter for assembly-language. No debugger is much help for Fortran.

Your programs can receive arguments from the command line just as system programs do. Seeexec(II).

Text processing. Almost all text is entered through the editor. The commands most often used to write
text on a terminal are:cat, pr, roff, nroff,andtroff, all in section I.

The cat command simply dumpsASCII text on the terminal, with no processing at all. Thepr command
paginates the text, supplies headings, and has a facility for multi-column output.Troff andnroff are elabo-
rate text formatting programs, and require careful forethought in entering both the text and the formatting
commands into the input file.Troff drives a Graphic Systems phototypesetter; it was used to produce this
manual. Nroff produces output on a typewriter terminal.Roff (I) is a somewhat less elaborate text format-
ting program, and requires somewhat less forethought.

Surprises. Certain commands provide inter-user communication. Even if you do not plan to use them, it
would be well to learn something about them, because someone else may aim them at you.

To communicate with another user currently logged in,write (I) is used;mail (I) will leave a message
whose presence will be announced to another user when he next logs in. The write-ups in the manual also
suggest how to respond to the two commands if you are a target.

When you log in, a message-of-the-day may greet you before the first ‘‘%’’.

vi

-

TABLE OF CONTENTS

I. COMMANDS

ar archive and library maintainer
as . assembler
bas . basic
bc arbitrary precision interactive language
cat . concatenate and print
cc . C compiler
cdb . C debugger
chdir change working directory
chmod . change mode
cmp . compare two files
comm print lines common to two files
cp . copy
cref make cross reference listing
date . print and set the date
db . debug
dc . desk calculator
dd . convert and copy a file
diff . differential file comparator
dsw . delete interactively
du . summarize disk usage
echo . echo arguments
ed . text editor
eqn . typeset mathematics
exit . terminate command file
fc . Fortran compiler
file . determine file type
find . find files
goto . command transfer
grep . search a file for a pattern
if . conditional command
kill . terminate a process
ld . link editor
ln . make a link
login . sign onto UNIX
ls . list contents of directory
mail send mail to designated users
man run off section of UNIX manual
mesg . permit or deny messages
mkdir . make a directory
mv . move or rename a file
neqn typeset mathematics on terminal
newgrp . log in to a new group
nice run a command at low priority
nm . print name list
nohup run a command immune to hangups
nroff . format text
od . octal dump
opr . off line print
passwd change login password

vii

-

pfe . print floating exception
pr . print file
prof . display profile data
ps . process status
pwd . working directory name
rc . Ratfor compiler
rev . reverse lines of a file
rm . remove (unlink) files
rmdir . remove directory
roff . format text
sh shell (command interpreter)
shift . adjust Shell arguments
size . size of an object file
sleep suspend execution for an interval
sort, usort . sort or merge files
spell . find spelling errors
split . split a file into pieces
strip remove symbols and relocation bits
stty . set typewriter options
tee . pipe fitting
time . time a command
tp manipulate DECtape and magtape
tr . transliterate
troff . format text
tty . get typewriter name
typo . find possible typos
uniq report repeated lines in a file
wait await completion of process
wc . word count
who . who is on the system
write . write to another user
yacc yet another compiler-compiler

II. SYSTEM CALLS

intro introduction to system calls
break, brk, sbrk change core allocation
chdir change working directory
chmod . change mode of file
chown change owner and group of a file
close . close a file
creat . create a new file
csw . read console switches
dup duplicate an open file descriptor
exec, execl, execv execute a file
exit . terminate process
fork . spawn new process
fstat . get status of open file
getgid . get group identifications
getpid get process identification
getuid . get user identifications
gtty . get typewriter status
indir . indirect system call

viii

-

kill . send signal to a process
link . link to a file
mknod make a directory or a special file
mount . mount file system
nice . set program priority
open open for reading or writing
pipe create an interprocess channel
profil . execution time profile
ptrace . process trace
read . read from file
seek . move read/write pointer
setgid . set process group ID
setuid . set process user ID
signal . catch or ignore signals
sleep stop execution for interval
stat . get file status
stime . set time
stty . set mode of typewriter
sync . update super-block
time . get date and time
times . get process times
umount . dismount file system
unlink . remove directory entry
wait wait for process to terminate
write . write on a file

III. SUBROUTINES

abort . generate an IOT fault
abs, fabs . absolute value
alloc, free . core allocator
atan, atan2 . arc tangent function
atof . convert ASCII to floating
atoi . convert ASCII to integer
crypt . password encoding
ctime, localtime, gmtime convert date and time to ASCII
ecvt, fcvt . output conversion
end, etext, edata last locations in program
exp . exponential function
floor, ceil floor and ceiling functions
fmod floating modulo function
fptrap . floating point interpreter
gamma . log gamma function
getarg, iargc get command arguments from Fortran
getc, getw, fopen buffered input
getchar . read character
getpw . get name from UID
hmul . high-order product
ierror . catch Fortran errors
ldiv, lrem . long division
locv . long output conversion
log . natural logarithm
monitor prepare execution profile

ix

-

nargs . argument count
nlist . get entries from name list
perror, syserrlist, sysnerr, errno system error messages
pow . floating exponentiation
printf . formatted print
putc, putw, fcreat, fflush buffered output
putchar, flush . write character
qsort . quicker sort
rand, srand random number generator
reset, setexit execute non-local goto
setfil specify Fortran file name
sin, cos trigonometric functions
sqrt . square root function
ttyn return name of current typewriter

IV. SPECIAL FILES

cat . phototypesetter interface
dc DC-11 communications interface
dh DH-11 communications multiplexer
dn . DN-11 ACU interface
dp DP-11 201 data-phone interface
hp RH-11/RP04 moving-head disk
hs RH11/RS03-RS04 fixed-head disk file
ht RH-11/TU-16 magtape interface
kl KL-11 or DL-11 asynchronous interface
lp . line printer
mem, kmem, null core memory
pc PC-11 paper tape reader/punch
rf RF11/RS11 fixed-head disk file
rk . RK-11/RK03 (or RK05) disk
rp RP-11/RP03 moving-head disk
tc . TC-11/TU56 DECtape
tm TM-11/TU-10 magtape interface
tty general typewriter interface

V. FILE FORMATS AND CONVENTIONS

a.out assembler and link editor output
ar . archive (library) file format
ascii . map of ASCII character set
core . format of core image file
dir . format of directories
dump incremental dump tape format
fs . format of file system volume
greek graphics for extended TTY-37 type-box
group . group file
mtab mounted file system table
passwd . password file
tabs . set tab stops
tp . DEC/mag tape formats
ttys typewriter initialization data
utmp . user information

x

-

wtmp . user login history

VI. USER MAINTAINED PROGRAMS

azel . satellite predictions
bj . the game of black jack
cal . print calendar
chess . the game of chess
col . filter reverse line feeds
cubic three dimensional tic-tac-toe
factor discover prime factors of a number
fed . edit form letter memory
form . form letter generator
graph . draw a graph
gsi interpret extended character set on GSI terminal
m6 general purpose macroprocessor
moo . guessing game
plot: tek, gsip, vt0 graphics filters
primes print all primes larger than somewhat
quiz . test your knowledge
sky . obtain ephemerides
sno . Snobol interpreter
speak . word to voice translator
spline . interpolate smooth curve
tbl format tables for nroff or troff
tmg . compiler-compiler
ttt . the game of tic-tac-toe
units . conversion program
wump the game of hunt-the-wumpus

VII. USER MAINTAINED SUBROUTINES

crfork, crexit, crread, crwrite, crexch, crprior coroutine scheme
ms macros for formatting manuscripts
plot: openpl et al. graphics interface
salloc string allocation and manipulation

VIII. SYSTEM MAINTENANCE

ac . login accounting
boot procedures . UNIX startup
chgrp . change group
chown . change owner
clri . clear i-node
crash what to do when the system crashes
cron . clock daemon
dcheck file system directory consistency check
df . disk free
dpd . data phone daemon
dump incremental file system dump
getty . set typewriter mode
glob generate command arguments
icheck file system storage consistency check

xi

-

init process control initialization
lpd . line printer daemon
mkfs . construct a file system
mknod . build special file
mount . mount file system
ncheck generate names from i-numbers
restor incremental file system restore
sa . Shell accounting
su . become privileged user
sync . update the super block
umount . dismount file system
update periodically update the super block
wall . write to all users

xii

-

PERMUTED INDEX

dp(IV) DP-11 201 data-phone interface
abort(III) generate an IOT fault
abs, fabs(III) absolute value

abs, fabs(III) absolute value
ac(VIII) login accounting
sa(VIII) Shell accounting
dn(IV) DN-11 ACU interface

ac(VIII) login accounting
shift(I) adjust Shell arguments

primes(VI) print all primes larger than somewhat
wall(VIII) write to all users

alloc, free(III) core allocator
salloc(VII) string allocation and manipulation

break, brk, sbrk(II) change core allocation
alloc, free(III) core allocator

plot: openpl et al.(VII) graphics interface
yacc(I) yet another compiler-compiler

write(I) write to another user
a.out(V) assembler and link editor output

bc(I) arbitrary precision interactive language
atan, atan2(III) arc tangent function

ar(I) archive and library maintainer
ar(V) archive (library) file format

nargs(III) argument count
getarg, iargc(III) get command arguments from Fortran

echo(I) echo arguments
glob(VIII) generate command arguments

shift(I) adjust Shell arguments
ar(I) archive and library maintainer
ar(V) archive (library) file format

ascii(V) map of ASCII character set
atof(III) convert ASCII to floating
atoi(III) convert ASCII to integer

gmtime(III) convert date and time to ASCII...ctime, localtime,
ascii(V) map of ASCII character set
as(I) assembler

a.out(V) assembler and link editor output
as(I) assembler

kl(IV) KL-11 or DL-11 asynchronous interface
nice(I) run a command at low priority

atan, atan2(III) arc tangent function
atan, atan2(III) arc tangent function

atof(III) convert ASCII to floating
atoi(III) convert ASCII to integer

wait(I) await completion of process
azel(VI) satellite predictions
bas(I) basic

bas(I) basic
bc(I) arbitrary precision interactive language

su(VIII) become privileged user
strip(I) remove symbols and relocation bits

xiii

-

bj(VI) the game of black jack
bj(VI) the game of black jack

sync(VIII) update the super block
update(VIII) periodically update the super block

boot procedures(VIII) UNIX startup
break, brk, sbrk(II) change core allocation

break, brk, sbrk(II) change core allocation
getc, getw, fopen(III) buffered input

putc, putw, fcreat, fflush(III) buffered output
mknod(VIII) build special file

cc(I) C compiler
cdb(I) C debugger

dc(I) desk calculator
cal(VI) print calendar

indir(II) indirect system call
intro(II) introduction to system calls

cal(VI) print calendar
ierror(III) catch Fortran errors
signal(II) catch or ignore signals

cat(I) concatenate and print
cat(IV) phototypesetter interface
cc(I) C compiler
cdb(I) C debugger

floor, ceil(III) floor and ceiling functions
floor, ceil(III) floor and ceiling functions

break, brk, sbrk(II) change core allocation
chgrp(VIII) change group

passwd(I) change login password
chmod(II) change mode of file
chmod(I) change mode
chown(II) change owner and group of a file

chown(VIII) change owner
chdir(I) change working directory

chdir(II) change working directory
pipe(II) create an interprocess channel

gsi(VI) interpret extended character set on GSI terminal
ascii(V) map of ASCII character set

getchar(III) read character
putchar, flush(III) write character

chdir(I) change working directory
chdir(II) change working directory

file system directory consistency check...dcheck(VIII)
file system storage consistency check...icheck(VIII)

chess(VI) the game of chess
chess(VI) the game of chess
chgrp(VIII) change group
chmod(I) change mode
chmod(II) change mode of file
chown(II) change owner and group of a file
chown(VIII) change owner

clri(VIII) clear i-node
cron(VIII) clock daemon

close(II) close a file

xiv

-

close(II) close a file
clri(VIII) clear i-node
cmp(I) compare two files
col(VI) filter reverse line feeds

getarg, iargc(III) get command arguments from Fortran
glob(VIII) generate command arguments

nice(I) run a command at low priority
exit(I) terminate command file

nohup(I) run a command immune to hangups
sh(I) shell (command interpreter)

goto(I) command transfer
if(I) conditional command

time(I) time a command
comm(I) print lines common to two files

comm(I) print lines common to two files
dc(IV) DC-11 communications interface
dh(IV) DH-11 communications multiplexer

diff(I) differential file comparator
cmp(I) compare two files
cc(I) C compiler

tmg(VI) compiler-compiler
yacc(I) yet another compiler-compiler

fc(I) Fortran compiler
rc(I) Ratfor compiler

wait(I) await completion of process
cat(I) concatenate and print
if(I) conditional command

dcheck(VIII) file system directory consistency check
icheck(VIII) file system storage consistency check

csw(II) read console switches
mkfs(VIII) construct a file system

ls(I) list contents of directory
init(VIII) process control initialization

units(VI) conversion program
ecvt, fcvt(III) output conversion
locv(III) long output conversion

dd(I) convert and copy a file
atof(III) convert ASCII to floating
atoi(III) convert ASCII to integer

ctime, localtime, gmtime(III) convert date and time to ASCII
dd(I) convert and copy a file

cp(I) copy
break, brk, sbrk(II) change core allocation

alloc, free(III) core allocator
core(V) format of core image file

mem, kmem, null(IV) core memory
core(V) format of core image file

crread, crwrite, crexch, crprior(VII) coroutine scheme...crfork, crexit,
sin, cos(III) trigonometric functions

nargs(III) argument count
wc(I) word count

cp(I) copy
crash(VIII) what to do when the system crashes

xv

-

crash(VIII) what to do when the system crashes
creat(II) create a new file
pipe(II) create an interprocess channel

creat(II) create a new file
cref(I) make cross reference listing

crfork, crexit, crread, crwrite, crexch, crprior(VII) coroutine scheme
scheme...crfork, crexit, crread, crwrite, crexch, crprior(VII) coroutine

coroutine scheme... crfork, crexit, crread, crwrite, crexch, crprior(VII)
cron(VIII) clock daemon

cref(I) make cross reference listing
crfork, crexit, crread, crwrite, crexch, crprior(VII) coroutine scheme

crfork, crexit, crread, crwrite, crexch, crprior(VII) coroutine scheme
crfork, crexit, crread, crwrite, crexch, crprior(VII) coroutine scheme

crypt(III) password encoding
csw(II) read console switches

ASCII... ctime, localtime, gmtime(III) convert date and time to
cubic(VI) three dimensional tic-tac-toe

ttyn(III) return name of current typewriter
spline(VI) interpolate smooth curve

cron(VIII) clock daemon
dpd(VIII) data phone daemon
lpd(VIII) line printer daemon

dpd(VIII) data phone daemon
dp(IV) DP-11 201 data-phone interface

prof(I) display profile data
ttys(V) typewriter initialization data

ctime, localtime, gmtime(III) convert date and time to ASCII
time(II) get date and time

date(I) print and set the date
date(I) print and set the date
db(I) debug

dc(IV) DC-11 communications interface
dcheck(VIII) file system directory consistency check
dc(I) desk calculator
dc(IV) DC-11 communications interface
dd(I) convert and copy a file

db(I) debug
cdb(I) C debugger

tp(V) DEC/mag tape formats
tp(I) manipulate DECtape and magtape

tc(IV) TC-11/TU56 DECtape
dsw(I) delete interactively

mesg(I) permit or deny messages
dup(II) duplicate an open file descriptor

mail(I) send mail to designated users
dc(I) desk calculator

file(I) determine file type
df(VIII) disk free

dh(IV) DH-11 communications multiplexer
dh(IV) DH-11 communications multiplexer

diff(I) differential file comparator
diff(I) differential file comparator

cubic(VI) three dimensional tic-tac-toe

xvi

-

dir(V) format of directories
dcheck(VIII) file system directory consistency check

unlink(II) remove directory entry
pwd(I) working directory name

mknod(II) make a directory or a special file
chdir(I) change working directory

chdir(II) change working directory
ls(I) list contents of directory

mkdir(I) make a directory
rmdir(I) remove directory

dir(V) format of directories
factor(VI) discover prime factors of a number

hs(IV) RH11/RS03-RS04 fixed-head disk file
rf(IV) RF11/RS11 fixed-head disk file

df(VIII) disk free
du(I) summarize disk usage

hp(IV) RH-11/RP04 moving-head disk
rk(IV) RK-11/RK03 (or RK05) disk

rp(IV) RP-11/RP03 moving-head disk
umount(II) dismount file system

umount(VIII) dismount file system
prof(I) display profile data

ldiv, lrem(III) long division
kl(IV) KL-11 or DL-11 asynchronous interface

dn(IV) DN-11 ACU interface
dn(IV) DN-11 ACU interface

crash(VIII) what to do when the system crashes
dp(IV) DP-11 201 data-phone interface

dpd(VIII) data phone daemon
dp(IV) DP-11 201 data-phone interface

graph(VI) draw a graph
dsw(I) delete interactively
du(I) summarize disk usage

dump(V) incremental dump tape format
dump(VIII) incremental file system dump

od(I) octal dump
dump(V) incremental dump tape format
dump(VIII) incremental file system dump
dup(II) duplicate an open file descriptor

dup(II) duplicate an open file descriptor
echo(I) echo arguments

echo(I) echo arguments
ecvt, fcvt(III) output conversion

end, etext, edata(III) last locations in program
ed(I) text editor

fed(VI) edit form letter memory
a.out(V) assembler and link editor output

ed(I) text editor
ld(I) link editor

crypt(III) password encoding
end, etext, edata(III) last locations in program

nlist(III) get entries from name list
unlink(II) remove directory entry

xvii

-

sky(VI) obtain ephemerides
eqn(I) typeset mathematics

perror, syserrlist, sysnerr, errno(III) system error messages
sysnerr, errno(III) system error messages...perror, syserrlist,

ierror(III) catch Fortran errors
spell(I) find spelling errors

plot: openpl et al.(VII) graphics interface
end, etext, edata(III) last locations in program

pfe(I) print floating exception
exec, execl, execv(II) execute a file

exec, execl, execv(II) execute a file
exec, execl, execv(II) execute a file

reset, setexit(III) execute non-local goto
sleep(I) suspend execution for an interval

sleep(II) stop execution for interval
monitor(III) prepare execution profile

profil(II) execution time profile
exec, execl, execv(II) execute a file

exit(I) terminate command file
exit(II) terminate process
exp(III) exponential function

exp(III) exponential function
pow(III) floating exponentiation
gsi(VI) interpret extended character set on GSI terminal

greek(V) graphics for extended TTY-37 type-box
abs, fabs(III) absolute value

factor(VI) discover prime factors of a number
factor(VI) discover prime factors of a number

abort(III) generate an IOT fault
fc(I) Fortran compiler

putc, putw, fcreat, fflush(III) buffered output
ecvt, fcvt(III) output conversion

fed(VI) edit form letter memory
col(VI) filter reverse line feeds

putc, putw, fcreat, fflush(III) buffered output
diff(I) differential file comparator

dup(II) duplicate an open file descriptor
grep(I) search a file for a pattern

ar(V) archive (library) file format
split(I) split a file into pieces

setfil(III) specify Fortran file name
stat(II) get file status

dcheck(VIII) file system directory consistency check
dump(VIII) incremental file system dump
restor(VIII) incremental file system restore

icheck(VIII) file system storage consistency check
mtab(V) mounted file system table

fs(V) format of file system volume
mkfs(VIII) construct a file system

mount(II) mount file system
mount(VIII) mount file system

umount(II) dismount file system
umount(VIII) dismount file system

xviii

-

file(I) determine file type
chmod(II) change mode of file

chown(II) change owner and group of a file
close(II) close a file

core(V) format of core image file
creat(II) create a new file

dd(I) convert and copy a file
exec, execl, execv(II) execute a file

exit(I) terminate command file
fstat(II) get status of open file

group(V) group file
hs(IV) RH11/RS03-RS04 fixed-head disk file

file(I) determine file type
link(II) link to a file

mknod(II) make a directory or a special file
mknod(VIII) build special file

mv(I) move or rename a file
passwd(V) password file

pr(I) print file
read(II) read from file

rev(I) reverse lines of a file
rf(IV) RF11/RS11 fixed-head disk file

cmp(I) compare two files
comm(I) print lines common to two files

find(I) find files
size(I) size of an object file
rm(I) remove (unlink) files

sort, usort(I) sort or merge files
uniq(I) report repeated lines in a file

write(II) write on a file
col(VI) filter reverse line feeds

plot: tek, gsip, vt0(VI) graphics filters
find(I) find files
typo(I) find possible typos
spell(I) find spelling errors

find(I) find files
tee(I) pipe fitting

hs(IV) RH11/RS03-RS04 fixed-head disk file
rf(IV) RF11/RS11 fixed-head disk file

pfe(I) print floating exception
pow(III) floating exponentiation

fmod(III) floating modulo function
fptrap(III) floating point interpreter

atof(III) convert ASCII to floating
floor, ceil(III) floor and ceiling functions

floor, ceil(III) floor and ceiling functions
putchar, flush(III) write character

fmod(III) floating modulo function
getc, getw, fopen(III) buffered input

fork(II) spawn new process
form(VI) form letter generator

fed(VI) edit form letter memory
core(V) format of core image file

xix

-

dir(V) format of directories
fs(V) format of file system volume

tbl(VI) format tables for nroff or troff
nroff(I) format text
roff(I) format text

troff(I) format text
ar(V) archive (library) file format

dump(V) incremental dump tape format
tp(V) DEC/mag tape formats

printf(III) formatted print
ms(VII) macros for formatting manuscripts

form(VI) form letter generator
fc(I) Fortran compiler

ierror(III) catch Fortran errors
setfil(III) specify Fortran file name

iargc(III) get command arguments from Fortran...getarg,
fptrap(III) floating point interpreter

df(VIII) disk free
alloc, free(III) core allocator

read(II) read from file
getarg, iargc(III) get command arguments from Fortran

ncheck(VIII) generate names from i-numbers
nlist(III) get entries from name list
getpw(III) get name from UID

fstat(II) get status of open file
fs(V) format of file system volume

atan, atan2(III) arc tangent function
exp(III) exponential function

fmod(III) floating modulo function
gamma(III) log gamma function

floor, ceil(III) floor and ceiling functions
sqrt(III) square root function

sin, cos(III) trigonometric functions
bj(VI) the game of black jack

chess(VI) the game of chess
wump(VI) the game of hunt-the-wumpus

ttt(VI) the game of tic-tac-toe
moo(VI) guessing game

gamma(III) log gamma function
gamma(III) log gamma function

m6(VI) general purpose macroprocessor
tty(IV) general typewriter interface

abort(III) generate an IOT fault
glob(VIII) generate command arguments

ncheck(VIII) generate names from i-numbers
form(VI) form letter generator

rand, srand(III) random number generator
getarg, iargc(III) get command arguments from Fortran

time(II) get date and time
nlist(III) get entries from name list

stat(II) get file status
getgid(II) get group identifications
getpw(III) get name from UID

xx

-

getpid(II) get process identification
times(II) get process times
fstat(II) get status of open file

tty(I) get typewriter name
gtty(II) get typewriter status

getuid(II) get user identifications
getarg, iargc(III) get command arguments from Fortran
getc, getw, fopen(III) buffered input
getchar(III) read character
getgid(II) get group identifications
getpid(II) get process identification
getpw(III) get name from UID
getty(VIII) set typewriter mode
getuid(II) get user identifications

getc, getw, fopen(III) buffered input
glob(VIII) generate command arguments

ctime, localtime, gmtime(III) convert date and time to ASCII
goto(I) command transfer

reset, setexit(III) execute non-local goto
graph(VI) draw a graph

plot: tek, gsip, vt0(VI) graphics filters
greek(V) graphics for extended TTY-37 type-box

plot: openpl et al.(VII) graphics interface
graph(VI) draw a graph
greek(V) graphics for extended TTY-37 type-box
grep(I) search a file for a pattern

group(V) group file
getgid(II) get group identifications

setgid(II) set process group ID
chown(II) change owner and group of a file

chgrp(VIII) change group
newgrp(I) log in to a new group

group(V) group file
gsi(VI) interpret extended character set on GSI terminal

plot: tek, gsip, vt0(VI) graphics filters
gsi(VI) interpret extended character set on GSI terminal
gtty(II) get typewriter status

moo(VI) guessing game
nohup(I) run a command immune to hangups

hmul(III) high-order product
wtmp(V) user login history

hmul(III) high-order product
hp(IV) RH-11/RP04 moving-head disk
hs(IV) RH11/RS03-RS04 fixed-head disk file
ht(IV) RH-11/TU-16 magtape interface

wump(VI) the game of hunt-the-wumpus
getarg, iargc(III) get command arguments from Fortran

icheck(VIII) file system storage consistency check
getpid(II) get process identification

getgid(II) get group identifications
getuid(II) get user identifications

setgid(II) set process group ID
setuid(II) set process user ID

xxi

-

ierror(III) catch Fortran errors
if(I) conditional command

signal(II) catch or ignore signals
core(V) format of core image file

nohup(I) run a command immune to hangups
uniq(I) report repeated lines in a file

end, etext, edata(III) last locations in program
newgrp(I) log in to a new group

dump(V) incremental dump tape format
dump(VIII) incremental file system dump
restor(VIII) incremental file system restore

indir(II) indirect system call
indir(II) indirect system call

utmp(V) user information
ttys(V) typewriter initialization data

init(VIII) process control initialization
init(VIII) process control initialization

clri(VIII) clear i-node
getc, getw, fopen(III) buffered input

atoi(III) convert ASCII to integer
bc(I) arbitrary precision interactive language

dsw(I) delete interactively
cat(IV) phototypesetter interface

dc(IV) DC-11 communications interface
dn(IV) DN-11 ACU interface

dp(IV) DP-11 201 data-phone interface
ht(IV) RH-11/TU-16 magtape interface

kl(IV) KL-11 or DL-11 asynchronous interface
plot: openpl et al.(VII) graphics interface
tm(IV) TM-11/TU-10 magtape interface

tty(IV) general typewriter interface
spline(VI) interpolate smooth curve

gsi(VI) interpret extended character set on GSI terminal
fptrap(III) floating point interpreter

sh(I) shell (command interpreter)
sno(VI) Snobol interpreter

pipe(II) create an interprocess channel
sleep(I) suspend execution for an interval

sleep(II) stop execution for interval
split(I) split a file into pieces

intro(II) introduction to system calls
intro(II) introduction to system calls

ncheck(VIII) generate names from i-numbers
abort(III) generate an IOT fault

bj(VI) the game of black jack
kill(I) terminate a process
kill(II) send signal to a process

kl(IV) KL-11 or DL-11 asynchronous interface
kl(IV) KL-11 or DL-11 asynchronous interface

mem, kmem, null(IV) core memory
quiz(VI) test your knowledge

bc(I) arbitrary precision interactive language
primes(VI) print all primes larger than somewhat

xxii

-

end, etext, edata(III) last locations in program
ld(I) link editor
ldiv, lrem(III) long division

form(VI) form letter generator
fed(VI) edit form letter memory

ar(V) archive (library) file format
ar(I) archive and library maintainer

col(VI) filter reverse line feeds
lpd(VIII) line printer daemon

lp(IV) line printer
opr(I) off line print

comm(I) print lines common to two files
uniq(I) report repeated lines in a file

rev(I) reverse lines of a file
a.out(V) assembler and link editor output

ld(I) link editor
link(II) link to a file

link(II) link to a file
ln(I) make a link

ls(I) list contents of directory
cref(I) make cross reference listing

nlist(III) get entries from name list
nm(I) print name list

ln(I) make a link
ctime, localtime, gmtime(III) convert date and time to ASCII

end, etext, edata(III) last locations in program
locv(III) long output conversion

gamma(III) log gamma function
newgrp(I) log in to a new group

log(III) natural logarithm
log(III) natural logarithm

ac(VIII) login accounting
wtmp(V) user login history

passwd(I) change login password
login(I) sign onto UNIX

ldiv, lrem(III) long division
locv(III) long output conversion

nice(I) run a command at low priority
lpd(VIII) line printer daemon
lp(IV) line printer

ldiv, lrem(III) long division
ls(I) list contents of directory
m6(VI) general purpose macroprocessor

m6(VI) general purpose macroprocessor
ms(VII) macros for formatting manuscripts

ht(IV) RH-11/TU-16 magtape interface
tm(IV) TM-11/TU-10 magtape interface

tp(I) manipulate DECtape and magtape
mail(I) send mail to designated users

mail(I) send mail to designated users
ar(I) archive and library maintainer

mknod(II) make a directory or a special file
mkdir(I) make a directory

xxiii

-

ln(I) make a link
cref(I) make cross reference listing

man(I) run off section of UNIX manual
tp(I) manipulate DECtape and magtape

salloc(VII) string allocation and manipulation
man(I) run off section of UNIX manual
ms(VII) macros for formatting manuscripts

ascii(V) map of ASCII character set
neqn(I) typeset mathematics on terminal
eqn(I) typeset mathematics

mem, kmem, null(IV) core memory
fed(VI) edit form letter memory

mem, kmem, null(IV) core memory
sort, usort(I) sort or merge files

mesg(I) permit or deny messages
mesg(I) permit or deny messages

sysnerr, errno(III) system error messages...perror, syserrlist,
mkdir(I) make a directory
mkfs(VIII) construct a file system
mknod(II) make a directory or a special file
mknod(VIII) build special file

chmod(II) change mode of file
stty(II) set mode of typewriter

chmod(I) change mode
getty(VIII) set typewriter mode

fmod(III) floating modulo function
monitor(III) prepare execution profile
moo(VI) guessing game

mount(II) mount file system
mount(VIII) mount file system

mtab(V) mounted file system table
mount(II) mount file system
mount(VIII) mount file system

mv(I) move or rename a file
seek(II) move read/write pointer

hp(IV) RH-11/RP04 moving-head disk
rp(IV) RP-11/RP03 moving-head disk

ms(VII) macros for formatting manuscripts
mtab(V) mounted file system table

dh(IV) DH-11 communications multiplexer
mv(I) move or rename a file

getpw(III) get name from UID
nlist(III) get entries from name list

nm(I) print name list
ttyn(III) return name of current typewriter

pwd(I) working directory name
ncheck(VIII) generate names from i-numbers

setfil(III) specify Fortran file name
tty(I) get typewriter name

nargs(III) argument count
log(III) natural logarithm

ncheck(VIII) generate names from i-numbers
neqn(I) typeset mathematics on terminal

xxiv

-

creat(II) create a new file
newgrp(I) log in to a new group

fork(II) spawn new process
newgrp(I) log in to a new group
nice(I) run a command at low priority
nice(II) set program priority
nlist(III) get entries from name list
nm(I) print name list
nohup(I) run a command immune to hangups

reset, setexit(III) execute non-local goto
tbl(VI) format tables for nroff or troff

nroff(I) format text
mem, kmem, null(IV) core memory

rand, srand(III) random number generator
factor(VI) discover prime factors of a number

size(I) size of an object file
sky(VI) obtain ephemerides

od(I) octal dump
od(I) octal dump

opr(I) off line print
man(I) run off section of UNIX manual

login(I) sign onto UNIX
dup(II) duplicate an open file descriptor
fstat(II) get status of open file

open(II) open for reading or writing
open(II) open for reading or writing

plot: openpl et al.(VII) graphics interface
opr(I) off line print

stty(I) set typewriter options
rk(IV) RK-11/RK03 (or RK05) disk

ecvt, fcvt(III) output conversion
locv(III) long output conversion

a.out(V) assembler and link editor output
putc, putw, fcreat, fflush(III) buffered output

chown(II) change owner and group of a file
chown(VIII) change owner

pc(IV) PC-11 paper tape reader/punch
passwd(I) change login password
passwd(V) password file

crypt(III) password encoding
passwd(V) password file

passwd(I) change login password
grep(I) search a file for a pattern

pc(IV) PC-11 paper tape reader/punch
pc(IV) PC-11 paper tape reader/punch

update(VIII) periodically update the super block
mesg(I) permit or deny messages

error messages... perror, syserrlist, sysnerr, errno(III) system
pfe(I) print floating exception

dpd(VIII) data phone daemon
cat(IV) phototypesetter interface

split(I) split a file into pieces
tee(I) pipe fitting

xxv

-

pipe(II) create an interprocess channel
plot: openpl et al.(VII) graphics interface
plot: tek, gsip, vt0(VI) graphics filters

fptrap(III) floating point interpreter
seek(II) move read/write pointer

typo(I) find possible typos
pow(III) floating exponentiation

bc(I) arbitrary precision interactive language
azel(VI) satellite predictions

monitor(III) prepare execution profile
pr(I) print file

factor(VI) discover prime factors of a number
primes(VI) print all primes larger than somewhat

primes(VI) print all primes larger than somewhat
primes(VI) print all primes larger than somewhat

date(I) print and set the date
cal(VI) print calendar

pr(I) print file
pfe(I) print floating exception

comm(I) print lines common to two files
nm(I) print name list

cat(I) concatenate and print
lpd(VIII) line printer daemon

lp(IV) line printer
printf(III) formatted print

opr(I) off line print
printf(III) formatted print

nice(I) run a command at low priority
nice(II) set program priority

su(VIII) become privileged user
boot procedures(VIII) UNIX startup

init(VIII) process control initialization
setgid(II) set process group ID
getpid(II) get process identification

ps(I) process status
times(II) get process times

wait(II) wait for process to terminate
ptrace(II) process trace

setuid(II) set process user ID
exit(II) terminate process

fork(II) spawn new process
kill(I) terminate a process

kill(II) send signal to a process
wait(I) await completion of process

hmul(III) high-order product
prof(I) display profile data

prof(I) display profile data
monitor(III) prepare execution profile

profil(II) execution time profile
profil(II) execution time profile

nice(II) set program priority
end, etext, edata(III) last locations in program

units(VI) conversion program

xxvi

-

ps(I) process status
ptrace(II) process trace

m6(VI) general purpose macroprocessor
putc, putw, fcreat, fflush(III) buffered output
putchar, flush(III) write character

putc, putw, fcreat, fflush(III) buffered output
pwd(I) working directory name
qsort(III) quicker sort

qsort(III) quicker sort
quiz(VI) test your knowledge
rand, srand(III) random number generator

rand, srand(III) random number generator
rc(I) Ratfor compiler

rc(I) Ratfor compiler
getchar(III) read character

csw(II) read console switches
read(II) read from file

pc(IV) PC-11 paper tape reader/punch
read(II) read from file

open(II) open for reading or writing
seek(II) move read/write pointer

cref(I) make cross reference listing
strip(I) remove symbols and relocation bits

unlink(II) remove directory entry
rmdir(I) remove directory
strip(I) remove symbols and relocation bits

rm(I) remove (unlink) files
mv(I) move or rename a file
uniq(I) report repeated lines in a file

uniq(I) report repeated lines in a file
reset, setexit(III) execute non-local goto

restor(VIII) incremental file system restore
restor(VIII) incremental file system restore

ttyn(III) return name of current typewriter
col(VI) filter reverse line feeds

rev(I) reverse lines of a file
rev(I) reverse lines of a file

rf(IV) RF11/RS11 fixed-head disk file
rf(IV) RF11/RS11 fixed-head disk file

hp(IV) RH-11/RP04 moving-head disk
hs(IV) RH11/RS03-RS04 fixed-head disk file
ht(IV) RH-11/TU-16 magtape interface

rk(IV) RK-11/RK03 (or RK05) disk
rk(IV) RK-11/RK03 (or RK05) disk

rk(IV) RK-11/RK03 (or RK05) disk
rmdir(I) remove directory
rm(I) remove (unlink) files
roff(I) format text

sqrt(III) square root function
rp(IV) RP-11/RP03 moving-head disk

rp(IV) RP-11/RP03 moving-head disk
nice(I) run a command at low priority

nohup(I) run a command immune to hangups

xxvii

-

man(I) run off section of UNIX manual
salloc(VII) string allocation and manipulation

azel(VI) satellite predictions
sa(VIII) Shell accounting

break, brk, sbrk(II) change core allocation
crwrite, crexch, crprior(VII) coroutine scheme...crfork, crexit, crread,

grep(I) search a file for a pattern
man(I) run off section of UNIX manual

seek(II) move read/write pointer
mail(I) send mail to designated users
kill(II) send signal to a process
stty(II) set mode of typewriter

gsi(VI) interpret extended character set on GSI terminal
setgid(II) set process group ID
setuid(II) set process user ID

nice(II) set program priority
tabs(V) set tab stops

date(I) print and set the date
stime(II) set time

getty(VIII) set typewriter mode
stty(I) set typewriter options

ascii(V) map of ASCII character set
reset, setexit(III) execute non-local goto

setfil(III) specify Fortran file name
setgid(II) set process group ID
setuid(II) set process user ID

sa(VIII) Shell accounting
shift(I) adjust Shell arguments

sh(I) shell (command interpreter)
sh(I) shell (command interpreter)
shift(I) adjust Shell arguments

login(I) sign onto UNIX
kill(II) send signal to a process

signal(II) catch or ignore signals
signal(II) catch or ignore signals

sin, cos(III) trigonometric functions
size(I) size of an object file

size(I) size of an object file
sky(VI) obtain ephemerides
sleep(I) suspend execution for an interval
sleep(II) stop execution for interval

spline(VI) interpolate smooth curve
sno(VI) Snobol interpreter

sno(VI) Snobol interpreter
primes(VI) print all primes larger than somewhat

sort, usort(I) sort or merge files
sort, usort(I) sort or merge files

qsort(III) quicker sort
fork(II) spawn new process

speak(VI) word to voice translator
mknod(II) make a directory or a special file

mknod(VIII) build special file
setfil(III) specify Fortran file name

xxviii

-

spell(I) find spelling errors
spell(I) find spelling errors

spline(VI) interpolate smooth curve
split(I) split a file into pieces

split(I) split a file into pieces
sqrt(III) square root function

sqrt(III) square root function
rand, srand(III) random number generator

boot procedures(VIII) UNIX startup
stat(II) get file status

fstat(II) get status of open file
gtty(II) get typewriter status

ps(I) process status
stat(II) get file status

stime(II) set time
sleep(II) stop execution for interval

tabs(V) set tab stops
icheck(VIII) file system storage consistency check

salloc(VII) string allocation and manipulation
strip(I) remove symbols and relocation bits
stty(I) set typewriter options
stty(II) set mode of typewriter

du(I) summarize disk usage
sync(VIII) update the super block

update(VIII) periodically update the super block
sync(II) update super-block

sleep(I) suspend execution for an interval
su(VIII) become privileged user

csw(II) read console switches
strip(I) remove symbols and relocation bits

sync(II) update super-block
sync(VIII) update the super block

messages...perror, syserrlist, sysnerr, errno(III) system error
perror, syserrlist, sysnerr, errno(III) system error messages
indir(II) indirect system call

intro(II) introduction to system calls
crash(VIII) what to do when the system crashes

dcheck(VIII) file system directory consistency check
dump(VIII) incremental file system dump
syserrlist, sysnerr, errno(III) system error messages...perror,
restor(VIII) incremental file system restore

icheck(VIII) file system storage consistency check
mtab(V) mounted file system table

fs(V) format of file system volume
mkfs(VIII) construct a file system

mount(II) mount file system
mount(VIII) mount file system

umount(II) dismount file system
umount(VIII) dismount file system

who(I) who is on the system
tabs(V) set tab stops

mtab(V) mounted file system table
tbl(VI) format tables for nroff or troff

xxix

-

tabs(V) set tab stops
atan, atan2(III) arc tangent function

dump(V) incremental dump tape format
tp(V) DEC/mag tape formats

pc(IV) PC-11 paper tape reader/punch
tbl(VI) format tables for nroff or troff

tc(IV) TC-11/TU56 DECtape
tc(IV) TC-11/TU56 DECtape
tee(I) pipe fitting

plot: tek, gsip, vt0(VI) graphics filters
interpret extended character set on GSI terminal...gsi(VI)

neqn(I) typeset mathematics on terminal
kill(I) terminate a process
exit(I) terminate command file

exit(II) terminate process
wait(II) wait for process to terminate

quiz(VI) test your knowledge
ed(I) text editor

nroff(I) format text
roff(I) format text

troff(I) format text
primes(VI) print all primes larger than somewhat

cubic(VI) three dimensional tic-tac-toe
cubic(VI) three dimensional tic-tac-toe

ttt(VI) the game of tic-tac-toe
time(I) time a command

profil(II) execution time profile
localtime, gmtime(III) convert date and time to ASCII...ctime,

time(I) time a command
time(II) get date and time
times(II) get process times

stime(II) set time
times(II) get process times
time(II) get date and time

tm(IV) TM-11/TU-10 magtape interface
tmg(VI) compiler-compiler
tm(IV) TM-11/TU-10 magtape interface
tp(I) manipulate DECtape and magtape
tp(V) DEC/mag tape formats

ptrace(II) process trace
goto(I) command transfer

speak(VI) word to voice translator
tr(I) transliterate

tr(I) transliterate
sin, cos(III) trigonometric functions

troff(I) format text
tbl(VI) format tables for nroff or troff

ttt(VI) the game of tic-tac-toe
greek(V) graphics for extended TTY-37 type-box

tty(I) get typewriter name
tty(IV) general typewriter interface
ttyn(III) return name of current typewriter
ttys(V) typewriter initialization data

xxx

-

cmp(I) compare two files
comm(I) print lines common to two files

greek(V) graphics for extended TTY-37 type-box
file(I) determine file type

neqn(I) typeset mathematics on terminal
eqn(I) typeset mathematics

ttys(V) typewriter initialization data
tty(IV) general typewriter interface
getty(VIII) set typewriter mode

tty(I) get typewriter name
stty(I) set typewriter options

gtty(II) get typewriter status
stty(II) set mode of typewriter

ttyn(III) return name of current typewriter
typo(I) find possible typos

typo(I) find possible typos
getpw(III) get name from UID

umount(II) dismount file system
umount(VIII) dismount file system
uniq(I) report repeated lines in a file
units(VI) conversion program

man(I) run off section of UNIX manual
boot procedures(VIII) UNIX startup

login(I) sign onto UNIX
rm(I) remove (unlink) files

unlink(II) remove directory entry
sync(II) update super-block

sync(VIII) update the super block
update(VIII) periodically update the super block

update(VIII) periodically update the super block
du(I) summarize disk usage

getuid(II) get user identifications
setuid(II) set process user ID

utmp(V) user information
wtmp(V) user login history

mail(I) send mail to designated users
su(VIII) become privileged user

wall(VIII) write to all users
write(I) write to another user

sort, usort(I) sort or merge files
utmp(V) user information

abs, fabs(III) absolute value
speak(VI) word to voice translator

fs(V) format of file system volume
plot: tek, gsip, vt0(VI) graphics filters

wait(II) wait for process to terminate
wait(I) await completion of process
wait(II) wait for process to terminate
wall(VIII) write to all users
wc(I) word count

crash(VIII) what to do when the system crashes
crash(VIII) what to do when the system crashes

who(I) who is on the system

xxxi

-

who(I) who is on the system
wc(I) word count

speak(VI) word to voice translator
pwd(I) working directory name

chdir(I) change working directory
chdir(II) change working directory

putchar, flush(III) write character
write(II) write on a file

wall(VIII) write to all users
write(I) write to another user

write(I) write to another user
write(II) write on a file

open(II) open for reading or writing
wtmp(V) user login history
wump(VI) the game of hunt-the-wumpus
yacc(I) yet another compiler-compiler

yacc(I) yet another compiler-compiler
quiz(VI) test your knowledge

xxxii

-

AR (I) 3/15/72 AR (I)

NAME
ar − archive and library maintainer

SYNOPSIS
ar key afile name ...

DESCRIPTION
Ar maintains groups of files combined into a single archive file. Its main use is to create and up-
date library files as used by the loader. It can be used, though, for any similar purpose.

Key is one character from the setdrtux, optionally concatenated withv. Afile is the archive file.
Thenamesare constituent files in the archive file. The meanings of thekeycharacters are:

d means delete the named files from the archive file.

r means replace the named files in the archive file. If the archive file does not exist,r creates it.
If the named files are not in the archive file, they are appended.

t prints a table of contents of the archive file. If no names are given, all files in the archive are
tabled. If names are given, only those files are tabled.

u is similar to r except that only those files that have been modified are replaced. If no names
are given, all files in the archive that have been modified are replaced by the modified version.

x extracts the named files. If no names are given, all files in the archive are extracted. In neither
case doesx alter the archive file.

v means verbose. Under the verbose option,ar gives a file-by-file description of the making of a
new archive file from the old archive and the constituent files. The following abbreviations are
used:

c copy
a append
d delete
r replace
x extract

FILES
/tmp/vtm? temporary

SEE ALSO
ld (I), archive (V)

BUGS
Option tv should be implemented as a table with more information.

There should be a way to specify the placement of a new file in an archive. Currently, it is
placed at the end.

Sincear has not been rewritten to deal properly with the new file system modes, extracted files
have mode 666.

For the same reason, only the first 8 characters of file names are significant.

If the same file is mentioned twice in an argument list, it may be put in the archive twice.

- 1 -

-

AS (I) 1/15/73 AS (I)

NAME
as − assembler

SYNOPSIS
as [−] name ...

DESCRIPTION
As assembles the concatenation of the named files. If the optional first argument− is used, all
undefined symbols in the assembly are treated as global.

The output of the assembly is left on the filea.out. It is executable if no errors occurred during
the assembly, and if there were no unresolved external references.

FILES
/lib/as2 pass 2 of the assembler
/tmp/atm[1-3]? temporary
a.out object

SEE ALSO
ld (I), nm (I), db (I), a.out (V), ‘UNIX Assembler Manual’.

DIAGNOSTICS
When an input file cannot be read, its name followed by a question mark is typed and assembly
ceases. When syntactic or semantic errors occur, a single-character diagnostic is typed out to-
gether with the line number and the file name in which it occurred. Errors in pass 1 cause can-
cellation of pass 2. The possible errors are:

) Parentheses error
] Parentheses error
< String not terminated properly
* Indirection used illegally
. Illegal assignment to ‘.’
A Error in address
B Branch instruction is odd or too remote
E Error in expression
F Error in local (‘f’ or ‘b’) type symbol
G Garbage (unknown) character
I End of file inside an if
M Multiply defined symbol as label
O Word quantity assembled at odd address
P ‘.’ different in pass 1 and 2
R Relocation error
U Undefined symbol
X Syntax error

BUGS
Symbol table overflow is not checked.x errors can cause incorrect line numbers in following di-
agnostics.

- 1 -

-

BAS (I) 5/15/74 BAS (I)

NAME
bas − basic

SYNOPSIS
bas [file]

DESCRIPTION
Basis a dialect of Basic. If a file argument is provided, the file is used for input before the con-
sole is read.Basaccepts lines of the form:

statement
integer statement

Integer numbered statements (known as internal statements) are stored for later execution. They
are stored in sorted ascending order. Non-numbered statements are immediately executed. The
result of an immediate expression statement (that does not have ‘=’ as its highest operator) is
printed.

Statements have the following syntax:

expression
The expression is executed for its side effects (assignment or function call) or for printing
as described above.

comment...
This statement is ignored. It is used to interject commentary in a program.

done
Return to system level.

draw expression expression expression
A line is drawn on the Tektronix 611 display ‘/dev/vt0’ from the current display position
to the XY co-ordinates specified by the first two expressions. The scale is zero to one in
both X and Y directions. If the third expression is zero, the line is invisible. The current
display position is set to the end point.

display list
The list of expressions and strings is concatenated and displayed (i.e. printed) on the 611
starting at the current display position. The current display position is not changed.

dump
The name and current value of every variable is printed.

edit
The UNIX editor,ed, is invoked with thefile argument. After the editor exits, this file is
recompiled.

erase
The 611 screen is erased.

for name= expression expression statement
for name= expression expression

...
next

The for statement repetitively executes a statement (first form) or a group of statements
(second form) under control of a named variable. The variable takes on the value of the
first expression, then is incremented by one on each loop, not to exceed the value of the
second expression.

gotoexpression
The expression is evaluated, truncated to an integer and execution goes to the correspond-
ing integer numbered statment. If executed from immediate mode, the internal statements
are compiled first.

- 1 -

-

BAS (I) 5/15/74 BAS (I)

if expression statement
if expression

...
[else

...]
fi

The statement (first form) or group of statements (second form) is executed if the expres-
sion evaluates to non-zero. In the second form, an optionalelseallows for a group of
statements to be executed when the first group is not.

list [expression [expression]]
is used to print out the stored internal statements. If no arguments are given, all internal
statements are printed. If one argument is given, only that internal statement is listed. If
two arguments are given, all internal statements inclusively between the arguments are
printed.

print list
The list of expressions and strings are concatenated and printed. (A string is delimited by
" characters.)

prompt list
Promptis the same asprint except that no newline character is printed.

return [expression]
The expression is evaluated and the result is passed back as the value of a function call. If
no expression is given, zero is returned.

run
The internal statements are compiled. The symbol table is re-initialized. The random
number generator is reset. Control is passed to the lowest numbered internal statement.

save[expression [expression]]
Saveis like list except that the output is written on thefile argument. If no argument is
given on the command,b.out is used.

Expressions have the following syntax:

name
A name is used to specify a variable. Names are composed of a letter followed by letters
and digits. The first four characters of a name are significant.

number
A number is used to represent a constant value. A number is written in Fortran style, and
contains digits, an optional decimal point, and possibly a scale factor consisting of ane
followed by a possibly signed exponent.

(expression)
Parentheses are used to alter normal order of evaluation.

_ expression
The result is the negation of the expression.

expression operator expression
Common functions of two arguments are abbreviated by the two arguments separated by
an operator denoting the function. A complete list of operators is given below.

expression([expression [, expression] ...])
Functions of an arbitrary number of arguments can be called by an expression followed by
the arguments in parentheses separated by commas. The expression evaluates to the line
number of the entry of the function in the internally stored statements. This causes the in-
ternal statements to be compiled. If the expression evaluates negative, a builtin function is
called. The list of builtin functions appears below.

- 2 -

-

BAS (I) 5/15/74 BAS (I)

name[expression [, expression] ...]
Each expression is truncated to an integer and used as a specifier for the name. The result
is syntactically identical to a name.a[1,2] is the same asa[1][2]. The truncated expres-
sions are restricted to values between 0 and 32767.

The following is the list of operators:

=
= is the assignment operator. The left operand must be a name or an array element. The
result is the right operand. Assignment binds right to left, all other operators bind left to
right.

& 
& (logical and) has result zero if either of its arguments are zero. It has result one if both
its arguments are non-zero. (logical or) has result zero if both of its arguments are zero.
It has result one if either of its arguments are non-zero.

< <= > >= == <>
The relational operators (< less than, <= less than or equal, > greater than, >= greater than
or equal, == equal to, <> not equal to) return one if their arguments are in the specified re-
lation. They return zero otherwise. Relational operators at the same level extend as fol-
lows: a>b>c is the same as a>b&b>c.

+ −
Add and subtract.

* /
Multiply and divide.

ˆ
Exponentiation.

The following is a list of builtin functions:

arg(i)
is the value of thei -th actual parameter on the current level of function call.

exp(x)
is the exponential function ofx.

log(x)
is the natural logarithm ofx.

sqr(x)
is the square root ofx.

sin(x)
is the sine ofx (radians).

cos(x)
is the cosine ofx (radians).

atn(x)
is the arctangent ofx. Its value is between −π/2 and π/2.

rnd()
is a uniformly distributed random number between zero and one.

expr()
is the only form of program input. A line is read from the input and evaluated as an ex-
pression. The resultant value is returned.

abs(x)
is the absolute value ofx.

int(x)
returnsx truncated (towards 0) to an integer.

- 3 -

-

BAS (I) 5/15/74 BAS (I)

FILES
/tmp/btm? temporary
b.out save file

DIAGNOSTICS
Syntax errors cause the incorrect line to be typed with an underscore where the parse failed. All
other diagnostics are self explanatory.

BUGS
Has been known to give core images.

- 4 -

-

BC (I) 2/20/75 BC (I)

NAME
bc − arbitrary precision interactive language

SYNOPSIS
bc [�l] [file ...]

DESCRIPTION
Bc is an interactive processor for a language which resembles C but provides unlimited precision
arithmetic. It takes input from any files given, then reads the standard input. The ‘�l’ argument
stands for the name of a library of mathematical subroutines which contains sine (named ‘s’), co-
sine (‘c’), arctangent (‘a’), natural logarithm (‘l’), and exponential (‘e’). The syntax forbc pro-
grams is as follows; E means expression, S means statement.

Comments
are enclosed in /* and */.

Names
letters a�z
array elements: letter[E]
The words ‘ibase’, ‘obase’, and ‘scale’

Other operands
arbitrarily long numbers with optional sign and decimal point.
(E)
sqrt (E)
<letter> (E , ... , E)

Operators
+ � * / % ˆ
++ �� (prefix and postfix; apply to names)
== <= >= != < >
= =+ =� =* =/ =% =ˆ

Statements
E
{ S ; ... ; S }
if (E) S
while (E) S
for (E ; E ; E) S
null statement
break
quit

Function definitions are exemplified by
define <letter> (<letter> ,..., <letter>) {

auto <letter>, ... , <letter>
S; ... S
return (E)

}

All function arguments are passed by value.

The value of a statement that is an expression is printed unless the main operator is an assign-
ment. Either semicolons or newlines may separate statements. Assignment toscaleinfluences
the number of digits to be retained on arithmetic operations. Assignments toibaseor obaseset
the input and output number radix respectively.

The same letter may be used as an array name, a function name, and a simple variable simultane-
ously. ‘Auto’ variables are saved and restored during function calls. All other variables are glo-
bal to the program. When using arrays as function arguments or defining them as automatic
variables empty square brackets must follow the array name.

- 1 -

-

BC (I) 2/20/75 BC (I)

For example

scale = 20
define e(x){

auto a, b, c, i, s
a = 1
b = 1
s = 1
for(i=1; 1==1; i++){

a = a*x
b = b*i
c = a/b
if(c == 0) return(s)
s = s+c

}
}

defines a function to compute an approximate value of the exponential function and

for(i=1; i<=10; i++) e(i)

prints approximate values of the exponential function of the first ten integers.

FILES
/usr/lib/lib.b mathematical library

SEE ALSO
dc (I), C Reference Manual, ‘‘BC � An Arbitrary Precision Desk-Calculator Language.’’

BUGS
No &&,   yet.
for statement must have all three E’s
quit is interpreted when read, not when executed.

- 2 -

-

CAT (I) 1/15/73 CAT (I)

NAME
cat − concatenate and print

SYNOPSIS
cat file ...

DESCRIPTION
Cat reads each file in sequence and writes it on the standard output. Thus

cat file

prints the file, and

cat file1 file2 >file3

concatenates the first two files and places the result on the third.

If no input file is given, or if the argument ‘�’ is encountered,cat reads from the standard input
file.

SEE ALSO
pr(I), cp(I)

DIAGNOSTICS
none; if a file cannot be found it is ignored.

BUGS
cat x y >x andcat x y >y cause strange results.

- 1 -

-

CC (I) 5/15/74 CC (I)

NAME
cc − C compiler

SYNOPSIS
cc [−c] [−p] [�f] [−O] [−S] [−P] file ...

DESCRIPTION
Cc is the UNIX C compiler. It accepts three types of arguments:

Arguments whose names end with ‘.c’ are taken to be C source programs; they are compiled, and
each object program is left on the file whose name is that of the source with ‘.o’ substituted for
‘.c’. The ‘.o’ file is normally deleted, however, if a single C program is compiled and loaded all
at one go.

The following flags are interpreted bycc. Seeld (I) for load-time flags.

−c Suppress the loading phase of the compilation, and force an object file to be produced
even if only one program is compiled.

−p Arrange for the compiler to produce code which counts the number of times each routine
is called; also, if loading takes place, replace the standard startup routine by one which
automatically calls themonitor subroutine (III) at the start and arranges to write out a
mon.outfile at normal termination of execution of the object program. An execution pro-
file can then be generated by use ofprof (I).

�f In systems without hardware floating-point, use a version of the C compiler which han-
dles floating-point constants and loads the object program with the floating-point inter-
preter. Do not use if the hardware is present.

−O Invoke an object-code optimizer.

−S Compile the named C programs, and leave the assembler-language output on correspond-
ing files suffixed ‘.s’.

−P Run only the macro preprocessor on the named C programs, and leave the output on cor-
responding files suffixed ‘.i’.

Other arguments are taken to be either loader flag arguments, or C-compatible object programs,
typically produced by an earliercc run, or perhaps libraries of C-compatible routines. These pro-
grams, together with the results of any compilations specified, are loaded (in the order given) to
produce an executable program with namea.out.

FILES
file.c input file
file.o object file
a.out loaded output
/tmp/ctm? temporary
/lib/c[01] compiler
/lib/fc[01] floating-point compiler
/lib/c2 optional optimizer
/lib/crt0.o runtime startoff
/lib/mcrt0.o runtime startoff of profiling
/lib/fcrt0.o runtime startoff for floating-point interpretation
/lib/libc.a C library; see section III.
/lib/liba.a Assembler library used by some routines in libc.a

SEE ALSO
‘‘Programming in C� a tutorial,’’ C Reference Manual, monitor (III), prof (I), cdb (I), ld (I).

DIAGNOSTICS
The diagnostics produced by C itself are intended to be self-explanatory. Occasional messages
may be produced by the assembler or loader. Of these, the most mystifying are from the assem-
bler, in particular ‘‘m,’’ which means a multiply-defined external symbol (function or data).

- 1 -

-

CC (I) 5/15/74 CC (I)

BUGS

- 2 -

-

CDB (I) 2/8/75 CDB (I)

NAME
cdb − C debugger

SYNOPSIS
cdb [a.out [core]]

DESCRIPTION
Cdb is a debugger for use with C programs. It is useful for both post-mortem and interactive de-
bugging. An important feature ofcdb is that even in the interactive case no advance planning is
necessary to use it; in particular it is not necessary to compile or load the program in any special
way nor to include any special routines in the object file.

The first argument tocdb is an object program, preferably containing a symbol table; if not given
‘‘a.out’’ is used. The second argument is the name of a core-image file; if it is not given,
‘‘core’’ is used. The core file need not be present.

Commands tocdbconsist of an address, followed by a single command character, possibly fol-
lowed by a command modifier. Usually if no address is given the last-printed address is used.
An address may be followed by a comma and a number, in which case the command applies to
the appropriate number of successive addresses.

Addresses are expressions composed of names, decimal numbers, and octal numbers (which be-
gin with ‘‘0’’) and separated by ‘‘+’’ and ‘‘−’’. Evaluation proceeds left-to-right.

Names of external variables are written just as they are in C. For various reasons the external
names generated by C all begin with an underscore, which is automatically tacked on bycdb.
Currently it is not possible to suppress this feature, so symbols (defined in assembly-language
programs) which do not begin with underscore are inaccessible.

Variables local to a function (automatic, static, and arguments) are accessible by writing the
name of the function, a colon ‘‘:’’, and the name of the local variable (e.g. ‘‘main:argc’’). There
is no notion of the ‘‘current’’ function; its name must always be written explicitly.

A number which begins with ‘‘0’’ is taken to be octal; otherwise numbers are decimal, just as in
C. There is no provision for input of floating numbers.

The construction ‘‘name[expression]’’ assumes thatnameis a pointer to an integer and is equiv-
alent to the contents of the named cell plus twice the expression. Notice thatnamehas to be a
genuine pointer and that arrays are not accessible in this way. This is a consequence of the fact
that types of variables are not currently saved in the symbol table.

The command characters are:

/m print the addressed words.m indicates the mode of printout; specifying a mode sets the
mode until it is explicitly changed again:
o octal (default)
i decimal
f single-precision floating-point
d double-precision floating-point

\ Print the specified bytes in octal.

= print the value of the addressed expression in octal.

´ print the addressed bytes as characters. Control and non-ASCII characters are escaped in
octal.

" take the contents of the address as a pointer to a sequence of characters, and print the char-
acters up to a null byte. Control and non-ASCII characters are escaped as octal.

& Try to interpret the contents of the address as a pointer, and print symbolically where the
pointer points. The typeout contains the name of an external symbol and, if required, the
smallest possible positive offset. Only external symbols are considered.

- 1 -

-

CDB (I) 2/8/75 CDB (I)

? Interpret the addressed location as a PDP-11 instruction.

$m If no m is given, print a stack trace of the terminated or stopped program. The last call
made is listed first; the actual arguments to each routine are given in octal. (If this is inap-
propriate, the arguments may be examined by name in the desired format using ‘‘/’’.) Ifm
is ‘‘r’’, the contents of the PDP-11 general registers are listed. Ifm is ‘‘f’’, the contents of
the floating-point registers are listed. In all cases, the reason why the program stopped or
terminated is indicated.

%m According tom,set or delete a breakpoint, or run or continue the program:

b An address within the program must be given; a breakpoint is set there. Ordinarily,
breakpoints will be set on the entry points of functions, but any location is possible as
long as it is the first word of an instruction. (Labels don’t appear in the symbol table
yet.) Stopping at the actual first instruction of a function is undesirable because to
make symbolic printouts work, the function’s save sequence has to be completed;
thereforecdb automatically moves breakpoints at the start of functions down to the
first real code.

It is impossible to set breakpoints on pure-procedure programs (�n flag on cc or ld) be-
cause the program text is write-protected.

d An address must be given; the breakpoint at that address is removed.

r Run the program being debugged. Following the ‘‘%r’’, arguments may be given;
they cannot specify I/O redirection (‘‘>’’, ‘‘<’’) or filters. No address is permissible,
and the program is restarted from scratch, not continued. Breakpoints should have
been set if any were desired. The program will stop if any signal is generated, such as
illegal instruction (including simulated floating point), bus error, or interrupt (see
signal(II)); it will also stop when a breakpoint occurs and in any case announce the
reason. Then a stack trace can be printed, named locations examined, etc.

c Continue after a breakpoint. It is possible but probably useless to continue after an er-
ror since there is no way to repair the cause of the error.

SEE ALSO
cc (I), db (I), C Reference Manual

BUGS
Use caution in believing values of register variables at the lowest levels of the call stack; the
value of a register is found by looking at the place where it was supposed to have been saved by
the callee.

Some things are still needed to makecdb uniformly better thandb: non-C symbols, patching
files, patching core images of programs being run. It would be desirable to have the types of
variables around to make the correct style printout more automatic. Structure members should
be available.

Naturally, there are all sorts of neat features not handled, like conditional breakpoints, optional
stopping on certain signals (like illegal instructions, to allow breakpointing of simulated
floating-point programs).

- 2 -

-

CHDIR (I) 5/15/74 CHDIR (I)

NAME
chdir − change working directory

SYNOPSIS
chdir directory

DESCRIPTION
Directory becomes the new working directory. The process must have execute (search) permis-
sion indirectory.

Because a new process is created to execute each command,chdir would be ineffective if it were
written as a normal command. It is therefore recognized and executed by the Shell.

SEE ALSO
sh (I), pwd (I)

BUGS

- 1 -

-

CHMOD (I) 2/8/75 CHMOD (I)

NAME
chmod − change mode

SYNOPSIS
chmodoctal file ...

DESCRIPTION
The octal mode replaces the mode of each of the files. The mode is constructed from the OR of
the following modes:

4000 set user ID on execution
2000 set group ID on execution
1000 sticky bit for shared, pure-procedure programs (see below)
0400 read by owner
0200 write by owner
0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

Only the owner of a file (or the super-user) may change its mode.

If an executable file is set up for sharing (‘‘−n’’ option of ld (I)), then mode 1000 prevents the
system from abandoning the swap-space image of the program-text portion of the file when its
last user terminates. Thus when the next user of the file executes it, the text need not be read
from the file system but can simply be swapped in, saving time. Ability to set this bit is re-
stricted to the super-user since swap space is consumed by the images; it is only worth while for
heavily used commands.

SEE ALSO
ls (I), chmod (II)

BUGS

- 1 -

-

CMP (I) 5/15/74 CMP (I)

NAME
cmp − compare two files

SYNOPSIS
cmp [−l] [−s] file1 file2

DESCRIPTION
The two files are compared. (Iffile1 is ‘−’, the standard input is used.) Under default options,
cmpmakes no comment if the files are the same; if they differ, it announces the byte and line
number at which the difference occurred. If one file is an initial subsequence of the other, that
fact is noted. Moreover, return code 0 is yielded for identical files, 1 for different files, and 2 for
an inaccessible or missing argument.

Options:

−l Print the byte number (decimal) and the differing bytes (octal) for each difference.

−s Print nothing for differing files; return codes only.

SEE ALSO
diff (I), comm (I)

BUGS

- 1 -

-

COMM (I) 5/15/74 COMM (I)

NAME
comm − print lines common to two files

SYNOPSIS
comm [− [123]] file1 file2

DESCRIPTION
Commreadsfile1 and file2, which should be in sort, and produces a three column output: lines
only in file1; lines only infile2; and lines in both files. The filename ‘−’ means the standard in-
put.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thuscomm −12 prints only the
lines common to the two files;comm −23 prints only lines in the first file but not in the second;
comm −123 is a no-op.

SEE ALSO
cmp (I), diff (I)

BUGS

- 1 -

-

CP (I) 2/8/75 CP (I)

NAME
cp − copy

SYNOPSIS
cp file1 file2

DESCRIPTION
The first file is copied onto the second. The mode and owner of the target file are preserved if it
already existed; the mode of the source file is used otherwise.

If file2 is a directory, then the target file is a file in that directory with the file-name offile1.

It is forbidden to copy a file onto itself.

SEE ALSO
cat (I), pr (I), mv (I)

BUGS

- 1 -

-

CREF (I) 2/5/73 CREF (I)

NAME
cref − make cross reference listing

SYNOPSIS
cref [−acilostux123] name ...

DESCRIPTION
Cref makes a cross reference listing of program files in assembler or C format. The files named
as arguments in the command line are searched for symbols in the appropriate syntax.

The output report is in four columns:

(1) (2) (3) (4)
symbol file see text as it appears in file

below

Cref uses either anignore file or anonly file. If the −i option is given, the next argument is tak-
en to be anignore file; if the −o option is given, the next argument is taken to be anonly file. Ig-
noreandonly files are lists of symbols separated by new lines. All symbols in anignore file are
ignored in columns (1) and (3) of the output. If anonly file is given, only symbols in that file ap-
pear in column (1). At most one of−i and−o may be used. The default setting is−i. Assembler
predefined symbols or C keywords are ignored.

The−s option causes current symbols to be put in column 3. In the assembler, the current sym-
bol is the most recent name symbol; in C, the current function name. The−l option causes the
line number within the file to be put in column 3.

The−t option causes the next available argument to be used as the name of the intermediate tem-
porary file (instead of /tmp/crt??). The file is created and is not removed at the end of the pro-
cess.

Options:

a assembler format (default)
c C format input
i useignorefile (see above)
l put line number in col. 3 (instead of current symbol)
o useonly file (see above)
s current symbol in col. 3 (default)
t user supplied temporary file
u print only symbols that occur exactly once
x print only C external symbols
1 sort output on column 1 (default)
2 sort output on column 2
3 sort output on column 3

FILES
/tmp/crt?? temporaries
/usr/lib/aign default assemblerignorefile
/usr/lib/cign default Cignorefile
/usr/bin/crpost post processor
/usr/bin/upost post processor for−u option
/bin/sort used to sort temporaries

SEE ALSO
as (I), cc (I)

BUGS

- 1 -

-

DATE (I) 11/1/74 DATE (I)

NAME
date − print and set the date

SYNOPSIS
date [s] [mmddhhmm[yy]]

DESCRIPTION
If no argument is given, the current date and time are printed. If an argument is given, the cur-
rent date is set. The firstmmis the month number;dd is the day number in the month;hh is the
hour number (24 hour system); the secondmmis the minute number;yy is the last 2 digits of the
year number and is optional. For example:

date 10080045

sets the date to Oct 8, 12:45 AM. The current year is the default if no year is mentioned. The
system operates in GMT.Date takes care of the conversion to and from local standard and day-
light time.

If the argument is ‘‘s,’’datecalls the network file store via the TIU interface (if present) and sets
the clock to the time thereby obtained.

DIAGNOSTICS
‘‘No permission’’ if you aren’t the super-user and you try to change the date; ‘‘bad conversion’’
if the date set is syntactically incorrect.

FILES
/dev/tiu/d0

BUGS

- 1 -

-

DB (I) 8/20/73 DB (I)

NAME
db − debug

SYNOPSIS
db [core [namelist]] [−]

DESCRIPTION
Unlike many debugging packages (including DEC’s ODT, on whichdb is loosely based),db is
not loaded as part of the core image which it is used to examine; instead it examines files. Typi-
cally, the file will be either a core image produced after a fault or the binary output of the assem-
bler. Core is the file being debugged; if omittedcore is assumed.Namelistis a file containing a
symbol table. If it is omitted, the symbol table is obtained from the file being debugged, or if not
there froma.out. If no appropriate name list file can be found,db can still be used but some of
its symbolic facilities become unavailable.

For the meaning of the optional third argument, see the last paragraph below.

The format for mostdb requests is an address followed by a one character command. Addresses
are expressions built up as follows:

1. A name has the value assigned to it when the input file was assembled. It may be relocat-
able or not depending on the use of the name during the assembly.

2. An octal number is an absolute quantity with the appropriate value.

3. A decimal number immediately followed by ‘.’ is an absolute quantity with the appropriate
value.

4. An octal number immediately followed byr is a relocatable quantity with the appropriate
value.

5. The symbol. indicates the current pointer ofdb. The current pointer is set by manydb re-
quests.

6. A * before an expression forms an expression whose value is the number in the word ad-
dressed by the first expression. A* alone is equivalent to ‘*. ’.

7. Expressions separated by+ or blank are expressions with value equal to the sum of the
components. At most one of the components may be relocatable.

8. Expressions separated by− form an expression with value equal to the difference to the
components. If the right component is relocatable, the left component must be relocatable.

9. Expressions are evaluated left to right.

Names for registers are built in:

r0 ... r5
sp
pc
fr0 ... fr5

These may be examined. Their values are deduced from the contents of the stack in a core image
file. They are meaningless in a file that is not a core image.

If no address is given for a command, the current address (also specified by ‘‘.’’) is assumed. In
general, ‘‘.’’ points to the last word or byte printed bydb.

There aredb commands for examining locations interpreted as numbers, machine instructions,
ASCII characters, and addresses. For numbers and characters, either bytes or words may be ex-
amined. The following commands are used to examine the specified file.

/ The addressed word is printed in octal.

\ The addressed byte is printed in octal.

- 1 -

-

DB (I) 8/20/73 DB (I)

" The addressed word is printed as two ASCII characters.

´ The addressed byte is printed as an ASCII character.

` The addressed word is printed in decimal.

? The addressed word is interpreted as a machine instruction and a symbolic form of the in-
struction, including symbolic addresses, is printed. Often, the result will appear exactly as
it was written in the source program.

& The addressed word is interpreted as a symbolic address and is printed as the name of the
symbol whose value is closest to the addressed word, possibly followed by a signed offset.

<nl>(i. e., the character ‘‘new line’’) This command advances the current location counter ‘‘.’’
and prints the resulting location in the mode last specified by one of the above requests.

ˆ This character decrements ‘‘.’’ and prints the resulting location in the mode last selected
one of the above requests. It is a converse to <nl>.

% Exit.

Odd addresses to word-oriented commands are rounded down. The incrementing and decre-
menting of ‘‘.’’ done by the<nl> andˆ requests is by one or two depending on whether the last
command was word or byte oriented.

The address portion of any of the above commands may be followed by a comma and then by an
expression. In this case that number of sequential words or bytes specified by the expression is
printed. ‘‘.’’ is advanced so that it points at the last thing printed.

There are two commands to interpret the value of expressions.

= When preceded by an expression, the value of the expression is typed in octal. When not
preceded by an expression, the value of ‘‘.’’ is indicated. This command does not change
the value of ‘‘.’’.

: An attempt is made to print the given expression as a symbolic address. If the expression is
relocatable, that symbol is found whose value is nearest that of the expression, and the sym-
bol is typed, followed by a sign and the appropriate offset. If the value of the expression is
absolute, a symbol with exactly the indicated value is sought and printed if found; if no
matching symbol is discovered, the octal value of the expression is given.

The following command may be used to patch the file being debugged.

! This command must be preceded by an expression. The value of the expression is stored at
the location addressed by the current value of ‘‘.’’. The opcodes do not appear in the sym-
bol table, so the user must assemble them by hand.

The following command is used after a fault has caused a core image file to be produced.

$ causes the fault type and the contents of the general registers and several other registers to
be printed both in octal and symbolic format. The values are as they were at the time of the
fault.

For some purposes, it is important to know how addresses typed by the user correspond with lo-
cations in the file being debugged. The mapping algorithm employed bydb is non-trivial for
two reasons: First, in ana.out file, there is a 20(8) byte header which will not appear when the
file is loaded into core for execution. Therefore, apparent location 0 should correspond with ac-
tual file offset 20. Second, addresses in core images do not correspond with the addresses used
by the program because in a core image there is a header containing the system’s per-process
data for the dumped process, and also because the stack is stored contiguously with the text and
data part of the core image rather than at the highest possible locations.Db obeys the following
rules:

If exactly one argument is given, and if it appears to be ana.out file, the 20-byte header is
skipped during addressing, i.e., 20 is added to all addresses typed. As a consequence, the header
can be examined beginning at location −20.

- 2 -

-

DB (I) 8/20/73 DB (I)

If exactly one argument is given and if the file does not appear to be ana.out file, no mapping is
done.

If zero or two arguments are given, the mapping appropriate to a core image file is employed.
This means that locations above the program break and below the stack effectively do not exist
(and are not, in fact, recorded in the core file). Locations above the user’s stack pointer are
mapped, in looking at the core file, to the place where they are really stored. The per-process
data kept by the system, which is stored in the first part of the core file, cannot currently be ex-
amined (except by$).

If one wants to examine a file which has an associated name list, but is not a core image file, the
last argument ‘‘−’’ can be used (actually the only purpose of the last argument is to make the
number of arguments not equal to two). This feature is used most frequently in examining the
memory file /dev/mem.

SEE ALSO
as (I), core (V), a.out (V), od (I)

DIAGNOSTICS
‘‘File not found’’ if the first argument cannot be read; otherwise ‘‘?’’.

BUGS
There should be some way to examine the registers and other per-process data in a core image;
also there should be some way of specifying double-precision addresses. It does not know yet
about shared text segments.

- 3 -

-

DC (I) 2/8/75 DC (I)

NAME
dc − desk calculator

SYNOPSIS
dc [file]

DESCRIPTION
Dc is an arbitrary precision arithmetic package. Ordinarily it operates on decimal integers, but
one may specify an input base, output base, and a number of fractional digits to be maintained.
The overall structure ofdc is a stacking (reverse Polish) calculator. If an argument is given, in-
put is taken from that file until its end, then from the standard input. The following construc-
tions are recognized:

number
The value of the number is pushed on the stack. A number is an unbroken string of the
digits 0-9. It may be preceded by an underscore_ to input a negative number. Numbers
may contain decimal points.

+ � * % ˆ
The top two values on the stack are added (+), subtracted (−), multiplied (*), divided (/),
remaindered (%), or exponentiated (ˆ). The two entries are popped off the stack; the re-
sult is pushed on the stack in their place. Any fractional part of an exponent is ignored.

sx The top of the stack is popped and stored into a register namedx, wherex may be any
character. If thes is capitalized,x is treated as a stack and the value is pushed on it.

lx The value in registerx is pushed on the stack. The registerx is not altered. All registers
start with zero value. If thel is capitalized, registerx is treated as a stack and its top
value is popped onto the main stack.

d The top value on the stack is duplicated.

p The top value on the stack is printed. The top value remains unchanged.

f All values on the stack and in registers are printed.

q exits the program. If executing a string, the recursion level is popped by two. Ifq is cap-
italized, the top value on the stack is popped and the string execution level is popped by
that value.

x treats the top element of the stack as a character string and executes it as a string of dc
commands.

[...] puts the bracketed ascii string onto the top of the stack.

<x >x =x
The top two elements of the stack are popped and compared. Registerx is executed if
they obey the stated relation.

v replaces the top element on the stack by its square root. Any existing fractional part of
the argument is taken into account, but otherwise the scale factor is ignored.

! interprets the rest of the line as a UNIX command.

c All values on the stack are popped.

i The top value on the stack is popped and used as the number radix for further input.

o The top value on the stack is popped and used as the number radix for further output.

k the top of the stack is popped, and that value is used as a non-negative scale factor: the
appropriate number of places are printed on output, and maintained during multiplication,
division, and exponentiation. The interaction of scale factor, input base, and output base
will be reasonable if all are changed together.

- 1 -

-

DC (I) 2/8/75 DC (I)

z The stack level is pushed onto the stack.

? A line of input is taken from the input source (usually the console) and executed.

An example which prints the first ten values of n! is

[la1+dsa*pla10>y]sy
0sa1
lyx

SEE ALSO
bc (I), which is a preprocessor fordc providing infix notation and a C-like syntax which imple-
ments functions and reasonable control structures for programs.

DIAGNOSTICS
(x) ? for unrecognized character x.
(x) ? for not enough elements on the stack to do what was asked by command x.
‘Out of space’ when the free list is exhausted (too many digits).
‘Out of headers’ for too many numbers being kept around.
‘Out of pushdown’ for too many items on the stack.
‘Nesting Depth’ for too many levels of nested execution.

BUGS

- 2 -

-

DD (I) 5/15/74 DD (I)

NAME
dd − convert and copy a file

SYNOPSIS
dd [option=value] ...

DESCRIPTION
Dd copies the specified input file to the specified output with possible conversions. The stan-
dard input and output are used by default. The input and output block size may be specified to
take advantage of raw physical I/O.

option values
if= input file name; standard input is default
of= output file name; standard output is default
ibs= input block size (default 512)
obs= output block size (default 512)
bs= set both input and output block size, supersedingibs andobs;also, if no con-

version is specified, it is particularly efficient since no copy need be done
cbs=n conversion buffer size
skip=n skip n input records before starting copy
count=n copy onlyn input records
conv=ascii convert EBCDIC to ASCII

ebcdic convert ASCII to EBCDIC
lcase map alphabetics to lower case
ucase map alphabetics to upper case
swab swap every pair of bytes
noerror do not stop processing on an error
sync pad every input record toibs
... , ... several comma-separated conversions

Where sizes are specified, a number of bytes is expected. A number may end withk, b or w to
specify multiplication by 1024, 512, or 2 respectively. Also a pair of numbers may be separated
by x to indicate a product.

Cbsis used only ifascii or ebcdicconversion is specified. In the former casecbscharacters are
placed into the conversion buffer, converted to ASCII, and trailing blanks trimmed and new-line
added before sending the line to the output. In the latter case ASCII characters are read into the
conversion buffer, converted to EBCDIC, and blanks added to make up an output record of size
cbs.

After completion,dd reports the number of whole and partial input and output blocks.

For example, to read an EBCDIC tape blocked ten 80-byte EBCDIC card images per record into
the ASCII filex:

dd if=/dev/rmt0 of=x ibs=800 cbs=80 conv=ascii,lcase

Note the use of raw magtape.Dd is especially suited to I/O on the raw physical devices because
it allows reading and writing in arbitrary record sizes.

SEE ALSO
cp (I)

BUGS
The ASCII/EBCDIC conversion tables are taken from the 256 character standard in the CACM
Nov, 1968. It is not clear how this relates to real life.

Newlines are inserted only on conversion to ASCII; padding is done only on conversion to
EBCDIC. There should be separate options.

- 1 -

-

DIFF (I) 5/15/74 DIFF (I)

NAME
diff − differential file comparator

SYNOPSIS
diff [−] name1 name2

DESCRIPTION
Diff tells what lines must be changed in two files to bring them into agreement. The normal out-
put contains lines of these forms:

n1an3,n4
n1,n2d n3
n1,n2c n3,n4

These lines resembleedcommands to convert filename1into file name2.The numbers after the
letters pertain to filename2. In fact, by exchanging ‘a’ for ‘d’ and reading backward one may
ascertain equally how to convert filename2into name1.As in ed, identical pairs wheren1 = n2
or n3= n4are abbreviated as a single number.

Following each of these lines come all the lines that are affected in the first file flagged by ‘*’,
then all the lines that are affected in the second file flagged by ‘.’.

Under the− option, the output ofdiff is a script ofa, candd commands for the editored,which
will change the contents of the first file into the contents of the second. In this connection, the
following shell program may help maintain multiple versions of a file. Only an ancestral file
($1) and a chain of version-to-versionedscripts ($2,$3,...) made bydiff need be on hand. A ‘lat-
est version’ appears on the standard output.

(cat $2 ... $9; echo "1,$p")  ed − $1

Except for occasional ‘jackpots’,diff finds a smallest sufficient set of file differences.

SEE ALSO
cmp (I), comm (I), ed (I)

DIAGNOSTICS
‘jackpot’ − To speed things up, the program uses hashing. You have stumbled on a case where
there is a chance that this has resulted in a difference being called where none actually existed.
Sometimes reversing the order of files will make a jackpot go away.

BUGS
Editing scripts produced under the− option are naive about creating lines consisting of a single
‘ .’.

- 1 -

-

DSW (I) 3/15/72 DSW (I)

NAME
dsw − delete interactively

SYNOPSIS
dsw [directory]

DESCRIPTION
For each file in the given directory (‘.’ if not specified)dswtypes its name. Ify is typed, the file
is deleted; ifx, dswexits; if new-line, the file is not deleted; if anything else,dswasks again.

SEE ALSO
rm (I)

BUGS
The namedswis a carryover from the ancient past. Its etymology is amusing.

- 1 -

-

DU (I) 1/20/73 DU (I)

NAME
du − summarize disk usage

SYNOPSIS
du [−s] [−a] [name ...]

DESCRIPTION
Du gives the number of blocks contained in all files and (recursively) directories within each
specified directory or filename. If nameis missing, ‘.’ is used.

The optional argument−s causes only the grand total to be given. The optional argument−a
causes an entry to be generated for each file. Absence of either causes an entry to be generated
for each directory only.

A file which has two links to it is only counted once.

BUGS
Non-directories given as arguments (not under−a option) are not listed.

Removable file systems do not work correctly since i-numbers may be repeated while the corre-
sponding files are distinct.Du should maintain an i-number list per root directory encountered.

- 1 -

-

ECHO (I) 3/15/72 ECHO (I)

NAME
echo − echo arguments

SYNOPSIS
echo[arg ...]

DESCRIPTION
Echowrites its arguments in order as a line on the standard output file. It is mainly useful for
producing diagnostics in command files.

BUGS

- 1 -

-

ED (I) 1/15/73 ED (I)

NAME
ed − text editor

SYNOPSIS
ed [−] [name]

DESCRIPTION
Ed is the standard text editor.

If a nameargument is given,edsimulates ane command (see below) on the named file; that is
to say, the file is read intoed’s buffer so that it can be edited. The optional− suppresses the
printing of character counts bye, r,andw commands.

Ed operates on a copy of any file it is editing; changes made in the copy have no effect on the
file until a w (write) command is given. The copy of the text being edited resides in a temporary
file called thebuffer. There is only one buffer.

Commands toedhave a simple and regular structure: zero or moreaddressesfollowed by a sin-
gle charactercommand,possibly followed by parameters to the command. These addresses
specify one or more lines in the buffer. Every command which requires addresses has default
addresses, so that the addresses can often be omitted.

In general, only one command may appear on a line. Certain commands allow the input of text.
This text is placed in the appropriate place in the buffer. Whileed is accepting text, it is said to
be in input mode.In this mode, no commands are recognized; all input is merely collected. In-
put mode is left by typing a period ‘.’ alone at the beginning of a line.

Ed supports a limited form ofregular expressionnotation. A regular expression specifies a set
of strings of characters. A member of this set of strings is said to bematchedby the regular ex-
pression. The regular expressions allowed byedare constructed as follows:

1. An ordinary character (not one of those discussed below) is a regular expression and
matches that character.

2. A circumflex ‘ˆ’ at the beginning of a regular expression matches the empty string at the be-
ginning of a line.

3. A currency symbol ‘$’ at the end of a regular expression matches the null character at the end
of a line.

4. A period ‘.’ matches any character except a new-line character.

5. A regular expression followed by an asterisk ‘*’ matches any number of adjacent occur-
rences (including zero) of the regular expression it follows.

6. A string of characters enclosed in square brackets ‘[]’ matches any character in the string but
no others. If, however, the first character of the string is a circumflex ‘ˆ’ the regular expres-
sion matches any character except new-line and the characters in the string.

7. The concatenation of regular expressions is a regular expression which matches the concate-
nation of the strings matched by the components of the regular expression.

8. A regular expression enclosed between the sequences ‘\(’ and ‘\)’is identical to the un-
adorned expression; the construction has side effects discussed under thes command.

9. The null regular expression standing alone is equivalent to the last regular expression en-
countered.

Regular expressions are used in addresses to specify lines and in one command (sees below) to
specify a portion of a line which is to be replaced. If it is desired to use one of the regular ex-
pression metacharacters as an ordinary character, that character may be preceded by ‘\’. This
also applies to the character bounding the regular expression (often ‘/’) and to ‘\’ itself.

To understand addressing ined it is necessary to know that at any time there is acurrent line.
Generally speaking, the current line is the last line affected by a command; however, the exact
effect on the current line is discussed under the description of the command. Addresses are con-

- 1 -

-

ED (I) 1/15/73 ED (I)

structed as follows.

1. The character ‘.’ addresses the current line.

2. The character ‘$’ addresses the last line of the buffer.

3. A decimal numbern addresses then-th line of the buffer.

4. ‘´x’ addresses the line marked with the mark name characterx, which must be a lower-
case letter. Lines are marked with thek command described below.

5. A regular expression enclosed in slashes ‘/’ addresses the first line found by searching to-
ward the end of the buffer and stopping at the first line containing a string matching the
regular expression. If necessary the search wraps around to the beginning of the buffer.

6. A regular expression enclosed in queries ‘?’ addresses the first line found by searching
toward the beginning of the buffer and stopping at the first line containing a string match-
ing the regular expression. If necessary the search wraps around to the end of the buffer.

7. An address followed by a plus sign ‘+’ or a minus sign ‘−’ followed by a decimal number
specifies that address plus (resp. minus) the indicated number of lines. The plus sign
may be omitted.

8. If an address begins with ‘+’ or ‘�’ the addition or subtraction is taken with respect to the
current line; e.g. ‘�5’ is understood to mean ‘.�5’.

9. If an address ends with ‘+’ or ‘�’, then 1 is added (resp. subtracted). As a consequence of
this rule and rule 8, the address ‘�’ refers to the line before the current line. Moreover,
trailing ‘+’ and ‘�’ characters have cumulative effect, so ‘��’ refers to the current line
less 2.

10. To maintain compatibility with earlier version of the editor, the character ‘ˆ’ in addresses
is entirely equivalent to ‘�’.

Commands may require zero, one, or two addresses. Commands which require no addresses re-
gard the presence of an address as an error. Commands which accept one or two addresses as-
sume default addresses when insufficient are given. If more addresses are given than such a
command requires, the last one or two (depending on what is accepted) are used.

Addresses are separated from each other typically by a comma ‘,’. They may also be separated
by a semicolon ‘;’. In this case the current line ‘.’ is set to the previous address before the next
address is interpreted. This feature can be used to determine the starting line for forward and
backward searches (‘/’, ‘?’) . The second address of any two-address sequence must correspond
to a line following the line corresponding to the first address.

In the following list of ed commands, the default addresses are shown in parentheses. The
parentheses are not part of the address, but are used to show that the given addresses are the de-
fault.

As mentioned, it is generally illegal for more than one command to appear on a line. However,
any command may be suffixed by ‘p’ or by ‘l’, in which case the current line is either printed or
listed respectively in the way discussed below.

(.) a
<text>
.

The append command reads the given text and appends it after the addressed line. ‘.’ is
left on the last line input, if there were any, otherwise at the addressed line. Address ‘0’ is
legal for this command; text is placed at the beginning of the buffer.

(. , .) c
<text>
.

The change command deletes the addressed lines, then accepts input text which replaces
these lines. ‘.’ is left at the last line input; if there were none, it is left at the first line not
deleted.

- 2 -

-

ED (I) 1/15/73 ED (I)

(. , .) d
The delete command deletes the addressed lines from the buffer. The line originally after
the last line deleted becomes the current line; if the lines deleted were originally at the end,
the new last line becomes the current line.

e filename
The edit command causes the entire contents of the buffer to be deleted, and then the
named file to be read in. ‘.’ is set to the last line of the buffer. The number of characters
read is typed. ‘filename’ is remembered for possible use as a default file name in a subse-
quentr or w command.

f filename
The filename command prints the currently remembered file name. If ‘filename’ is given,
the currently remembered file name is changed to ‘filename’.

(1,$) g/regular expression/command list
In the global command, the first step is to mark every line which matches the given regular
expression. Then for every such line, the given command list is executed with ‘.’ initially
set to that line. A single command or the first of multiple commands appears on the same
line with the global command. All lines of a multi-line list except the last line must be
ended with ‘\’. A, i, andc commands and associated input are permitted; the ‘.’ terminat-
ing input mode may be omitted if it would be on the last line of the command list. The
(global) commands,g, andv, are not permitted in the command list.

(.) i
<text>
.

This command inserts the given text before the addressed line. ‘.’ is left at the last line in-
put; if there were none, at the addressed line. This command differs from thea command
only in the placement of the text.

(.) kx
The mark command marks the addressed line with namex, which must be a lower-case
letter. The address form ‘´x’ then addresses this line.

(. , .) l
The list command prints the addressed lines in an unambiguous way: non-graphic charac-
ters are printed in octal, and long lines are folded. Anl command may follow any other on
the same line.

(. , .) ma
The move command repositions the addressed lines after the line addressed bya. The last
of the moved lines becomes the current line.

(. , .) p
The print command prints the addressed lines. ‘.’ is left at the last line printed. Thep
command may be placed on the same line after any command.

q
The quit command causesedto exit. No automatic write of a file is done.

($) r filename
The read command reads in the given file after the addressed line. If no file name is given,
the remembered file name, if any, is used (seee andf commands) . The remembered file
name is not changed unless ‘filename’ is the very first file name mentioned. Address ‘0’
is legal forr and causes the file to be read at the beginning of the buffer. If the read is suc-
cessful, the number of characters read is typed. ‘.’ is left at the last line read in from the
file.

(. , .) s/regular expression/replacement/ or,
(. , .) s/regular expression/replacement/g

The substitute command searches each addressed line for an occurrence of the specified
regular expression. On each line in which a match is found, all matched strings are re-

- 3 -

-

ED (I) 1/15/73 ED (I)

placed by the replacement specified, if the global replacement indicator ‘g’ appears after
the command. If the global indicator does not appear, only the first occurrence of the
matched string is replaced. It is an error for the substitution to fail on all addressed lines.
Any character other than space or new-line may be used instead of ‘/’ to delimit the regu-
lar expression and the replacement. ‘.’ is left at the last line substituted.

An ampersand ‘&’ appearing in the replacement is replaced by the string matching the reg-
ular expression. The special meaning of ‘&’ in this context may be suppressed by preced-
ing it by ‘\’. As a more general feature, the characters ‘\n’, wheren is a digit, are replaced
by the text matched by then-th regular subexpression enclosed between ‘\(’ and ‘\)’.
When nested, parenthesized subexpressions are present,n is determined by counting oc-
currences of ‘\(’ starting from the left.

Lines may be split by substituting new-line characters into them. The new-line in the re-
placement string must be escaped by preceding it by ‘\’.

(. , .) t a
This command acts just like them command, except that a copy of the addressed lines is
placed after addressa (which may be 0). ‘.’ is left on the last line of the copy.

(1,$) v/regular expression/command list
This command is the same as the global command except that the command list is exe-
cuted with ‘.’ initially set to every lineexceptthose matching the regular expression.

(1,$) w filename
The write command writes the addressed lines onto the given file. If the file does not ex-
ist, it is created mode 666 (readable and writeable by everyone) . The remembered file
name isnot changed unless ‘filename’ is the very first file name mentioned. If no file
name is given, the remembered file name, if any, is used (seee and f commands) . ‘.’ is
unchanged. If the command is successful, the number of characters written is typed.

($) =
The line number of the addressed line is typed. ‘.’ is unchanged by this command.

!UNIX command
The remainder of the line after the ‘!’ is sent to UNIX to be interpreted as a command. ‘.’
is unchanged.

(.+1) <newline>
An address alone on a line causes the addressed line to be printed. A blank line alone is
equivalent to ‘.+1p’; it is useful for stepping through text.

If an interrupt signal (ASCII DEL) is sent,edprints a ‘?’ and returns to its command level.

Some size limitations: 512 characters per line, 256 characters per global command list, 64 char-
acters per file name, and 128K characters in the temporary file. The limit on the number of lines
depends on the amount of core: each line takes 1 word.

FILES
/tmp/#, temporary; ‘#’ is the process number (in octal).

DIAGNOSTICS
‘?’ for errors in commands; ‘TMP’ for temporary file overflow.

SEE ALSO
A Tutorial Introduction to the ED Text Editor (B. W. Kernighan)

BUGS
Thes command causes all marks to be lost on lines changed.

- 4 -

-

EQN (I) 2/22/74 EQN (I)

NAME
eqn − typeset mathematics

SYNOPSIS
eqn [file] ...

DESCRIPTION
Eqn is a troff (I) preprocessor for typesetting mathematics on the Graphics Systems phototype-
setter. Usage is almost always

eqn file ...  troff

If no files are specified,eqnreads from the standard input. A line beginning with ‘‘.EQ’’ marks
the start of an equation; the end of an equation is marked by a line beginning with ‘‘.EN’’. Nei-
ther of these lines is altered or defined byeqn,so you can define them yourself to get centering,
numbering, etc. All other lines are treated as comments, and passed through untouched.

Spaces, tabs, newlines, braces, double quotes, tilde and circumflex are the only delimiters.
Braces ‘‘{}’’ are used for grouping. Use tildes ‘‘˜’’ to get extra spaces in an equation.

Subscripts and superscripts are produced with the keywordssub andsup. Thusx sub imakesx i ,
a sub i sup 2producesai

2, ande sup {x sup 2 + y sup 2}givesex2 +y2

. Fractions are made with

over. a over bis
b
a__ and1 over sqrt {ax sup 2 +bx+c}is

�ax2 +bx+c

1_____________. sqrt makes square

roots.

The keywordsfrom and to introduce lower and upper limits on arbitrary things:
n →�
lim

0
Σ
n

x i is

made withlim from {n-> inf} sum from 0 to n x sub i.Left and right brackets, braces, etc., of the
right height are made withleft andright: left [x sup 2 + y sup 2 over alpha right] ˜=˜1pro-

duces



x2 +

±

y2





= 1. Theright clause is optional.

Vertical piles of things are made withpile, lpile, cpile, andrpile: pile {a above b above c}pro-

duces
c
b
a
. There can be an arbitrary number of elements in a pile.lpile left-justifies, pile and

cpile center, with different vertical spacing, andrpile right justifies.

Diacritical marks are made withdot, dotdot, hat, bar: x dot = f(t) bar is x
.

= f (t)

. Default sizes
and fonts can be changed withsize nand various ofroman, italic, andbold.

Keywords likesum(Σ) int (+) inf (�) and shorthands like >= (≥) −> (→) , != (`) , are rec-
ognized. Spell out Greek letters in the desired case, as inalpha, GAMMA.Mathematical words
like sin, cos, log are made Roman automatically. Troff (I) four-character escapes like \(bs (\) can
be used anywhere. Strings enclosed in double quotes "..." are passed through untouched.

SEE ALSO

A System for Typesetting Mathematics (Computer Science Technical Report #17, Bell Labora-
tories, 1974.)
TROFF Users’ Manual (internal memorandum)
TROFF Made Trivial (internal memorandum)
troff (I), neqn (I)

BUGS

Undoubtedly. Watch out for small or large point sizes− it’s tuned too well for size 10. Be cau-
tious if inserting horizontal or vertical motions, and of backslashes in general.

- 1 -

-

EXIT (I) 3/15/72 EXIT (I)

NAME
exit − terminate command file

SYNOPSIS
exit

DESCRIPTION
Exit performs aseekto the end of its standard input file. Thus, if it is invoked inside a file of
commands, upon return fromexit the shell will discover an end-of-file and terminate.

SEE ALSO
if (I), goto (I), sh (I)

BUGS

- 1 -

-

FC (I) 8/20/73 FC (I)

NAME
fc − Fortran compiler

SYNOPSIS
fc [−c] sfile1.f ... ofile1 ...

DESCRIPTION
Fc is the UNIX Fortran compiler. It accepts three types of arguments:

Arguments whose names end with ‘.f’ are assumed to be Fortran source program units; they are
compiled, and the object program is left on the file sfile1.o (i.e. the file whose name is that of
the source with ‘.o’ substituted for ‘.f’).

Other arguments (except for−c) are assumed to be either loader flags, or object programs, typi-
cally produced by an earlierfc run, or perhaps libraries of Fortran-compatible routines. These
programs, together with the results of any compilations specified, are loaded (in the order given)
to produce an executable program with namea.out.

The −c argument suppresses the loading phase, as does any syntax error in any of the routines
being compiled.

The following is a list of differences betweenfc and ANSI standard Fortran (also see the BUGS
section):

1. Arbitrary combination of types is allowed in expressions. Not all combinations are ex-
pected to be supported at runtime. All of the normal conversions involving integer, real,
double precision and complex are allowed.

2. Two forms of ‘‘implicit’’ statements are recognized:implicit integer /i −n/ or implicit inte-
ger (i�n).

3. The types doublecomplex, logical*1, integer*1, integer*2, integer*4 (same as integer),
real*4 (real), and real*8 (double precision) are supported.

4. & as the first character of a line signals a continuation card.

5. c as the first character of a line signals a comment.

6. All keywords are recognized in lower case.

7. The notion of ‘column 7’ is not implemented.

8. G-format input is free form− leading blanks are ignored, the first blank after the start of the
number terminates the field.

9. A comma in any numeric or logical input field terminates the field.

10. There is no carriage control on output.

11. A sequence ofn characters in double quotes ‘"’ is equivalent ton h followed by those char-
acters.

12. Indata statements, a hollerith string may initialize an array or a sequence of array elements.

13. The number of storage units requested by a binaryread must be identical to the number
contained in the record being read.

14. If the first character in an input file is ‘‘#’’, a preprocessor identical to the C preprocessor is
called, which implements ‘‘#define’’ and ‘‘#include’’ preprocessor statements. (See the C
reference manual for details.) The preprocessor does not recognize Hollerith strings written
with nh.

In I/O statements, only unit numbers 0-19 are supported. Unit numbern refers to file fortnn;
(e.g. unit 9 is file ‘fort09’). For input, the file must exist; for output, it will be created. Unit 5 is
permanently associated with the standard input file; unit 6 with the standard output file. Also see
setfil (III) for a way to associate unit numbers with named files.

- 1 -

-

FC (I) 8/20/73 FC (I)

FILES
a.out loaded output
f.tmp[123] temporary (deleted)
/usr/fort/fc1 compiler proper
/lib/fr0.o runtime startoff
/lib/filib.a interpreter library
/lib/libf.a builtin functions, etc.
/lib/liba.a system library

SEE ALSO
rc (I), which announces a more pleasant Fortran dialect; the ANSI standard; ld (I) for loader
flags. For some subroutines, try ierror, getarg, setfil (III).

DIAGNOSTICS
Compile-time diagnostics are given in English, accompanied if possible with the offending line
number and source line with an underscore where the error occurred. Runtime diagnostics are
given by number as follows:

1 invalid log argument
2 bad arg count to amod
3 bad arg count to atan2
4 excessive argument to cabs
5 exp too large in cexp
6 bad arg count to cmplx
7 bad arg count to dim
8 excessive argument to exp
9 bad arg count to idim
10 bad arg count to isign
11 bad arg count to mod
12 bad arg count to sign
13 illegal argument to sqrt
14 assigned/computed goto out of range
15 subscript out of range
16 real**real overflow
17 (negative real)**real
100 illegal I/O unit number
101 inconsistent use of I/O unit
102 cannot create output file
103 cannot open input file
104 EOF on input file
105 illegal character in format
106 format does not begin with (
107 no conversion in format but non-empty list
108 excessive parenthesis depth in format
109 illegal format specification
110 illegal character in input field
111 end of format in hollerith specification
112 bad argument to setfil
120 bad argument to ierror
999 unimplemented input conversion

BUGS
The following is a list of those features not yet implemented:
arithmetic statement functions
scale factors on input
Backspacestatement.

- 2 -

-

FILE (I) 1/16/75 FILE (I)

NAME
file − determine file type

SYNOPSIS
file file ...

DESCRIPTION
File performs a series of tests on each argument in an attempt to classify it. If an argument ap-
pears to be ascii,file examines the first 512 bytes and tries to guess its language.

BUGS

- 1 -

-

FIND (I) 5/15/74 FIND (I)

NAME
find − find files

SYNOPSIS
find pathname expression

DESCRIPTION
Find recursively descends the directory hierarchy frompathnameseeking files that match a
booleanexpressionwritten in the primaries given below. In the descriptions, the argumentn is
used as a decimal integer where+n means more thann, −n means less thann andn means ex-
actlyn.

−name filename True if thefilenameargument matches the current file name. NormalShell
argument syntax may be used if escaped (watch out for ‘[’, ‘?’ and ‘*’).

−perm onum True if the file permission flags exactly match the octal numberonum(see
chmod(I)). If onumis prefixed by a minus sign, more flag bits (017777, see
stat(II)) become significant and the flags are compared:
(flags&onum)==onum.

−type c True if the type of the file isc, wherec is b, c, d or f for block special file,
character special file, directory or plain file.

−links n True if the file hasn links.

−useruname True if the file belongs to the useruname.

−group gname As it is for−userso shall it be for−group (someday).

−sizen True if the file isn blocks long (512 bytes per block).

−atime n True if the file has been accessed inn days.

−mtime n True if the file has been modified inn days.

−execcommand True if the executed command returns exit status zero (most commands do).
The end of the command is punctuated by an escaped semicolon. A com-
mand argument ‘{}’ is replaced by the current pathname.

−ok command Like−execexcept that the generated command line is printed with a ques-
tion mark first, and is executed only if the user respondsy.

−print Always true; causes the current pathname to be printed.

The primaries may be combined with these operators (ordered by precedence):

! prefix not

−a infix and,second operand evaluated only if first is true

−o infix or, second operand evaluated only if first is false

(expression) parentheses for grouping. (Must be escaped.)

To remove files named ‘a.out’ and ‘*.o’ not accessed for a week:

find / "(" −name a.out −o −name "*.o" ")" −a −atime +7 −a −exec rm {} ";"

FILES
/etc/passwd

SEE ALSO
sh (I), if(I), file system (V)

BUGS
There is no way to check device type.
Syntax should be reconciled withif.

- 1 -

-

GOTO (I) 3/15/72 GOTO (I)

NAME
goto − command transfer

SYNOPSIS
goto label

DESCRIPTION
Goto is allowed only when the Shell is taking commands from a file. The file is searched from
the beginning for a line beginning with ‘:’ followed by one or more spaces followed by thelabel.
If such a line is found, thegoto command returns. Since the read pointer in the command file
points to the line after the label, the effect is to cause the Shell to transfer to the labelled line.

‘:’ is a do-nothing command that is ignored by the Shell and only serves to place a label.

SEE ALSO
sh (I)

BUGS

- 1 -

-

GREP (I) 5/15/74 GREP (I)

NAME
grep − search a file for a pattern

SYNOPSIS
grep [−v] [−b] [−c] [−n] expression [file] ...

DESCRIPTION
Grep searches the input files (standard input default) for lines matching the regular expression.
Normally, each line found is copied to the standard output. If the−v flag is used, all lines but
those matching are printed. If the−c flag is used, only a count of matching lines is printed. If
the −n flag is used, each line is preceded its relative line number in the file. If the−b flag is
used, each line is preceded by the block number on which it was found. This is sometimes use-
ful in locating disk block numbers by context.

In all cases the file name is shown if there is more than one input file.

For a complete description of the regular expression, see ed (I). Care should be taken when us-
ing the characters $ * [̂ () and \ in the regular expression as they are also meaningful to the
Shell. It is generally necessary to enclose the entireexpressionargument in quotes.

SEE ALSO
ed (I), sh (I)

BUGS
Lines are limited to 256 characters; longer lines are truncated.

- 1 -

-

IF (I) 5/2/74 IF (I)

NAME
if − conditional command

SYNOPSIS
if expr command [arg ...]

DESCRIPTION
If evaluates the expressionexpr, and if its value is true, executes the givencommandwith the
given arguments.

The following primitives are used to construct theexpr:

−r file true if the file exists and is readable.

−w file true if the file exists and is writable.

s1= s2 true if the stringss1ands2are equal.

s1 != s2 true if the stringss1ands2are not equal.

{ command} The bracketed command is executed to obtain the exit status. Status zero is con-
sideredtrue. The command must not be anotherif.

These primaries may be combined with the following operators:

! unary negation operator

−a binaryandoperator

−o binaryor operator

(expr) parentheses for grouping.

−a has higher precedence than−o. Notice that all the operators and flags are separate arguments
to if and hence must be surrounded by spaces. Notice also that parentheses are meaningful to the
Shell and must be escaped.

SEE ALSO
sh (I), find (I)

BUGS

- 1 -

-

KILL (I) 2/8/75 KILL (I)

NAME
kill − terminate a process

SYNOPSIS
kill [−signo] processid ...

DESCRIPTION
Kills the specified processes. The process number of each asynchronous process started with
‘&’ is reported by the Shell. Process numbers can also be found by usingps(I).

If process number 0 is used, then all processes belonging to the current user and associated with
the same control typewriter are killed.

The killed process must belong to the current user unless he is the super-user.

If a signal number preceded by ‘‘−’’ is given as first argument, that signal is sent instead ofkill
(seesignal (II)).

SEE ALSO
ps (I), sh (I), signal (II)

BUGS

- 1 -

-

LD (I) 8/16/73 LD (I)

NAME
ld − link editor

SYNOPSIS
ld [−sulxrdni] name ...

DESCRIPTION
Ld combines several object programs into one; resolves external references; and searches li-
braries. In the simplest case the names of several object programs are given, andld combines
them, producing an object module which can be either executed or become the input for a further
ld run. (In the latter case, the−r option must be given to preserve the relocation bits.) The out-
put of ld is left ona.out. This file is made executable only if no errors occurred during the load.

The argument routines are concatenated in the order specified. The entry point of the output is
the beginning of the first routine.

If any argument is a library, it is searched exactly once at the point it is encountered in the argu-
ment list. Only those routines defining an unresolved external reference are loaded. If a routine
from a library references another routine in the library, the referenced routine must appear after
the referencing routine in the library. Thus the order of programs within libraries is important.

Ld understands several flag arguments which are written preceded by a ‘−’. Except for−l, they
should appear before the file names.

−s ‘squash’ the output, that is, remove the symbol table and relocation bits to save space (but
impair the usefulness of the debugger). This information can also be removed bystrip.

−u take the following argument as a symbol and enter it as undefined in the symbol table. This
is useful for loading wholly from a library, since initially the symbol table is empty and an
unresolved reference is needed to force the loading of the first routine.

−l This option is an abbreviation for a library name.−l alone stands for ‘/lib/liba.a’, which is
the standard system library for assembly language programs.−lx stands for ‘/lib/libx.a’
wherex is any character. A library is searched when its name is encountered, so the place-
ment of a−l is significant.

−x do not preserve local (non-.globl) symbols in the output symbol table; only enter external
symbols. This option saves some space in the output file.

−X Save local symbols except for those whose names begin with ‘L’. This option is used bycc
to discard internally generated labels while retaining symbols local to routines.

−r generate relocation bits in the output file so that it can be the subject of anotherld run. This
flag also prevents final definitions from being given to common symbols, and suppresses
the ‘undefined symbol’ diagnostics.

−d force definition of common storage even if the−r flag is present.

−n Arrange that when the output file is executed, the text portion will be read-only and shared
among all users executing the file. This involves moving the data areas up the the first pos-
sible 4K word boundary following the end of the text.

−i When the output file is executed, the program text and data areas will live in separate ad-
dress spaces. The only difference between this option and�n is that here the data starts at
location 0.

FILES
/lib/lib?.a libraries
a.out output file

SEE ALSO
as (I), ar (I)

- 1 -

-

LD (I) 8/16/73 LD (I)

BUGS

- 2 -

-

LN (I) 3/15/72 LN (I)

NAME
ln − make a link

SYNOPSIS
ln name1 [name2]

DESCRIPTION
A link is a directory entry referring to a file; the same file (together with its size, all its protection
information, etc) may have several links to it. There is no way to distinguish a link to a file from
its original directory entry; any changes in the file are effective independently of the name by
which the file is known.

Ln creates a link to an existing filename1. If name2is given, the link has that name; otherwise
it is placed in the current directory and its name is the last component ofname1.

It is forbidden to link to a directory or to link across file systems.

SEE ALSO
rm (I)

BUGS
There is nothing particularly wrong withln, but tp doesn’t understand about links and makes one
copy for each name by which a file is known; thus if the tape is extracted several copies are re-
stored and the information that links were involved is lost.

- 1 -

-

LOGIN (I) 3/15/72 LOGIN (I)

NAME
login − sign onto UNIX

SYNOPSIS
login [username]

DESCRIPTION
The login command is used when a user initially signs onto UNIX, or it may be used at any time
to change from one user to another. The latter case is the one summarized above and described
here. See ‘How to Get Started’ for how to dial up initially.

If login is invoked without an argument, it asks for a user name, and, if appropriate, a password.
Echoing is turned off (if possible) during the typing of the password, so it will not appear on the
written record of the session.

After a successful login, accounting files are updated and the user is informed of the existence of
and message-of-the-day files.Login initializes the user and group IDs and the working direc-
tory, then executes a command interpreter (usuallysh (I)) according to specifications found in a
password file.

Login is recognized by the Shell and executed directly (without forking).

FILES
/etc/utmp accounting
/usr/adm/wtmp accounting
.mail mail
/etc/motd message-of-the-day
/etc/passwd password file

SEE ALSO
init (VIII), getty (VIII), mail (I), passwd (I), passwd (V)

DIAGNOSTICS
‘login incorrect,’ if the name or the password is bad. ‘No Shell,’, ‘cannot open password file,’
‘no directory’: consult a UNIX programming counselor.

BUGS

- 1 -

-

LS (I) 3/20/74 LS (I)

NAME
ls − list contents of directory

SYNOPSIS
ls [−ltasdruifg] name ...

DESCRIPTION
For each directory argument,ls lists the contents of the directory; for each file argument,ls re-
peats its name and any other information requested. The output is sorted alphabetically by de-
fault. When no argument is given, the current directory is listed. When several arguments are
given, the arguments are first sorted appropriately, but file arguments appear before directories
and their contents. There are several options:

−l list in long format, giving mode, number of links, owner, size in bytes, and time of last
modification for each file. (See below.) If the file is a special file the size field will instead
contain the major and minor device numbers.

−t sort by time modified (latest first) instead of by name, as is normal

−a list all entries; usually those beginning with ‘.’ are suppressed

−s give size in blocks for each entry

−d if argument is a directory, list only its name, not its contents (mostly used with−l to get sta-
tus on directory)

−r reverse the order of sort to get reverse alphabetic or oldest first as appropriate

−u use time of last access instead of last modification for sorting (−t) or printing (−l)

−i print i-number in first column of the report for each file listed

−f force each argument to be interpreted as a directory and list the name found in each slot.
This option turns off−l, −t, −s, and−r, and turns on−a; the order is the order in which en-
tries appear in the directory.

�g Give group ID instead of owner ID in long listing.

The mode printed under the−l option contains 11 characters which are interpreted as follows:
the first character is

d if the entry is a directory;
b if the entry is a block-type special file;
c if the entry is a character-type special file;
− if the entry is a plain file.

The next 9 characters are interpreted as three sets of three bits each. The first set refers to owner
permissions; the next to permissions to others in the same user-group; and the last to all others.
Within each set the three characters indicate permission respectively to read, to write, or to exe-
cute the file as a program. For a directory, ‘execute’ permission is interpreted to mean permis-
sion to search the directory for a specified file. The permissions are indicated as follows:

r if the file is readable
w if the file is writable
x if the file is executable
− if the indicated permission is not granted

The group-execute permission character is given ass if the file has set-group-ID mode; likewise
the user-execute permission character is given ass if the file has set-user-ID mode.

The last character of the mode is normally blank but is printed as ‘‘t’’ if the 1000 bit of the mode
is on. Seechmod (I)for the current meaning of this mode.

FILES
/etc/passwd to get user ID’s forls −l.

- 1 -

-

LS (I) 3/20/74 LS (I)

BUGS

- 2 -

-

MAIL (I) 2/21/75 MAIL (I)

NAME
mail − send mail to designated users

SYNOPSIS
mail [�yn] [person ...]

DESCRIPTION
Mail with no argument searches for a file called prints it if it is nonempty, then asks if it should
be saved. If the answer isy, the mail is added tombox. Finally is truncated to zero length. To
leave the mailbox untouched, hit ‘delete.’ The question can be answered on the command line
with the argument ‘�y’ or ‘�n’.

Whenpersonsare named,mail takes the standard input up to an end of file and adds it to each
person’sfile. The message is preceded by the sender’s name and a postmark.

A personis either a user name recognized bylogin (I), in which case the mail is sent to the de-
fault working directory of that user; or the path name of a directory, in which case in that direc-
tory is used.

When a user logs in he is informed of the presence of mail. No mail will be received from a
sender to whom is inaccessible or unwritable.

FILES
/etc/passwd to identify sender and locate persons
/etc/utmp to identify sender
.mail input mail
mbox saved mail
/tmp/m# temp file

SEE ALSO
write (I)

BUGS

- 1 -

-

MAN (I) 8/20/73 MAN (I)

NAME
man − run off section of UNIX manual

SYNOPSIS
man [section] [title ...]

DESCRIPTION
Man is a shell command file which locates and prints one or more sections of this manual.Sec-
tion is the section number of the manual, as an Arabic not Roman numeral, and is optional.Title
is one or more section names; these names bear a generally simple relation to the page captions
in the manual. If thesectionis missing,1 is assumed. For example,

man man

would reproduce this page.

FILES
/usr/man/man?/*

BUGS
The manual is supposed to be reproducible either on the phototypesetter or on a typewriter.
However, on a typewriter some information is necessarily lost.

- 1 -

-

MESG (I) 3/15/72 MESG (I)

NAME
mesg − permit or deny messages

SYNOPSIS
mesg[n] [y]

DESCRIPTION
Mesgwith argumentn forbids messages viawrite by revoking non-user write permission on the
user’s typewriter.Mesgwith argumenty reinstates permission. All by itself,mesgreverses the
current permission. In all cases the previous state is reported.

FILES
/dev/tty?

SEE ALSO
write (I)

DIAGNOSTICS
‘?’ if the standard input file is not a typewriter

BUGS

- 1 -

-

MKDIR (I) 3/15/72 MKDIR (I)

NAME
mkdir − make a directory

SYNOPSIS
mkdir dirname ...

DESCRIPTION
Mkdir creates specified directories in mode 777. The standard entries ‘.’ and ‘..’ are made auto-
matically.

SEE ALSO
rmdir (I)

BUGS

- 1 -

-

MV (I) 8/20/73 MV (I)

NAME
mv − move or rename a file

SYNOPSIS
mv name1 name2

DESCRIPTION
Mv changes the name ofname1to name2. If name2is a directory,name1is moved to that direc-
tory with its original file-name. Directories may only be moved within the same parent directory
(just renamed).

If name2already exists, it is removed beforename1is renamed. Ifname2has a mode which for-
bids writing,mvprints the mode and reads the standard input to obtain a line; if the line begins
with y, the move takes place; if not,mvexits.

If name2would lie on a different file system, so that a simple rename is impossible,mv copies
the file and deletes the original.

BUGS
It should take a−f flag, like rm, to suppress the question if the target exists and is not writable.

- 1 -

-

NEQN (I) 4/30/74 NEQN (I)

NAME
neqn − typeset mathematics on terminal

SYNOPSIS
neqn [file] ...

DESCRIPTION
Neqnis an nroff (I) preprocessor. The input language is the same as that of eqn (I). Normal us-
age is almost always

neqn file ...  nroff

Output is meant for terminals with forward and reverse capabilities, such as the Model 37 tele-
type or GSI terminal.

If no arguments are specified,neqnreads the standard input, so it may be used as a filter.

SEE ALSO
eqn (I), gsi (VI)

BUGS
Because of some interactions withnroff there may not always be enough space left before and
after lines containing equations.

- 1 -

-

NEWGRP (I) 4/8/75 NEWGRP (I)

NAME
newgrp − log in to a new group

SYNOPSIS
newgrp group

DESCRIPTION
Newgrpchanges the group identification of its caller, analogously tologin. The same person re-
mains logged in, and the current directory is unchanged, but calculations of access permissions
to files are performed with respect to the new group ID.

A password is demanded if the group has a password and the user himself does not.

When most users log in, they are members of the group named ‘other.’

FILES
/etc/group, /etc/passwd

SEE ALSO
login (I), group (V)

BUGS

- 1 -

-

NICE (I) 2/8/75 NICE (I)

NAME
nice − run a command at low priority

SYNOPSIS
nice [�number] command [arguments]

DESCRIPTION
Niceexecutescommandwith low scheduling priority. If a numerical argument is given, that pri-
ority (in the range 1-20) is used; if not, priority 4 is used.

The super-user may run commands with priority higher than normal by using a negative priority,
e.g. ‘��10’.

SEE ALSO
nohup (I), nice (II)

BUGS

- 1 -

-

NM (I) 8/20/73 NM (I)

NAME
nm − print name list

SYNOPSIS
nm [�cnrupg] [name]

DESCRIPTION
Nm prints the symbol table from the output file of an assembler or loader run. Each symbol
name is preceded by its value (blanks if undefined) and one of the lettersU (undefined)A (abso-
lute) T (text segment symbol),D (data segment symbol),B (bss segment symbol), orC (com-
mon symbol). If the symbol is local (non-external) the type letter is in lower case. The output is
sorted alphabetically.

If no file is given, the symbols ina.out are listed.

Options are:

�c list only C-style external symbols, that is those beginning with underscore ‘_’.

�g print only global (external) symbols

�n sort by value instead of by name

�p don’t sort; print in symbol-table order

�r sort in reverse order

�u print only undefined symbols.

FILES
a.out

BUGS

- 1 -

-

NOHUP (I) 11/1/73 NOHUP (I)

NAME
nohup − run a command immune to hangups

SYNOPSIS
nohup command [arguments]

DESCRIPTION
Nohupexecutescommandwith hangups, quits and interrupts all ignored.

SEE ALSO
nice (I), signal (II)

BUGS

- 1 -

-

NROFF (I) 4/15/75 NROFF (I)

NAME
nroff − format text

SYNOPSIS
nroff [+n] [−n] [�nn] [�ran] [�mx] [−s] [−h] [−q] files

DESCRIPTION
Nroff formats text according to control lines embedded in the text files.Nroff reads the standard
input if no file arguments are given. An argument of just ‘‘�’’ refers to the standard input. The
non-file option arguments are interpreted as follows:

+n Output commences at the first page whose page number isn or larger.

−n Printing stops after pagen.

�nn First generated (not necessarily printed) page is given numbern; simulates ‘‘.pn n’’.

�ran Set number register to the valuen.

�mname Prepends a standard macro file; simulates ‘‘.so /usr/lib/tmac.name’’.

−s Stop prior to each page to permit paper loading. Printing is restarted by typing a
‘newline’ character.

−h Spaces are replaced where possible with tabs to speed up output (or reduce the size
of the output file).

−q Prompt names for insertions are not printed and the bell character is sent instead; the
insertion is not echoed.

FILES
/usr/lib/suftab suffix hyphenation tables
/tmp/rtm? temporary
/usr/lib/tmac.* standard macro files

SEE ALSO
NROFF User’s Manual (internal memorandum).
neqn (I), col (I)

BUGS

- 1 -

-

OD (I) 1/15/73 OD (I)

NAME
od − octal dump

SYNOPSIS
od [−abcdho] [file] [[+] offset[.][b]]

DESCRIPTION
Od dumpsfile in one or more formats as selected by the first argument. If the first argument is
missing−o is default. The meanings of the format argument characters are:

a interprets words as PDP-11 instructions and dis-assembles the operation code. Unknown op-
eration codes print as ???.

b interprets bytes in octal.

c interprets bytes in ascii. Unknown ascii characters are printed as \?.

d interprets words in decimal.

h interprets words in hex.

o interprets words in octal.

The file argument specifies which file is to be dumped. If no file argument is specified, the stan-
dard input is used. Thusodcan be used as a filter.

The offset argument specifies the offset in the file where dumping is to commence. This argu-
ment is normally interpreted as octal bytes. If ‘.’ is appended, the offset is interpreted in deci-
mal. If ‘b’ is appended, the offset is interpreted in blocks. (A block is 512 bytes.) If the file ar-
gument is omitted, the offset argument must be preceded by ‘+’.

Dumping continues until end-of-file.

SEE ALSO
db (I)

BUGS

- 1 -

-

OPR (I) 7/17/74 OPR (I)

NAME
opr − off line print

SYNOPSIS
opr [−destination] [−crm] [name ...]

DESCRIPTION
Opr causes the named files to be printed off line at the specified destination. If no names appear
the standard input is assumed.

At the mother system the following destinations are recognized. The default destination ismh.

lp Local line printer.

mh GCOS at Murray Hill Comp Center. GCOS identification must be registered in the UNIX
password file (see passwd (V)).

sp Spider network printer.

xx The two-character codexx is taken to be a Murray Hill GCOS station id. Useful codes are
‘r1’ for quality print and ‘q1’ for quality print with special ribbon.

Opr uses spooling daemons that do the job when facilities become available. Flag−r causes the
named files to be removed when spooled. Flag−c causes copies to be made so as to insulate the
daemons from any intervening changes to the files.

Flag−m causes mail to be sent when UNIX is finished transmitting the file. For GCOS jobs the
mail includes the snumb.

FILES
/etc/passwd personal ident cards
/lib/dpr dataphone spooler
/etc/dpd dataphone daemon
/usr/dpd/* spool area
/lib/lpr line printer spooler
/etc/lpd line printer daemon
/usr/lpd/* spool area
/lib/npr spider network spooler

SEE ALSO
fsend (I), dpd (VIII), lpd (VIII)

BUGS
Line printer spooler doesn’t handle flags.
Spider network spooler doesn’t spool.

- 1 -

-

PASSWD (I) 9/1/72 PASSWD (I)

NAME
passwd − change login password

SYNOPSIS
passwdname password

DESCRIPTION
Thepasswordbecomes associated with the given login name. This can only be done by corre-
sponding user or by the super-user. An explicit null argument ("") for the password argument re-
moves any password.

FILES
/etc/passwd

SEE ALSO
login (I), passwd (V), crypt (III)

BUGS

- 1 -

-

PFE (I) 11/1/73 PFE (I)

NAME
pfe − print floating exception

SYNOPSIS
pfe

DESCRIPTION
Pfe examines the floating point exception register and prints a diagnostic for the last floating
point exception.

SEE ALSO
signal (II)

BUGS
Since the system does not save the exception register in a core image file, the message refers to
the last error encountered by anyone. Floating exceptions are therefore volatile.

- 1 -

-

PR (I) 3/20/74 PR (I)

NAME
pr − print file

SYNOPSIS
pr [−h header] [−n] [+n] [−wn] [−ln] [−t] [−sc] [−m] name . . .

DESCRIPTION
Pr produces a printed listing of one or more files. The output is separated into pages headed by a
date, the name of the file or a specified header, and the page number. If there are no file argu-
ments,pr prints its standard input, and is thus usable as a filter.

Options apply to all following files but may be reset between files:

−n producen-column output

+n begin printing with pagen

−h treat the next argument as a header to be used instead of the file name

−wn for purposes of multi-column output, take the width of the page to ben characters instead
of the default 72

−ln take the length of the page to ben lines instead of the default 66

−t do not print the 5-line header or the 5-line trailer normally supplied for each page

−sc separate columns by the single characterc instead of by the appropriate amount of white
space. A missingc is taken to be a tab.

−m print all files simultaneously, each in one column

Interconsole messages via write(I) are forbidden during apr.

FILES
/dev/tty? to suspend messages.

SEE ALSO
cat (I), cp (I)

DIAGNOSTICS
none; files not found are ignored

BUGS

- 1 -

-

PROF (I) 3/12/73 PROF (I)

NAME
prof − display profile data

SYNOPSIS
prof [−v] [−a] [−l] [file]

DESCRIPTION
Prof interprets the filemon.outproduced by themonitor subroutine. Under default modes, the
symbol table in the named object file(a.outdefault) is read and correlated with themon.outpro-
file file. For each external symbol, the percentage of time spent executing between that symbol
and the next is printed (in decreasing order), together with the number of times that routine was
called and the number of milliseconds per call.

If the −a option is used, all symbols are reported rather than just external symbols. If the−l op-
tion is used, the output is listed by symbol value rather than decreasing percentage. If the−v op-
tion is used, all printing is suppressed and a profile plot is produced on the 611 display.

In order for the number of calls to a routine to be tallied, the−p option of cc must have been
given when the file containing the routine was compiled. This option also arranges for the
mon.outfile to be produced automatically.

FILES
mon.out for profile
a.out for namelist
/dev/vt0 for plotting

SEE ALSO
monitor (III), profil (II), cc (I)

BUGS
Beware of quantization errors.

- 1 -

-

PS (I) 3/20/74 PS (I)

NAME
ps − process status

SYNOPSIS
ps [aklx] [namelist]

DESCRIPTION
Ps prints certain indicia about active processes. Thea flag asks for information about all pro-
cesses with typewriters (ordinarily only one’s own processes are displayed);x asks even about
processes with no typewriter;l asks for a long listing. Ordinarily only the typewriter number (if
not one’s own), the process number, and an approximation to the command line are given. If the
k flag is specified, the file/usr/sys/coreis used in place of/dev/mem.This is used for post-
mortem system debugging. If a second argument is given, it is taken to be the file containing the
system’s namelist.

The long listing is columnar and contains

The name of the process’s control typewriter.

Flags associated with the process. 01: in core; 02: system process; 04: locked in code (e.g.
for physical I/O); 10: being swapped; 20: being traced by another process.

The state of the process. 0: nonexistent; S: sleeping; W: waiting; R: running; Z: termi-
nated; T: stopped.

The user ID of the process owner.

The process ID of the process; as in certain cults it is possible to kill a process if you know
its true name.

The priority of the process; high numbers mean low priority.

The size in blocks of the core image of the process.

The event for which the process is waiting or sleeping; if blank, the process is running.

The command and its arguments.

Psmakes an educated guess as to the file name and arguments given when the process was cre-
ated by examining core memory or the swap area. The method is inherently somewhat unreli-
able and in any event a process is entitled to destroy this information, so the names cannot be
counted on too much.

FILES
/unix system namelist
/dev/mem core memory
/usr/sys/core alternate core file
/dev searched to find swap device and typewriter names

SEE ALSO
kill (I)

BUGS

- 1 -

-

PWD (I) 5/15/74 PWD (I)

NAME
pwd − working directory name

SYNOPSIS
pwd

DESCRIPTION
Pwdprints the pathname of the working (current) directory.

SEE ALSO
chdir (I)

BUGS

- 1 -

-

RC (I) 5/15/74 RC (I)

NAME
rc − Ratfor compiler

SYNOPSIS
rc [−c] [−r] [−f] [−v] file ...

DESCRIPTION
Rc invokes the Ratfor preprocessor on a set of Ratfor source files. It accepts three types of argu-
ments:

Arguments whose names end with ‘.r’ are taken to be Ratfor source programs; they are prepro-
cessed into Fortran and compiled. Each subroutine or function ‘name’ is placed on a separate
file name.f,and its object code is left onname.o.The main routine is onMAIN.f andMAIN.o;
block data subprograms go onblockdata?.fandblockdata?.o.The files resulting from a ‘.r’ file
are loaded into a single object filefile.o, and the intermediate object and Fortran files are re-
moved.

The following flags are interpreted byrc. Seeld (I) for load-time flags.

−c Suppresses the loading phase of the compilation, as does any error in anything.

−f Save Fortran intermediate files. This is primarily for debugging.

−r Ratfor only; don’t try to compile the Fortran. This implies−f and−c.

−v Don’t list intermediate file names while compiling.

Arguments whose names end with ‘.f’ are taken to be Fortran source programs; they are com-
piled in the normal manner. (Only one Fortran routine is allowed in a ‘.f’ file.) Other arguments
are taken to be either loader flag arguments, or Fortran-compatible object programs, typically
produced by an earlierrc run, or perhaps libraries of Fortran-compatible routines. These pro-
grams, together with the results of any compilations specified, are loaded to produce an exe-
cutable program with namea.out.

FILES
ratjunk temporary
/usr/bin/ratfor preprocessor
/usr/fort/fc1 Fortran compiler

SEE ALSO
‘‘RATFOR − A Rational Fortran’’.
fc(I) for Fortran error messages.

DIAGNOSTICS
Yes, both fromrc itself and from Fortran.

BUGS
Limit of about 50 arguments, 10 block data files.

#define and #include lines in ‘‘.f’’ files are not processed.

- 1 -

-

REV (I) 4/24/75 REV (I)

NAME
rev − reverse lines of a file

SYNOPSIS
rev

DESCRIPTION
Revcopies the standard input to the standard output, reversing the order of characters in every
line.

BUGS

- 1 -

-

RM (I) 1/20/73 RM (I)

NAME
rm − remove (unlink) files

SYNOPSIS
rm [−f] [−r] name ...

DESCRIPTION
Rmremoves the entries for one or more files from a directory. If an entry was the last link to the
file, the file is destroyed. Removal of a file requires write permission in its directory, but neither
read nor write permission on the file itself.

If a file has no write permission,rm prints the file name and its mode, then reads a line from the
standard input. If the line begins withy, the file is removed, otherwise it is not. The question is
not asked if option�f was given or if the standard input is not a typewriter.

If a designated file is a directory, an error comment is printed unless the optional argument−r
has been used. In that case,rm recursively deletes the entire contents of the specified directory.
To remove directoriesper sesee rmdir(I).

FILES
/etc/glob to implement the−r flag

SEE ALSO
rmdir (I)

BUGS
Whenrm removes the contents of a directory under the−r flag, full pathnames are not printed in
diagnostics.

- 1 -

-

RMDIR (I) 3/15/72 RMDIR (I)

NAME
rmdir − remove directory

SYNOPSIS
rmdir dir ...

DESCRIPTION
Rmdir removes (deletes) directories. The directory must be empty (except for the standard en-
tries ‘.’ and ‘..’, which rmdir itself removes). Write permission is required in the directory in
which the directory to be removed appears.

BUGS
Needs a−r flag.
Actually, write permission in the directory’s parent isnot required.
Mildly unpleasant consequences can follow removal of your own or someone else’s current di-
rectory.

- 1 -

-

ROFF (I) 11/4/74 ROFF (I)

NAME
roff − format text

SYNOPSIS
roff [+n] [−n] [−s] [−h] file ...

DESCRIPTION
Roff formats text according to control lines embedded in the text in the given files. Encountering
a nonexistent file terminates printing. Incoming interconsole messages are turned off during
printing. The optional flag arguments mean:

+n Start printing at the first page with numbern.

−n Stop printing at the first page numbered higher thann.

−s Stop before each page (including the first) to allow paper manipulation; resume on receipt
of an interrupt signal.

−h Insert tabs in the output stream to replace spaces whenever appropriate.

Input consists of intermixedtext lines,which contain information to be formatted, andrequest
lines, which contain instructions about how to format it. Request lines begin with a distin-
guishedcontrol character,normally a period.

Output lines may befilled as nearly as possible with words without regard to input lineation.
Line breaksmay be caused at specified places by certain commands, or by the appearance of an
empty input line or an input line beginning with a space.

The capabilities ofroff are specified in the attached Request Summary. Numerical values are de-
noted there by n or +n, titles by t, and single characters by c. Numbers denoted +n may be
signed + or −, in which case they signify relative changes to a quantity, otherwise they signify an
absolute resetting. Missing n fields are ordinarily taken to be 1, missing t fields to be empty, and
c fields to shut off the appropriate special interpretation.

Running titles usually appear at top and bottom of every page. They are set by requests like

.he ′part1′part2′part3′
Part1 is left justified, part2 is centered, and part3 is right justified on the page. Any % sign in a
title is replaced by the current page number. Any nonblank may serve as a quote.

ASCII tab characters are replaced in the input by areplacement character,normally a space, ac-
cording to the column settings given by a .ta command. (See .tr for how to convert this character
on output.)

Automatic hyphenation of filled output is done under control of .hy. When a word contains a
designatedhyphenation character,that character disappears from the output and hyphens can be
introduced into the word at the marked places only.

FILES
/usr/lib/suftab suffix hyphenation tables
/tmp/rtm? temporary

SEE ALSO
nroff (I), troff (I)

BUGS
Roff is the simplest of the runoff programs, but is utterly frozen.

- 1 -

-

ROFF (I) 11/4/74 ROFF (I)

REQUEST SUMMARY

Request Break Initial Meaning
.ad yes yes Begin adjusting right margins.
.ar no arabic Arabic page numbers.
.br yes - Causes a line break − the filling of the current line is stopped.
.bl n yes - Insert of n blank lines, on new page if necessary.
.bp +n yes n=1 Begin new page and number it n; no n means ‘+1’.
.cc c no c=. Control character becomes ‘c’.
.ce n yes - Center the next n input lines, without filling.
.de xx no - Define parameterless macro to be invoked by request ‘.xx’ (defi-

nition ends on line beginning ‘..’).
.ds yes no Double space; same as ‘.ls 2’.
.ef t no t=´´´´ Even foot title becomes t.
.eh t no t=´´´´ Even head title becomes t.
.fi yes yes Begin filling output lines.
.fo no t=´´´´ All foot titles are t.
.hc c no none Hyphenation character becomes ‘c’.
.he t no t=´´´´ All head titles are t.
.hx no - Title lines are suppressed.
.hy n no n=1 Hyphenation is done, if n=1; and is not done, if n=0.
.ig no - Ignore input lines through a line beginning with ‘..’.
.in +n yes - Indent n spaces from left margin.
.ix +n no - Same as ‘.in’ but without break.
.li n no - Literal, treat next n lines as text.
.ll +n no n=65 Line length including indent is n characters.
.ls +n yes n=1 Line spacing set to n lines per output line.
.m1 n no n=2 Put n blank lines between the top of page and head title.
.m2 n no n=2 n blank lines put between head title and beginning of text on

page.
.m3 n no n=1 n blank lines put between end of text and foot title.
.m4 n no n=3 n blank lines put between the foot title and the bottom of page.
.na yes no Stop adjusting the right margin.
.ne n no - Begin new page, if n output lines cannot fit on present page.
.nn +n no - The next n output lines are not numbered.
.n1 no no Add 5 to page offset; number lines in margin from 1 on each

page.
.n2 n no no Add 5 to page offset; number lines from n; stop if n=0.
.ni +n no n=0 Line numbers are indented n.
.nf yes no Stop filling output lines.
.nx filename - Change to input file ‘filename’.
.of t no t=´´´´ Odd foot title becomes t.
.oh t no t=´´´´ Odd head title becomes t.
.pa +n yes n=1 Same as ‘.bp’.
.pl +n no n=66 Total paper length taken to be n lines.
.po +n no n=0 Page offset. All lines are preceded by n spaces.
.ro no arabic Roman page numbers.
.sk n no - Produce n blank pages starting next page.
.sp n yes - Insert block of n blank lines, except at top of page.
.ss yes yes Single space output lines, equivalent to ‘.ls 1’.
.ta n n.. - Pseudotab settings. Initial tab settings are columns 9 17 25 ...
.tc c no space Tab replacement character becomes ‘c’.
.ti +n yes - Temporarily indent next output line n spaces.
.tr cdef.. no - Translate c into d, e into f, etc.
.ul n no - Underline the letters and numbers in the next n input lines.

- 2 -

-

SH (I) 5/15/74 SH (I)

NAME
sh − shell (command interpreter)

SYNOPSIS
sh [−t] [−c] [name [arg1 ... [arg9]]]

DESCRIPTION
Sh is the standard command interpreter. It is the program which reads and arranges the execu-
tion of the command lines typed by most users. It may itself be called as a command to interpret
files of commands. Before discussing the arguments to the Shell used as a command, the struc-
ture of command lines themselves will be given.

Commands. Each command is a sequence of non-blank command arguments separated by
blanks. The first argument specifies the name of a command to be executed. Except for certain
types of special arguments discussed below, the arguments other than the command name are
passed without interpretation to the invoked command.

If the first argument is the name of an executable file, it is invoked; otherwise the string ‘/bin/’ is
prepended to the argument. (In this way most standard commands, which reside in ‘/bin’, are
found.) If no such command is found, the string ‘/usr’ is further prepended (to give
‘/usr/bin/command’) and another attempt is made to execute the resulting file. (Certain lesser-
used commands live in ‘/usr/bin’.)

If a non-directory file has executable mode, but not the form of an executable program (does not
begin with the proper magic number) then it is assumed to be an ASCII file of commands and a
new Shell is created to execute it. See ‘‘Argument passing’’ below.

If the file cannot be found, a diagnostic is printed.

Command lines. One or more commands separated by ‘ ’ or ‘ˆ’ constitute a chain offilters.
The standard output of each command but the last is taken as the standard input of the next com-
mand. Each command is run as a separate process, connected by pipes (see pipe(II)) to its neigh-
bors. A command line contained in parentheses ‘()’ may appear in place of a simple command
as a filter.

A command lineconsists of one or more pipelines separated, and perhaps terminated by ‘;’ or
‘&’. The semicolon designates sequential execution. The ampersand causes the preceding pipe-
line to be executed without waiting for it to finish. The process id of such a pipeline is reported,
so that it may be used if necessary for a subsequentwait or kill.

Termination Reporting. If a command (not followed by ‘&’) terminates abnormally, a mes-
sage is printed. (All terminations other than exit and interrupt are considered abnormal.) Termi-
nation reports for commands followed by ‘&’ are given upon receipt of the first command subse-
quent to the termination of the command, or when await is executed. The following is a list of
the abnormal termination messages:

Bus error
Trace/BPT trap
Illegal instruction
IOT trap
EMT trap
Bad system call
Quit
Floating exception
Memory violation
Killed
Broken Pipe

If a core image is produced, ‘− Core dumped’ is appended to the appropriate message.

Redirection of I/O. There are three character sequences that cause the immediately following
string to be interpreted as a special argument to the Shell itself. Such an argument may appear
anywhere among the arguments of a simple command, or before or after a parenthesized com-

- 1 -

-

SH (I) 5/15/74 SH (I)

mand list, and is associated with that command or command list.

An argument of the form ‘<arg’ causes the file ‘arg’ to be used as the standard input (file de-
scriptor 0) of the associated command.

An argument of the form ‘>arg’ causes file ‘arg’ to be used as the standard output (file descriptor
1) for the associated command. ‘Arg’ is created if it did not exist, and in any case is truncated at
the outset.

An argument of the form ‘>>arg’ causes file ‘arg’ to be used as the standard output for the asso-
ciated command. If ‘arg’ did not exist, it is created; if it did exist, the command output is ap-
pended to the file.

For example, either of the command lines

ls >junk; cat tail >>junk
(ls; cat tail) >junk

creates, on file ‘junk’, a listing of the working directory, followed immediately by the contents
of file ‘tail’.

Either of the constructs ‘>arg’ or ‘>>arg’ associated with any but the last command of a pipeline
is ineffectual, as is ‘<arg’ in any but the first.

In commands called by the Shell, file descriptor 2 refers to the standard output of the Shell be-
fore any redirection. Thus filters may write diagnostics to a location where they have a chance
to be seen.

Generation of argument lists. If any argument contains any of the characters ‘?’, ‘*’ or ‘[’, it is
treated specially as follows. The current directory is searched for files whichmatchthe given ar-
gument.

The character ‘*’ in an argument matches any string of characters in a file name (including the
null string).

The character ‘?’ matches any single character in a file name.

Square brackets ‘[...]’ specify a class of characters which matches any single file-name character
in the class. Within the brackets, each ordinary character is taken to be a member of the class. A
pair of characters separated by ‘−’ places in the class each character lexically greater than or
equal to the first and less than or equal to the second member of the pair.

Other characters match only the same character in the file name.

For example, ‘*’ matches all file names; ‘?’ matches all one-character file names; ‘[ab]*.s’
matches all file names beginning with ‘a’ or ‘b’ and ending with ‘.s’; ‘?[zi−m]’ matches all two-
character file names ending with ‘z’ or the letters ‘i’ through ‘m’.

If the argument with ‘*’ or ‘?’ also contains a ‘/’, a slightly different procedure is used: instead
of the current directory, the directory used is the one obtained by taking the argument up to the
last ‘/’ before a ‘*’ or ‘?’. The matching process matches the remainder of the argument after
this ‘/’ against the files in the derived directory. For example: ‘/usr/dmr/a*.s’ matches all files in
directory ‘/usr/dmr’ which begin with ‘a’ and end with ‘.s’.

In any event, a list of names is obtained which match the argument. This list is sorted into alpha-
betical order, and the resulting sequence of arguments replaces the single argument containing
the ‘*’, ‘[’, or ‘?’. The same process is carried out for each argument (the resulting lists arenot
merged) and finally the command is called with the resulting list of arguments.

Quoting. The character ‘\’ causes the immediately following character to lose any special mean-
ing it may have to the Shell; in this way ‘<’, ‘>’, and other characters meaningful to the Shell
may be passed as part of arguments. A special case of this feature allows the continuation of
commands onto more than one line: a new-line preceded by ‘\’ is translated into a blank.

Sequences of characters enclosed in double (") or single (´) quotes are also taken literally. For
example:

- 2 -

-

SH (I) 5/15/74 SH (I)

ls  pr −h "My directory"

causes a directory listing to be produced byls, and passed on topr to be printed with the heading
‘My directory’. Quotes permit the inclusion of blanks in the heading, which is a single argument
to pr.

Argument passing. When the Shell is invoked as a command, it has additional string process-
ing capabilities. Recall that the form in which the Shell is invoked is

sh [name [arg1 ... [arg9]]]

Thenameis the name of a file which is read and interpreted. If not given, this subinstance of the
Shell continues to read the standard input file.

In command lines in the file (not in command input), character sequences of the form ‘$n’,
wheren is a digit, are replaced by thenth argument to the invocation of the Shell (argn). ‘$0’ is
replaced byname.

The argument ‘−t,’ used alone, causessh to read the standard input for a single line, execute it as
a command, and then exit. This facility replaces the older ‘mini-shell.’ It is useful for interac-
tive programs which allow users to execute system commands.

The argument ‘−c’ (used with one following argument) causes the next argument to be taken as a
command line and executed. No new-line need be present, but new-line characters are treated
appropriately. This facility is useful as an alternative to ‘−t’ where the caller has already read
some of the characters of the command to be executed.

End of file. An end-of-file in the Shell’s input causes it to exit. A side effect of this fact means
that the way to log out from UNIX is to type an EOT.

Special commands.The following commands are treated specially by the Shell.

chdir is done without spawning a new process by executingsys chdir(II).

login is done by executing /bin/login without creating a new process.

wait is done without spawning a new process by executingsys wait(II).

shift is done by manipulating the arguments to the Shell.

‘ :’ is simply ignored.

Command file errors; interrupts. Any Shell-detected error, or an interrupt signal, during the
execution of a command file causes the Shell to cease execution of that file.

Processes that are created with ‘&’ ignore interrupts. Also if such a process has not redirected its
input with a ‘<’, its input is automatically redirected to the zero length file /dev/null.

FILES
/etc/glob, which interprets ‘*’, ‘?’, and ‘[’.
/dev/null as a source of end-of-file.

SEE ALSO
‘The UNIX Time-Sharing System’, CACM, July, 1974, which gives the theory of operation of
the Shell.
chdir (I), login (I), wait (I), shift (I)

BUGS
There is no way to redirect the diagnostic output.

- 3 -

-

SHIFT (I) 8/21/73 SHIFT (I)

NAME
shift − adjust Shell arguments

SYNOPSIS
shift

DESCRIPTION
Shift is used in Shell command files to shift the argument list left by 1, so that old$2 can now be
referred to by$1 and so forth.Shift is useful to iterate over several arguments to a command
file. For example, the command file

: loop
if $1x = x exit
pr −3 $1
shift
goto loop

prints each of its arguments in 3-column format.

Shift is executed within the Shell.

SEE ALSO
sh (I)

BUGS

- 1 -

-

SIZE (I) 9/2/72 SIZE (I)

NAME
size − size of an object file

SYNOPSIS
size[object ...]

DESCRIPTION
Sizeprints the (decimal) number of bytes required by the text, data, and bss portions, and their
sum in octal and decimal, of each object-file argument. If no file is specified,a.out is used.

BUGS

- 1 -

-

SLEEP (I) 11/1/73 SLEEP (I)

NAME
sleep − suspend execution for an interval

SYNOPSIS
sleeptime

DESCRIPTION
Sleepsuspends execution fortimeseconds. It is used to execute a command in a certain amount
of time as in:

(sleep 105; command)&

Or to execute a command every so often as in this shell command file:

: loop
command
sleep 37
goto loop

SEE ALSO
sleep (II)

BUGS
Timemust be less than 65536 seconds.

- 1 -

-

SORT (I) 5/13/75 SORT (I)

NAME
sort, usort − sort or merge files

SYNOPSIS
sort [−abdnrtx] [+pos [−pos]] . . . [−mo] [name] . . .
usort [�umo] [name] . . .

DESCRIPTION
Sortsorts all the named files together and writes the result on the standard output. The name ‘−’
means the standard input. The standard input is also used if no input file names are given. Thus
sort may be used as a filter.

The default sort key is an entire line. Default ordering is lexicographic in ASCII collating se-
quence, except that lower-case letters are considered the same as the corresponding upper-case
letters. Non-ASCII bytes are ignored. The ordering is affected by the flags−abdnrt , one or
more of which may appear:

a Do not map lower case letters.

b Leading blanks (spaces and tabs) are not included in fields.

d ‘Dictionary’ order: only letters, digits and blanks are significant in ASCII comparisons.

n An initial numeric string, consisting of optional minus sign, digits and optionally included
decimal point, is sorted by arithmetic value.

r Reverse the sense of comparisons.

tx Tab character between fields isx.

Selected parts of the line, specified by+posand−pos, may be used as sort keys.Poshas the
form m.n,wherem specifies a number of fields to skip, andn a number of characters to skip fur-
ther into the next field. A missing is taken to be 0.+posdenotes the beginning of the key;−pos
denotes the first position after the key (end of line by default). The ordering rule may be over-
ridden for a particular key by appending one or more of the flagsabdnr to +pos.

When no tab character has been specified, a field consists of nonblanks and any preceding
blanks. Under the−b flag, leading blanks are excluded from a field. When a tab character has
been specified, a field is a string ending with a tab character.

When keys are specified, later keys are compared only when all earlier ones compare equal.
Lines that compare equal are ordered with all bytes significant.

These flag arguments are also understood:

−m Merge only, the input files are already sorted.

−o The next argument is the name of an output file to use instead of the standard output. This
file may be the same as one of the inputs, except under the merge flag−m.

Usort is a somewhat specialized version ofsort which accepts no collating sequence options: or-
der is always plain ASCII. It also strips out the second and following copies of duplicated lines.
A u flag prevents this stripping.Usort also understands them ando options in the same way as
sort.

FILES
/usr/tmp/stm???

BUGS

- 1 -

-

SPELL (I) 4/15/75 SPELL (I)

NAME
spell − find spelling errors

SYNOPSIS
spell [−v] file ...

DESCRIPTION
Spell collects the words from the named documents, and looks them up in a dictionary. The
words not found are printed on the standard output. Words which are reasonable transformations
of dictionary entries (e.g. a dictionary entry pluss) are not printed. If no files are given, the in-
put is from the standard input.

If the −v flag is given, all words which are not literally in the dictionary are printed; those which
can be transformed to lie in the dictionary are so marked, and the others are marked with aster-
isks.

The process takes several minutes.

FILES
/usr/lib/w2006, /usr/dict/words, /usr/lib/spell[123]

SEE ALSO
typo (I)

BUGS

Because of the mapping into lower case and the stripping of special characters, words may be
hard to locate in the original text.

The escape sequences of troff (I) are not correctly recognized.

More suffixes, and perhaps some prefixes, should be added.

The dictionary cannot be distributed because of copyright limitations.

- 1 -

-

SPLIT (I) 1/15/73 SPLIT (I)

NAME
split − split a file into pieces

SYNOPSIS
split −n [file [name]]

DESCRIPTION
Split readsfile and writes it inn-line pieces (default 1000), as many as necessary, onto a set of
output files. The name of the first output file isnamewith aa appended, and so on lexicographi-
cally. If no output name is given,x is default.

If no input file is given, or if− is given in its stead, then the standard input file is used.

BUGS

- 1 -

-

STRIP (I) 3/15/72 STRIP (I)

NAME
strip − remove symbols and relocation bits

SYNOPSIS
strip name ...

DESCRIPTION
Strip removes the symbol table and relocation bits ordinarily attached to the output of the assem-
bler and loader. This is useful to save space after a program has been debugged.

The effect ofstrip is the the same as use of the−s option ofld.

FILES
/tmp/stm? temporary file

SEE ALSO
ld (I), as (I)

BUGS

- 1 -

-

STTY (I) 6/12/72 STTY (I)

NAME
stty − set typewriter options

SYNOPSIS
stty [option ...]

DESCRIPTION
Sttysets certain I/O options on the current output typewriter. With no argument, it reports the
current settings of the options. The option strings are selected from the following set:

even allow even parity
−even disallow even parity
odd allow odd parity
−odd disallow odd parity
raw raw mode input (no erase, kill, interrupt, quit, EOT; parity bit passed back)
−raw negate raw mode
cooked same as ‘�raw’
−nl allow carriage return for new-line, and output CR-LF for carriage return or new-line
nl accept only new-line to end lines
echo echo back every character typed
−echo do not echo characters
lcase map upper case to lower case
−lcase do not map case
−tabs replace tabs by spaces when printing
tabs preserve tabs
ek reset erase and kill characters back to normal # and @.
erasec set erase character toc.
kill c set kill character toc.
cr0 cr1 cr2 cr3

select style of delay for carriage return (see below)
nl0 nl1 nl2 nl3

select style of delay for linefeed (see below)
tab0 tab1 tab2 tab3

select style of delay for tab (see below)
ff0 ff1

select style of delay for form feed (see below)
tty33 set all modes suitable for Teletype model 33
tty37 set all modes suitable for Teletype model 37
vt05 set all modes suitable for DEC VT05 terminal
tn300 set all modes suitable for GE Terminet 300
ti700 set all modes suitable for Texas Instruments 700 terminal
tek set all modes suitable for Tektronix 4014 terminal
hup hang up dataphone on last close.
�hup do not hang up dataphone on last close.
0 hang up phone line immediately
50 75 110 134 150 200 300 600 1200 1800 2400 4800 9600 exta extb

Set typewriter baud rate to the number given, if possible. (These are the speeds sup-
ported by the DH-11 interface).

The various delay algorithms are tuned to various kinds of terminals. In general the specifica-
tions ending in ‘0’ mean no delay for the corresponding character.

SEE ALSO
stty (II)

BUGS

- 1 -

-

TEE (I) 3/6/74 TEE (I)

NAME
tee − pipe fitting

SYNOPSIS
tee[name ...]

DESCRIPTION
Teetranscribes the standard input to the standard output and makes copies in the named files.

BUGS

- 1 -

-

TIME (I) 8/16/73 TIME (I)

NAME
time − time a command

SYNOPSIS
time command

DESCRIPTION
The given command is executed; after it is complete,time prints the elapsed time during the
command, the time spent in the system, and the time spent in execution of the command.

The execution time can depend on what kind of memory the program happens to land in; the
user time in MOS is often half what it is in core.

The times are printed on the diagnostic output stream.

BUGS
Elapsed time is accurate to the second, while the CPU times are measured to the 60th second.
Thus the sum of the CPU times can be up to a second larger than the elapsed time.

- 1 -

-

TP (I) 10/15/73 TP (I)

NAME
tp − manipulate DECtape and magtape

SYNOPSIS
tp [key] [name ...]

DESCRIPTION
Tp saves and restores files on DECtape or magtape. Its actions are controlled by thekeyargu-
ment. The key is a string of characters containing at most one function letter and possibly one or
more function modifiers. Other arguments to the command are file or directory names specify-
ing which files are to be dumped, restored, or listed. In all cases, appearance of a directory name
refers to the files and (recursively) subdirectories of that directory.

The function portion of the key is specified by one of the following letters:

r The named files are written on the tape. If files with the same names already exist,
they are replaced. ‘Same’ is determined by string comparison, so ‘./abc’ can never be
the same as ‘/usr/dmr/abc’ even if ‘/usr/dmr’ is the current directory. If no file argu-
ment is given, ‘.’ is the default.

u updates the tape.u is like r, but a file is replaced only if its modification date is later
than the date stored on the tape; that is to say, if it has changed since it was dumped.u
is the default command if none is given.

d deletes the named files from the tape. At least one name argument must be given.
This function is not permitted on magtapes.

x extracts the named files from the tape to the file system. The owner and mode are re-
stored. If no file argument is given, the entire contents of the tape are extracted.

t lists the names of the specified files. If no file argument is given, the entire contents of
the tape is listed.

The following characters may be used in addition to the letter which selects the function desired.

m Specifies magtape as opposed to DECtape.

0,...,7 This modifier selects the drive on which the tape is mounted. For DECtape, ‘x’ is
default; for magtape ‘0’ is the default.

v Normally tp does its work silently. Thev (verbose) option causes it to type the
name of each file it treats preceded by the function letter. With thet function, v
gives more information about the tape entries than just the name.

c means a fresh dump is being created; the tape directory is zeroed before beginning.
Usable only withr andu. This option is assumed with magtape since it is impossi-
ble to selectively overwrite magtape.

f causes new entries on tape to be ‘fake’ in that no data is present for these entries.
Such fake entries cannot be extracted. Usable only withr andu.

i Errors reading and writing the tape are noted, but no action is taken. Normally, er-
rors cause a return to the command level.

w causestp to pause before treating each file, type the indicative letter and the file
name (as with v) and await the user’s response. Responsey means ‘yes’, so the file
is treated. Null response means ‘no’, and the file does not take part in whatever is
being done. Responsex means ‘exit’; thetp command terminates immediately. In
thex function, files previously asked about have been extracted already. Withr, u,
andd no change has been made to the tape.

FILES
/dev/tap?
/dev/mt?

- 1 -

-

TP (I) 10/15/73 TP (I)

DIAGNOSTICS
Several; the non-obvious one is ‘Phase error’, which means the file changed after it was selected
for dumping but before it was dumped.

BUGS
A single file with several links to it is treated like several files.

- 2 -

-

TR (I) 5/20/74 TR (I)

NAME
tr − transliterate

SYNOPSIS
tr [−cds] [string1 [string2]]

DESCRIPTION
Tr copies the standard input to the standard output with substitution or deletion of selected char-
acters. Input characters found instring1 are mapped into the corresponding characters of
string2. Any combination of the options−cdsmay be used.−c complements the set of charac-
ters instring1 with respect to the universe of characters whose ascii codes are 001 through 377
octal. −d deletes all input characters instring1. −s squeezes all strings of repeated output char-
acters that are instring2 to single characters.

The following abbreviation conventions may be used to introduce ranges of characters or re-
peated characters into the strings:

[a−b] stands for the string of characters whose ascii codes run from charactera to characterb.

[a*n], wheren is an integer or empty, stands forn-fold repetition of charactera. n is taken to be
octal or decimal according as its first digit is or is not zero. A zero or missingn is taken to be
huge; this facility is useful for paddingstring2.

The escape character ‘\’ may be used as insh to remove special meaning from any character in a
string. In addition, ‘\’ followed by 1, 2 or 3 octal digits stands for the character whose ascii code
is given by those digits.

The following example creates a list of all the words in ‘file1’ one per line in ‘file2’, where a
word is taken to be a maximal string of alphabetics. The strings are quoted to protect the special
characters from interpretation by the Shell; 012 is the ascii code for newline.

tr −cs "[A−Z][a−z]" "[\012*]" <file1 >file2

SEE ALSO
sh (I), ed (I), ascii (V)

BUGS
Won’t handle ascii NUL instring1or string2; always deletes NUL from input.

- 1 -

-

TROFF (I) 4/15/75 TROFF (I)

NAME
troff − format text

SYNOPSIS
troff [+n] [−n] [�sn] [�nn] [�ran] [�mname] [−t] [−f] [−w] [−a] [�pn] files

DESCRIPTION
Troff formats text for a Graphic Systems phototypesetter according to control lines embedded in
the text files. It reads the standard input if no file arguments are given. An argument of just
‘‘ �’’ refers to the standard input. The non-file option arguments are interpreted as follows:

+n Commence typesetting at the first page numberedn or larger.

−n Stop after pagen.

�sn Print output in groups ofn pages, stopping the typesetter after each group.

�nn First generated (not necessarily printed) page is given the numbern; simulates
‘‘.pn n’’.

�ran Set number registera to the valuen.

�mname Prepends a standard macro file; simulates ‘‘.so /usr/lib/tmac.name’’.

−t Place output on standard output instead of the phototypesetter.

−f Refrain from feeding out paper and stopping the phototypesetter at the end.

−w Wait until phototypesetter is available, if currently busy.

−a Send a printable approximation of the results to the standard output.

�pn Print all characters with point-sizen while retaining all prescribed spacings and mo-
tions.

FILES
/usr/lib/suftab suffix hyphenation tables
/tmp/rtm? temporary
/usr/lib/tmac.* standard macro files

SEE ALSO
TROFF User’s Manual (internal memorandum).
TROFF Made Trivial (internal memorandum).
nroff (I), eqn (I), catsim (VI)

BUGS

- 1 -

-

TTY (I) 3/15/72 TTY (I)

NAME
tty − get typewriter name

SYNOPSIS
tty

DESCRIPTION
Tty gives the name of the user’s typewriter in the form ‘ttyn’ for n a digit or letter. The actual
path name is then ‘/dev/ttyn’.

DIAGNOSTICS
‘not a tty’ if the standard input file is not a typewriter.

BUGS

- 1 -

-

TYPO (I) 5/15/74 TYPO (I)

NAME
typo − find possible typos

SYNOPSIS
typo [−1] [−n] file ...

DESCRIPTION
Typohunts through a document for unusual words, typographic errors, andhapax legomenaand
prints them on the standard output.

The words used in the document are printed out in decreasing order of peculiarity along with an
index of peculiarity. An index of 10 or more is considered peculiar. Printing of certain very
common English words is suppressed.

The statistics for judging words are taken from the document itself, with some help from known
statistics of English. The−n option suppresses the help from English and should be used if the
document is written in, for example, Urdu.

The−1 option causes the final output to appear in a single column instead of three columns. The
normal header and pagination is also suppressed.

Roff (I) and nroff (I) control lines are ignored. Upper case is mapped into lower case. Quote
marks, vertical bars, hyphens, and ampersands within words are equivalent to spaces. Words hy-
phenated across lines are put back together.

FILES
/tmp/ttmp??
/usr/lib/salt
/usr/lib/w2006

BUGS
Because of the mapping into lower case and the stripping of special characters, words may be
hard to locate in the original text.

The escape sequences of troff (I) are not correctly recognized.

- 1 -

-

UNIQ (I) 12/1/72 UNIQ (I)

NAME
uniq − report repeated lines in a file

SYNOPSIS
uniq [−udc [+n] [−n]] [input [output]]

DESCRIPTION
Uniq reads the input file comparing adjacent lines. In the normal case, the second and succeed-
ing copies of repeated lines are removed; the remainder is written on the output file. Note that
repeated lines must be adjacent in order to be found; see sort(I). If the−u flag is used, just the
lines that are not repeated in the original file are output. The−d option specifies that one copy of
just the repeated lines is to be written. The normal mode output is the union of the−u and−d
mode outputs.

The−c option supersedes−u and−d and generates an output report in default style but with each
line preceded by a count of the number of times it occurred.

Then arguments specify skipping an initial portion of each line in the comparison:

−n The firstn fields together with any blanks before each are ignored. A field is defined
as a string of non-space, non-tab characters separated by tabs and spaces from its
neighbors.

+n The firstn characters are ignored. Fields are skipped before characters.

SEE ALSO
sort (I), comm (I)

BUGS

- 1 -

-

WAIT (I) 4/9/73 WAIT (I)

NAME
wait − await completion of process

SYNOPSIS
wait

DESCRIPTION
Wait until all processes started with& have completed, and report on abnormal terminations.

Becausesys waitmust be executed in the parent process, the Shell itself executeswait, without
creating a new process.

SEE ALSO
sh (I)

BUGS
After executingwait you are committed to waiting until termination, because interrupts and quits
are ignored by all processes concerned. The only out, if the process does not terminate, is tokill
it from another terminal or to hang up.

- 1 -

-

WC (I) 7/26/74 WC (I)

NAME
wc − word count

SYNOPSIS
wc [name ...]

DESCRIPTION
Wc counts lines and words in the named files, or in the standard input if no name appears. A
word is a maximal string of printing characters delimited by spaces, tabs or newlines. All other
characters are simply ignored.

BUGS

- 1 -

-

WHO (I) 3/15/72 WHO (I)

NAME
who − who is on the system

SYNOPSIS
who [who-file] [am I]

DESCRIPTION
Who,without an argument, lists the name, typewriter channel, and login time for each current
UNIX user.

Without an argument,who examines the /etc/utmp file to obtain its information. If a file is
given, that file is examined. Typically the given file will be /usr/adm/wtmp, which contains a
record of all the logins since it was created. Thenwho lists logins, logouts, and crashes since the
creation of the wtmp file. Each login is listed with user name, typewriter name (with ‘/dev/’ sup-
pressed), and date and time. When an argument is given, logouts produce a similar line without
a user name. Reboots produce a line with ‘x’ in the place of the device name, and a fossil time
indicative of when the system went down.

With two arguments,whobehaves as if it had no arguments except for restricting the printout to
the line for the current typewriter. Thus ‘who am I’ (and also ‘who are you’) tells you who you
are logged in as.

FILES
/etc/utmp

SEE ALSO
login (I), init (VIII)

BUGS

- 1 -

-

WRITE (I) 8/5/73 WRITE (I)

NAME
write − write to another user

SYNOPSIS
write user [ttyno]

DESCRIPTION
Write copies lines from your typewriter to that of another user. When first called, it sends the
message

message from yourname...

The recipient of the message should write back at this point. Communication continues until an
end of file is read from the typewriter or an interrupt is sent. At that pointwrite writes ‘EOT’ on
the other terminal and exits.

If you want to write to a user who is logged in more than once, thettynoargument may be used
to indicate the last character of the appropriate typewriter name.

Permission to write may be denied or granted by use of themesgcommand. At the outset writ-
ing is allowed. Certain commands, in particularroff andpr, disallow messages in order to pre-
vent messy output.

If the character ‘!’ is found at the beginning of a line,write calls the shell to execute the rest of
the line as a command.

The following protocol is suggested for usingwrite: when you first write to another user, wait
for him to write back before starting to send. Each party should end each message with a dis-
tinctive signal ((o) for ‘over’ is conventional) that the other may reply.(oo) (for ‘over and out’)
is suggested when conversation is about to be terminated.

FILES
/etc/utmp to find user
/bin/sh to execute ‘!’

SEE ALSO
mesg (I), who (I), mail (I)

BUGS

- 1 -

-

YACC (I) 11/25/74 YACC (I)

NAME
yacc − yet another compiler-compiler

SYNOPSIS
yacc[−vor] [grammar]

DESCRIPTION
Yaccconverts a context-free grammar into a set of tables for a simple automaton which executes
an LR(1) parsing algorithm. The grammar may be ambiguous; specified precedence rules are
used to break ambiguities.

The output isy.tab.c,which must be compiled by the C compiler and loaded with any other rou-
tines required (perhaps a lexical analyzer) and the Yacc library:

cc y.tab.c other.o −ly

If the −v flag is given, the filey.outputis prepared, which contains a description of the parsing
tables and a report on conflicts generated by ambiguities in the grammar.

The−o flag calls an optimizer for the tables; the optimized tables, with parser included, appear
on file y.tab.c

The−r flag causes Yacc to accept grammars with Ratfor actions, and produce Ratfor output on
y.tab.r;−r implies the−o flag. Typical usage is then

rc y.tab.r other.o

SEE ALSO
‘‘LR Parsing’’, by A. V. Aho and S. C. Johnson, Computing Surveys, June, 1974. ‘‘The YACC
Compiler-compiler’’, internal memorandum.

AUTHOR
S. C. Johnson

FILES
y.output
y.tab.c
y.tab.r when ratfor output is obtained
yacc.tmp when optimizer is called
/lib/liby.a runtime library for compiler
/usr/yacc/fpar.r ratfor parser
/usr/yacc/opar.c parser for optimized tables
/usr/yacc/yopti optimizer postpass

DIAGNOSTICS
The number of reduce-reduce and shift-reduce conflicts is reported on the standard output; a
more detailed report is found in they.outputfile.

BUGS
Because file names are fixed, at most one Yacc process can be active in a given directory at a
time.

- 1 -

-

INTRO (II) 11/5/73 INTRO (II)

INTRODUCTION TO SYSTEM CALLS

Section II of this manual lists all the entries into the system. In most cases two calling sequences are
specified, one of which is usable from assembly language, and the other from C. Most of these calls have
an error return. From assembly language an erroneous call is always indicated by turning on the c-bit of
the condition codes. The presence of an error is most easily tested by the instructionsbes and bec
(‘‘branch on error set (or clear)’’). These are synonyms for thebcsandbcc instructions.

From C, an error condition is indicated by an otherwise impossible returned value. Almost always this is
−1; the individual sections specify the details.

In both cases an error number is also available. In assembly language, this number is returned in r0 on er-
roneous calls. From C, the external variableerrno is set to the error number.Errno is not cleared on suc-
cessful calls, so it should be tested only after an error has occurred. There is a table of messages associ-
ated with each error, and a routine for printing the message. Seeperror (III).

The possible error numbers are not recited with each writeup in section II, since many errors are possible
for most of the calls. Here is a list of the error numbers, their names inside the system (for the benefit of
system-readers), and the messages available usingperror. A short explanation is also provided.

0 − (unused)

1 EPERM Not owner and not super-user
Typically this error indicates an attempt to modify a file in some way forbidden except to its own-
er. It is also returned for attempts by ordinary users to do things allowed only to the super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should exist but doesn’t, or when one
of the directories in a path name does not exist.

3 ESRCH No such process
The process whose number was given tosignaldoes not exist, or is already dead.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user has elected to catch, occurred
during a system call. If execution is resumed after processing the signal, it will appear as if the in-
terrupted system call returned this error condition.

5 EIO I/O error
Some physical I/O error occurred during areador write. This error may in some cases occur on a
call following the one to which it actually applies.

6 ENXIO No such device or address
I/O on a special file refers to a subdevice which does not exist, or beyond the limits of the device.
It may also occur when, for example, a tape drive is not dialled in or no disk pack is loaded on a
drive.

7 E2BIG Arg list too long
An argument list longer than 512 bytes (counting the null at the end of each argument) is pre-
sented toexec.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the appropriate permissions, does not
start with one of the magic numbers 407 or 410.

- 1 -

-

INTRO (II) 11/5/73 INTRO (II)

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read (resp. write) request is made to a file which
is open only for writing (resp. reading).

10 ECHILD No children
Wait and the process has no living or unwaited-for children.

11 EAGAIN No more processes
In a fork, the system’s process table is full and no more processes can for the moment be created.

12 ENOMEM Not enough core
During anexecor break,a program asks for more core than the system is able to supply. This is
not a temporary condition; the maximum core size is a system parameter. The error may also oc-
cur if the arrangement of text, data, and stack segments is such as to require more than the existing
8 segmentation registers.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by the protection system.

14 − (unused)

15 ENOTBLK Block device required
A plain file was mentioned where a block device was required, e.g. inmount.

16 EBUSY Mount device busy
An attempt to mount a device that was already mounted or an attempt was made to dismount a de-
vice on which there is an open file or some process’s current directory.

17 EEXIST File exists
An existing file was mentioned in an inappropriate context, e.g.link.

18 EXDEV Cross-device link
A link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate system call to a device; e.g. read a write-only de-
vice.

20 ENOTDIR Not a directory
A non-directory was specified where a directory is required, for example in a path name or as an
argument tochdir.

21 EISDIR Is a directory
An attempt to write on a directory.

22 EINVAL Invalid argument
Some invalid argument: currently, dismounting a non-mounted device, mentioning an unknown
signal insignal,and giving an unknown request instty to the TIU special file.

23 ENFILE File table overflow
The system’s table of open files is full, and temporarily no moreopenscan be accepted.

24 EMFILE Too many open files
Only 15 files can be open per process.

25 ENOTTY Not a typewriter
The file mentioned instty or gtty is not a typewriter or one of the other devices to which these

- 2 -

-

INTRO (II) 11/5/73 INTRO (II)

calls apply.

26 ETXTBSY Text file busy
An attempt to execute a pure-procedure program which is currently open for writing (or reading!).
Also an attempt to open for writing a pure-procedure program that is being executed.

27 EFBIG File too large
An attempt to make a file larger than the maximum of 32768 blocks.

28 ENOSPC No space left on device
During awrite to an ordinary file, there is no free space left on the device.

29 ESPIPE Seek on pipe
A seekwas issued to a pipe. This error should also be issued for other non-seekable devices.

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a device mounted read-only.

31 EMLINK Too many links
An attempt to make more than 127 links to a file.

32 EPIPE Write on broken pipe
A write on a pipe for which there is no process to read the data. This condition normally generates
a signal; the error is returned if the signal is ignored.

- 3 -

-

BREAK (II) 8/5/73 BREAK (II)

NAME
break, brk, sbrk − change core allocation

SYNOPSIS
(break = 17.)
sys break; addr

char *brk(addr)

char *sbrk(incr)

DESCRIPTION
Breaksets the system’s idea of the lowest location not used by the program (called the break) to
addr (rounded up to the next multiple of 64 bytes). Locations not less thanaddr and below the
stack pointer are not in the address space and will thus cause a memory violation if accessed.

From C,brk will set the break toaddr. The old break is returned.

In the alternate entrysbrk, incrmore bytes are added to the program’s data space and a pointer to
the start of the new area is returned.

When a program begins execution viaexecthe break is set at the highest location defined by the
program and data storage areas. Ordinarily, therefore, only programs with growing data areas
need to usebreak.

SEE ALSO
exec (II), alloc (III), end (III)

DIAGNOSTICS
The c-bit is set if the program requests more memory than the system limit or if more than 8 seg-
mentation registers would be required to implement the break. From C,−1 is returned for these
errors.

BUGS
Setting the break in the range 0177700 to 0177777 is the same as setting it to zero.

- 1 -

-

CHDIR (II) 8/5/73 CHDIR (II)

NAME
chdir − change working directory

SYNOPSIS
(chdir = 12.)
sys chdir; dirname

chdir(dirname)
char *dirname;

DESCRIPTION
Dirname is the address of the pathname of a directory, terminated by a null byte.Chdir causes
this directory to become the current working directory.

SEE ALSO
chdir (I)

DIAGNOSTICS
The error bit (c-bit) is set if the given name is not that of a directory or is not readable. From C,
a −1 returned value indicates an error, 0 indicates success.

- 1 -

-

SORT (I) 6/11/74 SORT (I)

NAME
sort − sort or merge files

SYNOPSIS
sort [−abdnrtx] [+pos [−pos]] . . . [−mo] [name] . . .

DESCRIPTION
Sortsorts all the named files together and writes the result on the standard output. The name ‘−’
means the standard input. The standard input is also used if no input file names are given. Thus
sort may be used as a filter.

The default sort key is an entire line. Default ordering is lexicographic in ASCII collating se-
quence, except that lower-case letters are considered the same as the corresponding upper-case
letters. Non-ASCII bytes are ignored. The ordering is affected by the flags−abdnrt , one or
more of which may appear:

a Do not map lower case letters.

b Leading blanks (spaces and tabs) are not included in fields.

d ‘Dictionary’ order: only letters, digits and blanks are significant in ASCII comparisons.

n An initial numeric string, consisting of optional minus sign, digits and optionally included
decimal point, is sorted by arithmetic value.

r Reverse the sense of comparisons.

tx Tab character between fields isx.

Selected parts of the line, specified by+posand−pos, may be used as sort keys.Poshas the
form m.n,wherem specifies a number of fields to skip, andn a number of characters to skip fur-
ther into the next field. A missing is taken to be 0.+posdenotes the beginning of the key;−pos
denotes the first position after the key (end of line by default). The ordering rule may be over-
ridden for a particular key by appending one or more of the flagsabdnr to +pos.

When no tab character has been specified, a field consists of nonblanks and any preceding
blanks. Under the−b flag, leading blanks are excluded from a field. When a tab character has
been specified, a field is a string ending with a tab character.

When keys are specified, later keys are compared only when all earlier ones compare equal.
Lines that compare equal are ordered with all bytes significant.

These flag arguments are also understood:

−m Merge only, the input files are already sorted.

−o The next argument is the name of an output file to use instead of the standard output. This
file may be the same as one of the inputs, except under the merge flag−m.

FILES
/usr/tmp/stm???

- 1 -

-

CHOWN (II) 12/15/74 CHOWN (II)

NAME
chown − change owner and group of a file

SYNOPSIS
(chmod = 16.)
sys chown; name; owner

chown(name, owner)
char *name;

DESCRIPTION
The file whose name is given by the null-terminated string pointed to bynamehas its owner and
group changed to the low and high bytes ofowner respectively. Only the super-user may exe-
cute this call, because if users were able to give files away, they could defeat the (nonexistent)
file-space accounting procedures.

SEE ALSO
chown (VIII), chgrp (VIII), passwd (V)

DIAGNOSTICS
The error bit (c-bit) is set on illegal owner changes. From C a−1 returned value indicates error,
0 indicates success.

- 1 -

-

CLOSE (II) 8/5/73 CLOSE (II)

NAME
close − close a file

SYNOPSIS
(close = 6.)
(file descriptor in r0)
sys close

close(fildes)

DESCRIPTION
Given a file descriptor such as returned from anopen, creat,or pipecall, closecloses the associ-
ated file. A close of all files is automatic onexit,but since processes are limited to 15 simultane-
ously open files,closeis necessary for programs which deal with many files.

SEE ALSO
creat (II), open (II), pipe (II)

DIAGNOSTICS
The error bit (c-bit) is set for an unknown file descriptor. From C a−1 indicates an error, 0 indi-
cates success.

- 1 -

-

CREAT (II) 8/5/73 CREAT (II)

NAME
creat − create a new file

SYNOPSIS
(creat = 8.)
sys creat; name; mode
(file descriptor in r0)

creat(name, mode)
char *name;

DESCRIPTION
Creatcreates a new file or prepares to rewrite an existing file calledname,given as the address
of a null-terminated string. If the file did not exist, it is given modemode. Seechmod(II) for
the construction of themodeargument.

If the file did exist, its mode and owner remain unchanged but it is truncated to 0 length.

The file is also opened for writing, and its file descriptor is returned (in r0).

Themodegiven is arbitrary; it need not allow writing. This feature is used by programs which
deal with temporary files of fixed names. The creation is done with a mode that forbids writing.
Then if a second instance of the program attempts acreat,an error is returned and the program
knows that the name is unusable for the moment.

SEE ALSO
write (II), close (II), stat (II)

DIAGNOSTICS
The error bit (c-bit) may be set if: a needed directory is not searchable; the file does not exist and
the directory in which it is to be created is not writable; the file does exist and is unwritable; the
file is a directory; there are already too many files open.

From C, a −1 return indicates an error.

- 1 -

-

CSW (II) 8/5/73 CSW (II)

NAME
csw − read console switches

SYNOPSIS
(csw = 38.; not in assembler)
sys csw

getcsw()

DESCRIPTION
The setting of the console switches is returned (in r0).

- 1 -

-

DUP (II) 8/5/73 DUP (II)

NAME
dup − duplicate an open file descriptor

SYNOPSIS
(dup = 41.; not in assembler)
(file descriptor in r0)
sys dup

dup(fildes)
int fildes;

DESCRIPTION
Given a file descriptor returned from anopen, pipe,or creat call, dup will allocate another file
descriptor synonymous with the original. The new file descriptor is returned in r0.

Dup is used more to reassign the value of file descriptors than to genuinely duplicate a file de-
scriptor. Since the algorithm to allocate file descriptors returns the lowest available value, com-
binations ofdup andclosecan be used to manipulate file descriptors in a general way. This is
handy for manipulating standard input and/or standard output.

SEE ALSO
creat (II), open (II), close (II), pipe (II)

DIAGNOSTICS
The error bit (c-bit) is set if: the given file descriptor is invalid; there are already too many open
files. From C, a −1 returned value indicates an error.

- 1 -

-

EXEC (II) 8/5/73 EXEC (II)

NAME
exec, execl, execv− execute a file

SYNOPSIS
(exec = 11.)
sys exec; name; args
...
name: <...\0>
...
args: arg0; arg1; ...; 0
arg0: <...\0>
arg1: <...\0>

...

execl(name, arg0, arg1, ..., argn, 0)
char *name, *arg0, *arg1, ..., *argn;

execv(name, argv)
char *name;
char *argv[];

DESCRIPTION
Execoverlays the calling process with the named file, then transfers to the beginning of the core
image of the file. There can be no return from the file; the calling core image is lost.

Files remain open acrossexeccalls. Ignored signals remain ignored acrossexec,but signals that
are caught are reset to their default values.

Each user has areal user ID and group ID and aneffectiveuser ID and group ID. The real ID
identifies the person using the system; the effective ID determines his access privileges.Exec
changes the effective user and group ID to the owner of the executed file if the file has the ‘‘set-
user-ID’’ or ‘‘set-group-ID’’ modes. The real user ID is not affected.

The form of this call differs somewhat depending on whether it is called from assembly language
or C; see below for the C version.

The first argument toexecis a pointer to the name of the file to be executed. The second is the
address of a null-terminated list of pointers to arguments to be passed to the file. Convention-
ally, the first argument is the name of the file. Each pointer addresses a string terminated by a
null byte.

Once the called file starts execution, the arguments are available as follows. The stack pointer
points to a word containing the number of arguments. Just above this number is a list of pointers
to the argument strings. The arguments are placed as high as possible in core.

sp� nargs
arg0
...
argn
−1

arg0: <arg0\0>
...

argn: <argn\0>

From C, two interfaces are available.execlis useful when a known file with known arguments
is being called; the arguments toexeclare the character strings constituting the file and the argu-
ments; as in the basic call, the first argument is conventionally the same as the file name (or its
last component). A 0 argument must end the argument list.

The execvversion is useful when the number of arguments is unknown in advance; the argu-
ments toexecvare the name of the file to be executed and a vector of strings containing the argu-
ments. The last argument string must be followed by a 0 pointer.

- 1 -

-

EXEC (II) 8/5/73 EXEC (II)

When a C program is executed, it is called as follows:

main(argc, argv)
int argc;
char **argv;

whereargc is the argument count andargv is an array of character pointers to the arguments
themselves. As indicated,argc is conventionally at least one and the first member of the array
points to a string containing the name of the file.

Argv is not directly usable in anotherexecv,sinceargv[argc] is −1 and not 0.

SEE ALSO
fork (II)

DIAGNOSTICS
If the file cannot be found, if it is not executable, if it does not have a valid header (407, 410, or
411 octal as first word), if maximum memory is exceeded, or if the arguments require more than
512 bytes a return fromexecconstitutes the diagnostic; the error bit (c-bit) is set. Even for the
super-user, at least one of the execute-permission bits must be set for a file to be executed. From
C the returned value is −1.

BUGS
Only 512 characters of arguments are allowed.

- 2 -

-

EXIT (II) 8/5/73 EXIT (II)

NAME
exit − terminate process

SYNOPSIS
(exit = 1.)
(status in r0)
sys exit

exit(status)
int status;

DESCRIPTION
Exit is the normal means of terminating a process.Exit closes all the process’s files and notifies
the parent process if it is executing await. The low byte of r0 (resp. the argument toexit) is
available as status to the parent process.

This call can never return.

SEE ALSO
wait (II)

DIAGNOSTICS
None.

- 1 -

-

FORK (II) 8/5/73 FORK (II)

NAME
fork − spawn new process

SYNOPSIS
(fork = 2.)
sys fork
(new process return)
(old process return)

fork()

DESCRIPTION
Fork is the only way new processes are created. The new process’s core image is a copy of that
of the caller offork. The only distinction is the return location and the fact that r0 in the old
(parent) process contains the process ID of the new (child) process. This process ID is used by
wait.

The two returning processes share all open files that existed before the call. In particular, this is
the way that standard input and output files are passed and also how pipes are set up.

From C, the child process receives a 0 return, and the parent receives a non-zero number which
is the process ID of the child; a return of −1 indicates inability to create a new process.

SEE ALSO
wait (II), exec (II)

DIAGNOSTICS
The error bit (c-bit) is set in the old process if a new process could not be created because of lack
of process space. From C, a return of −1 (not just negative) indicates an error.

- 1 -

-

FSTAT (II) 8/5/73 FSTAT (II)

NAME
fstat − get status of open file

SYNOPSIS
(fstat = 28.)
(file descriptor in r0)
sys fstat; buf

fstat(fildes, buf)
struct inode *buf;

DESCRIPTION
This call is identical tostat,except that it operates on open files instead of files given by name.
It is most often used to get the status of the standard input and output files, whose names are un-
known.

SEE ALSO
stat (II)

DIAGNOSTICS
The error bit (c-bit) is set if the file descriptor is unknown; from C, a−1 return indicates an error,
0 indicates success.

- 1 -

-

GETGID (II) 5/15/74 GETGID (II)

NAME
getgid − get group identifications

SYNOPSIS
(getgid = 47.; not in assembler)
sys getgid

getgid()

DESCRIPTION
Getgid returns a word (in r0), the low byte of which contains the real group ID of the current
process. The high byte contains the effective group ID of the current process. The real group ID
identifies the group of the person who is logged in, in contradistinction to the effective group ID,
which determines his access permission at the moment. It is thus useful to programs which oper-
ate using the ‘‘set group ID’’ mode, to find out who invoked them.

SEE ALSO
setgid (II)

DIAGNOSTICS
−

- 1 -

-

GETPID (II) 2/8/75 GETPID (II)

NAME
getpid − get process identification

SYNOPSIS
(getpid = 20.; not in assembler)
sys getpid
(pid in r0)

getpid()

DESCRIPTION
Getpidreturns the process ID of the current process. Most often it is used to generate uniquely-
named temporary files.

SEE ALSO
−

DIAGNOSTICS
−

- 1 -

-

GETUID (II) 5/15/74 GETUID (II)

NAME
getuid − get user identifications

SYNOPSIS
(getuid = 24.)
sys getuid

getuid()

DESCRIPTION
Getuidreturns a word (in r0), the low byte of which contains the real user ID of the current pro-
cess. The high byte contains the effective user ID of the current process. The real user ID iden-
tifies the person who is logged in, in contradistinction to the effective user ID, which determines
his access permission at the moment. It is thus useful to programs which operate using the ‘‘set
user ID’’ mode, to find out who invoked them.

SEE ALSO
setuid (II)

DIAGNOSTICS
−

- 1 -

-

GTTY (II) 8/5/73 GTTY (II)

NAME
gtty − get typewriter status

SYNOPSIS
(gtty = 32.)
(file descriptor in r0)
sys gtty; arg
...
arg: .=.+6

gtty(fildes, arg)
int arg[3];

DESCRIPTION
Gtty stores in the three words addressed byarg the status of the typewriter whose file descriptor
is given in r0 (resp. given as the first argument). The format is the same as that passed bystty.

SEE ALSO
stty (II)

DIAGNOSTICS
Error bit (c-bit) is set if the file descriptor does not refer to a typewriter. From C, a−1 value is
returned for an error, 0, for a successful call.

- 1 -

-

INDIR (II) 8/5/73 INDIR (II)

NAME
indir − indirect system call

SYNOPSIS
(indir = 0.; not in assembler)
sys indir; syscall

DESCRIPTION
The system call at the locationsyscallis executed. Execution resumes after theindir call.

The main purpose ofindir is to allow a program to store arguments in system calls and execute
them out of line in the data segment. This preserves the purity of the text segment.

If indir is executed indirectly, it is a no-op. If the instruction at the indirect location is not a sys-
tem call, the executing process will get a fault.

SEE ALSO
−

DIAGNOSTICS
−

- 1 -

-

KILL (II) 12/15/74 KILL (II)

NAME
kill − send signal to a process

SYNOPSIS
(kill = 37.; not in assembler)
(process number in r0)
sys kill; sig

kill(pid, sig);

DESCRIPTION
Kill sends the signalsig to the process specified by the process number in r0. See signal (II) for
a list of signals.

The sending and receiving processes must have the same effective user ID, otherwise this call is
restricted to the super-user.

If the process number is 0, the signal is sent to all other processes which have the same control-
ling typewriter and user ID.

In no case is it possible for a process to kill itself.

SEE ALSO
signal (II), kill (I)

DIAGNOSTICS
The error bit (c-bit) is set if the process does not have the same effective user ID and the user is
not super-user, or if the process does not exist. From C, �1 is returned.

- 1 -

-

LINK (II) 8/5/73 LINK (II)

NAME
link − link to a file

SYNOPSIS
(link = 9.)
sys link; name1; name2

link(name1, name2)
char *name1, *name2;

DESCRIPTION
A link to name1is created; the link has the namename2.Either name may be an arbitrary path
name.

SEE ALSO
link (I), unlink (II)

DIAGNOSTICS
The error bit (c-bit) is set whenname1cannot be found; whenname2already exists; when the
directory ofname2cannot be written; when an attempt is made to link to a directory by a user
other than the super-user; when an attempt is made to link to a file on another file system; when
more than 127 links are made. From C, a−1 return indicates an error, a 0 return indicates suc-
cess.

- 1 -

-

MKNOD (II) 8/5/73 MKNOD (II)

NAME
mknod − make a directory or a special file

SYNOPSIS
(mknod = 14.; not in assembler)
sys mknod; name; mode; addr

mknod(name, mode, addr)
char *name;

DESCRIPTION
Mknod creates a new file whose name is the null-terminated string pointed to byname. The
mode of the new file (including directory and special file bits) is initialized frommode. The first
physical address of the file is initialized fromaddr. Note that in the case of a directory,addr
should be zero. In the case of a special file,addrspecifies which special file.

Mknodmay be invoked only by the super-user.

SEE ALSO
mkdir (I), mknod (VIII), fs (V)

DIAGNOSTICS
Error bit (c-bit) is set if the file already exists or if the user is not the super-user. From C, a−1
value indicates an error.

- 1 -

-

MOUNT (II) 5/15/74 MOUNT (II)

NAME
mount − mount file system

SYNOPSIS
(mount = 21.)
sys mount; special; name; rwflag

mount(special, name, rwflag)
char *special, *name;

DESCRIPTION
Mount announces to the system that a removable file system has been mounted on the block-
structured special filespecial;from now on, references to filenamewill refer to the root file on
the newly mounted file system.Specialandnameare pointers to null-terminated strings contain-
ing the appropriate path names.

Namemust exist already. Its old contents are inaccessible while the file system is mounted.

Therwflag argument determines whether the file system can be written on; if it is 0 writing is al-
lowed, if non-zero no writing is done. Physically write-protected and magnetic tape file systems
must be mounted read-only or errors will occur when access times are updated, whether or not
any explicit write is attempted.

SEE ALSO
mount (VIII), umount (II)

DIAGNOSTICS
Error bit (c-bit) set if:specialis inaccessible or not an appropriate file;namedoes not exist;spe-
cial is already mounted;nameis in use; there are already too many file systems mounted.

BUGS
�

- 1 -

-

NICE (II) 8/5/73 NICE (II)

NAME
nice − set program priority

SYNOPSIS
(nice = 34.)
(priority in r0)
sys nice

nice(priority)

DESCRIPTION
The schedulingpriority of the process is changed to the argument. Positive priorities get less
service than normal; 0 is default. Only the super-user may specify a negative priority. The valid
range ofpriority is 20 to−220. The value of 4 is recommended to users who wish to execute
long-running programs without flak from the administration.

The effect of this call is passed to a child process by thefork system call. The effect can be can-
celled by another call tonicewith apriority of 0.

The actual running priority of a process is thepriority argument plus a number that ranges from
100 to 119 depending on the cpu usage of the process.

SEE ALSO
nice (I)

DIAGNOSTICS
The error bit (c-bit) is set if the user requests apriority outside the range of 0 to 20 and is not the
super-user.

- 1 -

-

OPEN (II) 8/5/73 OPEN (II)

NAME
open − open for reading or writing

SYNOPSIS
(open = 5.)
sys open; name; mode
(file descriptor in r0)

open(name, mode)
char *name;

DESCRIPTION
Openopens the filenamefor reading (ifmodeis 0), writing (if modeis 1) or for both reading
and writing (if modeis 2). Nameis the address of a string of ASCII characters representing a
path name, terminated by a null character.

The returned file descriptor should be saved for subsequent calls toread, write,andclose.

SEE ALSO
creat (II), read (II), write (II), close (II)

DIAGNOSTICS
The error bit (c-bit) is set if the file does not exist, if one of the necessary directories does not ex-
ist or is unreadable, if the file is not readable (resp. writable), or if too many files are open. From
C, a −1 value is returned on an error.

- 1 -

-

PIPE (II) 8/5/73 PIPE (II)

NAME
pipe − create an interprocess channel

SYNOPSIS
(pipe = 42.)
sys pipe
(read file descriptor in r0)
(write file descriptor in r1)

pipe(fildes)
int fildes[2];

DESCRIPTION
The pipe system call creates an I/O mechanism called a pipe. The file descriptors returned can
be used in read and write operations. When the pipe is written using the descriptor returned in r1
(resp. fildes[1]), up to 4096 bytes of data are buffered before the writing process is suspended. A
read using the descriptor returned in r0 (resp. fildes[0]) will pick up the data.

It is assumed that after the pipe has been set up, two (or more) cooperating processes (created by
subsequentfork calls) will pass data through the pipe withreadandwrite calls.

The Shell has a syntax to set up a linear array of processes connected by pipes.

Read calls on an empty pipe (no buffered data) with only one end (all write file descriptors
closed) return an end-of-file. Write calls under similar conditions generate a fatal signal (signal
(II)); if the signal is ignored, an error is returned on the write.

SEE ALSO
sh (I), read (II), write (II), fork (II)

DIAGNOSTICS
The error bit (c-bit) is set if too many files are already open. From C, a−1 returned value indi-
cates an error. A signal is generated if a write on a pipe with only one end is attempted.

BUGS

- 1 -

-

PROFIL (II) 5/15/74 PROFIL (II)

NAME
profil − execution time profile

SYNOPSIS
(profil = 44.; not in assembler)
sys profil; buff; bufsiz; offset; scale

profil(buff, bufsiz, offset, scale)
char buff[];
int bufsiz, offset, scale;

DESCRIPTION
Buff points to an area of core whose length (in bytes) is given bybufsiz. After this call, the
user’s program counter (pc) is examined each clock tick (60th second);offsetis subtracted from
it, and the result multiplied byscale. If the resulting number corresponds to a word insidebuff,
that word is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with binary point at the left:
177777(8) gives a 1-1 mapping of pc’s to words inbuff; 77777(8) maps each pair of instruction
words together. 2(8) maps all instructions onto the beginning ofbuff (producing a non-
interrupting core clock).

Profiling is turned off by giving ascaleof 0 or 1. It is rendered ineffective by giving abufsizof
0. Profiling is also turned off when anexecis executed but remains on in child and parent both
after afork.

SEE ALSO
monitor (III), prof (I)

DIAGNOSTICS
−

- 1 -

-

PTRACE (II) 1/25/75 PTRACE (II)

NAME
ptrace − process trace

SYNOPSIS
(ptrace = 26.; not in assembler)
(data in r0)
sys ptrace; pid; addr; request
(value in r0)

ptrace(request, pid, addr, data);

DESCRIPTION
Ptraceprovides a means by which a parent process may control the execution of a child process,
and examine and change its core image. Its primary use is for the implementation of breakpoint
debugging, but it should be adaptable for simulation of non-UNIX environments. There are four
arguments whose interpretation depends on arequestargument. Generally,pid is the process ID
of the traced process, which must be a child (no more distant descendant) of the tracing process.
A process being traced behaves normally until it encounters some signal whether internally gen-
erated like ‘‘illegal instruction’’ or externally generated like ‘‘interrupt.’’ See signal (II) for the
list. Then the traced process enters a stopped state and its parent is notified viawait (II). When
the child is in the stopped state, its core image can be examined and modified usingptrace. If
desired, anotherptracerequest can then cause the child either to terminate or to continue, possi-
bly ignoring the signal.

The value of therequestargument determines the precise action of the call:

0 This request is the only one used by the child process; it declares that the process is to be
traced by its parent. All the other arguments are ignored. Peculiar results will ensue if the
parent does not expect to trace the child.

1,2 The word in the child process’s address space ataddr is returned (in r0). Request 1 indi-
cates the data space (normally used); 2 indicates the instruction space (when I and D space
are separated).addrmust be even. The child must be stopped. The inputdata is ignored.

3 The word of the system’s per-process data area corresponding toaddr is returned. Addr
must be even and less than 512. This space contains the registers and other information
about the process; its layout corresponds to theuserstructure in the system.

4,5 The givendata is written at the word in the process’s address space corresponding toaddr,
which must be even. No useful value is returned. Request 4 specifies data space (normally
used), 5 specifies instruction space. Attempts to write in pure procedure result in termina-
tion of the child, instead of going through or causing an error for the parent.

6 The process’s system data is written, as it is read with request 3. Only a few locations can
be written in this way: the general registers, the floating point status and registers, and cer-
tain bits of the processor status word.

7 Thedata argument is taken as a signal number and the child’s execution continues as if it
had incurred that signal. Normally the signal number will be either 0 to indicate that the
signal which caused the stop should be ignored, or that value fetched out of the process’s
image indicating which signal caused the stop.

8 The traced process terminates.

As indicated, these calls (except for request 0) can be used only when the subject process has
stopped. Thewait call is used to determine when a process stops; in such a case the ‘‘termina-
tion’’ status returned bywait has the value 0177 to indicate stoppage rather than genuine termi-
nation.

To forestall possible fraud,ptraceinhibits the set-user-id facility on subsequentexec(II)
calls.

- 1 -

-

PTRACE (II) 1/25/75 PTRACE (II)

SEE ALSO
wait (II), signal (II), cdb (I)

DIAGNOSTICS
From assembler, the c-bit (error bit) is set on errors; from C,�1 is returned anderrno has the er-
ror code.

BUGS
The request 0 call should be able to specify signals which are to be treated normally and not
cause a stop. In this way, for example, programs with simulated floating point (which use ‘‘ille-
gal instruction’’ signals at a very high rate) could be efficiently debugged.

Also, it should be possible to stop a process on occurrence of a system call; in this way a com-
pletely controlled environment could be provided.

- 2 -

-

READ (II) 8/5/73 READ (II)

NAME
read − read from file

SYNOPSIS
(read = 3.)
(file descriptor in r0)
sys read; buffer; nbytes

read(fildes, buffer, nbytes)
char *buffer;

DESCRIPTION
A file descriptor is a word returned from a successfulopen, creat, dup,or pipecall. Buffer is the
location ofnbytescontiguous bytes into which the input will be placed. It is not guaranteed that
all nbytesbytes will be read; for example if the file refers to a typewriter at most one line will be
returned. In any event the number of characters read is returned (in r0).

If the returned value is 0, then end-of-file has been reached.

SEE ALSO
open (II), creat (II), dup (II), pipe (II)

DIAGNOSTICS
As mentioned, 0 is returned when the end of the file has been reached. If the read was otherwise
unsuccessful the error bit (c-bit) is set. Many conditions can generate an error: physical I/O er-
rors, bad buffer address, preposterousnbytes,file descriptor not that of an input file. From C, a
−1 return indicates the error.

- 1 -

-

SEEK (II) 8/5/73 SEEK (II)

NAME
seek − move read/write pointer

SYNOPSIS
(seek = 19.)
(file descriptor in r0)
sys seek; offset; ptrname

seek(fildes, offset, ptrname)

DESCRIPTION
The file descriptor refers to a file open for reading or writing. The read (resp. write) pointer for
the file is set as follows:

if ptrnameis 0, the pointer is set tooffset.

if ptrnameis 1, the pointer is set to its current location plusoffset.

if ptrnameis 2, the pointer is set to the size of the file plusoffset.

if ptrnameis 3, 4 or 5, the meaning is as above for 0, 1 and 2 except that the offset is multi-
plied by 512.

If ptrnameis 0 or 3,offsetis unsigned, otherwise it is signed.

SEE ALSO
open (II), creat (II)

DIAGNOSTICS
The error bit (c-bit) is set for an undefined file descriptor. From C, a −1 return indicates an error.

- 1 -

-

SETGID (II) 8/5/73 SETGID (II)

NAME
setgid − set process group ID

SYNOPSIS
(setgid = 46.; not in assembler)
(group ID in r0)
sys setgid

setgid(gid)

DESCRIPTION
The group ID of the current process is set to the argument. Both the effective and the real group
ID are set. This call is only permitted to the super-user or if the argument is the real group ID.

SEE ALSO
getgid (II)

DIAGNOSTICS
Error bit (c-bit) is set as indicated; from C, a −1 value is returned.

- 1 -

-

SETUID (II) 8/5/73 SETUID (II)

NAME
setuid − set process user ID

SYNOPSIS
(setuid = 23.)
(user ID in r0)
sys setuid

setuid(uid)

DESCRIPTION
The user ID of the current process is set to the argument. Both the effective and the real user ID
are set. This call is only permitted to the super-user or if the argument is the real user ID.

SEE ALSO
getuid (II)

DIAGNOSTICS
Error bit (c-bit) is set as indicated; from C, a −1 value is returned.

- 1 -

-

SIGNAL (II) 8/5/73 SIGNAL (II)

NAME
signal − catch or ignore signals

SYNOPSIS
(signal = 48.)
sys signal; sig; label
(old value in r0)

signal(sig, func)
int (*func)();

DESCRIPTION
A signal is generated by some abnormal event, initiated either by user at a typewriter (quit, inter-
rupt), by a program error (bus error, etc.), or by request of another program (kill). Normally all
signals cause termination of the receiving process, but this call allows them either to be ignored
or to cause an interrupt to a specified location. Here is the list of signals:

1 hangup
2 interrupt
3* quit
4* illegal instruction (not reset when caught)
5* trace trap (not reset when caught)
6* IOT instruction
7* EMT instruction
8* floating point exception
9 kill (cannot be caught or ignored)
10* bus error
11* segmentation violation
12* bad argument to system call
13 write on a pipe with no one to read it

In the assembler call, iflabel is 0, the process is terminated when the signal occurs; this is the
default action. Iflabel is odd, the signal is ignored. Any other evenlabel specifies an address in
the process where an interrupt is simulated. An RTI or RTT instruction will return from the in-
terrupt. Except as indicated, a signal is reset to 0 after being caught. Thus if it is desired to catch
every such signal, the catching routine must issue anothersignalcall.

In C, if func is 0, the default action for signalsig (termination) is reinstated. Iffunc is 1, the sig-
nal is ignored. Iffunc is non-zero and even, it is assumed to be the address of a function entry
point. When the signal occurs, the function will be called. A return from the function will con-
tinue the process at the point it was interrupted. As in the assembler call,signalmust in general
be called again to catch subsequent signals.

When a caught signal occurs during certain system calls, the call terminates prematurely. In par-
ticular this can occur during aread or write on a slow device (like a typewriter; but not a file);
and during orwait. When such a signal occurs, the saved user status is arranged in such a way
that when return from the signal-catching takes place, it will appear that the system call returned
a characteristic error status. The user’s program may then, if it wishes, re-execute the call.

The starred signals in the list above cause a core image if not caught or ignored.

The value of the call is the old action defined for the signal.

After a fork (II) the child inherits all signals.Exec(II) resets all caught signals to default action.

SEE ALSO
kill (I), kill (II), ptrace (II), reset (III)

DIAGNOSTICS
The error bit (c-bit) is set if the given signal is out of range. In C, a−1 indicates an error; 0 indi-
cates success.

- 1 -

-

SIGNAL (II) 8/5/73 SIGNAL (II)

BUGS

- 2 -

-

SLEEP (II) 8/5/73 SLEEP (II)

NAME
sleep − stop execution for interval

SYNOPSIS
(sleep = 35.; not in assembler)
(seconds in r0)
sys sleep

sleep(seconds)

DESCRIPTION
The current process is suspended from execution for the number of seconds specified by the ar-
gument.

SEE ALSO
sleep (I)

DIAGNOSTICS
−

- 1 -

-

STAT (II) 8/5/73 STAT (II)

NAME
stat − get file status

SYNOPSIS
(stat = 18.)
sys stat; name; buf

stat(name, buf)
char *name;
struct inode *buf;

DESCRIPTION
Namepoints to a null-terminated string naming a file;buf is the address of a 36(10) byte buffer
into which information is placed concerning the file. It is unnecessary to have any permissions
at all with respect to the file, but all directories leading to the file must be readable. Afterstat,
buf has the following structure (starting offset given in bytes):

struct inode {
char minor; /* +0: minor device of i-node */
char major; /* +1: major device */
int inumber; /* +2 */
int flags; /* +4: see below */
char nlinks; /* +6: number of links to file */
char uid; /* +7: user ID of owner */
char gid; /* +8: group ID of owner */
char size0; /* +9: high byte of 24-bit size */
int size1; /* +10: low word of 24-bit size */
int addr[8]; /* +12: block numbers or device number */
int actime[2]; /* +28: time of last access */
int modtime[2]; /* +32: time of last modification */

};

The flags are as follows:

100000 i-node is allocated
060000 2-bit file type:

000000 plain file
040000 directory
020000 character-type special file
060000 block-type special file.

010000 large file
004000 set user-ID on execution
002000 set group-ID on execution
001000 save text image after execution
000400 read (owner)
000200 write (owner)
000100 execute (owner)
000070 read, write, execute (group)
000007 read, write, execute (others)

SEE ALSO
ls (I), fstat (II), fs (V)

DIAGNOSTICS
Error bit (c-bit) is set if the file cannot be found. From C, a −1 return indicates an error.

- 1 -

-

STIME (II) 8/5/73 STIME (II)

NAME
stime − set time

SYNOPSIS
(stime = 25.)
(time in r0-r1)
sys stime

stime(tbuf)
int tbuf[2];

DESCRIPTION
Stimesets the system’s idea of the time and date. Time is measured in seconds from 0000 GMT
Jan 1 1970. Only the super-user may use this call.

SEE ALSO
date (I), time (II), ctime (III)

DIAGNOSTICS
Error bit (c-bit) set if user is not the super-user.

- 1 -

-

STTY (II) 12/15/74 STTY (II)

NAME
stty − set mode of typewriter

SYNOPSIS
(stty = 31.)
(file descriptor in r0)
sys stty; arg
...
arg: .byte ispeed, ospeed; .byte erase, kill; mode

stty(fildes, arg)
struct {

char ispeed, ospeed;
char erase, kill;
int mode;

} *arg;

DESCRIPTION
Sttysets mode bits and character speeds for the typewriter whose file descriptor is passed in r0
(resp. is the first argument to the call). First, the system delays until the typewriter is quiescent.
The input and output speeds are set from the first two bytes of the argument structure as indi-
cated by the following table, which corresponds to the speeds supported by the DH-11 interface.
If DC-11, DL-11 or KL-11 interfaces are used, impossible speed changes are ignored.

0 (hang up dataphone)
1 50 baud
2 75 baud
3 110 baud
4 134.5 baud
5 150 baud
6 200 baud
7 300 baud
8 600 baud
9 1200 baud
10 1800 baud
11 2400 baud
12 4800 baud
13 9600 baud
14 External A
15 External B

In the current configuration, only 110, 150 and 300 baud are really supported on dial-up lines, in
that the code conversion and line control required for IBM 2741’s (134.5 baud) must be imple-
mented by the user’s program, and the half-duplex line discipline required for the 202 dataset
(1200 baud) is not supplied.

The next two characters of the argument structure specify the erase and kill characters respec-
tively. (Defaults are # and @.)

Themodecontains several bits which determine the system’s treatment of the typewriter:

100000 Select one of two algorithms for backspace delays
040000 Select one of two algorithms for form-feed and vertical-tab delays
030000 Select one of four algorithms for carriage-return delays
006000 Select one of four algorithms for tab delays
001400 Select one of four algorithms for new-line delays
000200 even parity allowed on input (e. g. for M37s)
000100 odd parity allowed on input
000040 raw mode: wake up on all characters
000020 map CR into LF; echo LF or CR as CR-LF

- 1 -

-

STTY (II) 12/15/74 STTY (II)

000010 echo (full duplex)
000004 map upper case to lower on input (e. g. M33)
000002 echo and print tabs as spaces
000001 hang up (remove ‘data terminal ready,’ lead CD) after last close

The delay bits specify how long transmission stops to allow for mechanical or other movement
when certain characters are sent to the terminal. In all cases a value of 0 indicates no delay.

Backspace delays are currently ignored but will be used for Terminet 300’s.

If a form-feed/vertical tab delay is specified, it lasts for about 2 seconds.

Carriage-return delay type 1 lasts about .08 seconds and is suitable for the Terminet 300. Delay
type 2 lasts about .16 seconds and is suitable for the VT05 and the TI 700. Delay type 3 is unim-
plemented and is 0.

New-line delay type 1 is dependent on the current column and is tuned for Teletype model 37’s.
Type 2 is useful for the VT05 and is about .10 seconds. Type 3 is unimplemented and is 0.

Tab delay type 1 is dependent on the amount of movement and is tuned to the Teletype model
37. Other types are unimplemented and are 0.

Characters with the wrong parity, as determined by bits 200 and 100, are ignored.

In raw mode, every character is passed immediately to the program without waiting until a full
line has been typed. No erase or kill processing is done; the end-of-file character (EOT), the in-
terrupt character (DEL) and the quit character (FS) are not treated specially.

Mode 020 causes input carriage returns to be turned into new-lines; input of either CR or LF
causes LF-CR both to be echoed (used for GE TermiNet 300’s and other terminals without the
newline function).

The hangup mode 01 causes the line to be disconnected when the last process with the line open
closes it or terminates. It is useful when a port is to be used for some special purpose; for exam-
ple, if it is associated with an ACU used to place outgoing calls.

This system call is also used with certain special files other than typewriters, but since none of
them are part of the standard system the specifications will not be given.

SEE ALSO
stty (I), gtty (II)

DIAGNOSTICS
The error bit (c-bit) is set if the file descriptor does not refer to a typewriter. From C, a negative
value indicates an error.

- 2 -

-

SYNC (II) 8/5/73 SYNC (II)

NAME
sync − update super-block

SYNOPSIS
(sync = 36.; not in assembler)
sys sync

DESCRIPTION
Synccauses all information in core memory that should be on disk to be written out. This in-
cludes modified super blocks, modified i-nodes, and delayed block I/O.

It should be used by programs which examine a file system, for exampleicheck, df,etc. It is
mandatory before a boot.

SEE ALSO
sync (VIII), update (VIII)

DIAGNOSTICS
−

- 1 -

-

TIME (II) 8/5/73 TIME (II)

NAME
time − get date and time

SYNOPSIS
(time = 13.)
sys time

time(tvec)
int tvec[2];

DESCRIPTION
Time returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in seconds. Fromas, the
high order word is in the r0 register and the low order is in r1. From C, the user-supplied vector
is filled in.

SEE ALSO
date (I), stime (II), ctime (III)

DIAGNOSTICS
−

- 1 -

-

TIMES (II) 8/5/73 TIMES (II)

NAME
times − get process times

SYNOPSIS
(times = 43.; not in assembler)
sys times; buffer

times(buffer)
struct tbuffer *buffer;

DESCRIPTION
Timesreturns time-accounting information for the current process and for the terminated child
processes of the current process. All times are in 1/60 seconds.

After the call, the buffer will appear as follows:

struct tbuffer {
int proc_user_time;
int proc_system_time;
int child_user_time[2];
int child_system_time[2];

};

The children times are the sum of the children’s process times and their children’s times.

SEE ALSO
time (I)

DIAGNOSTICS
−

BUGS
The process times should be 32 bits as well.

- 1 -

-

UMOUNT (II) 8/5/73 UMOUNT (II)

NAME
umount − dismount file system

SYNOPSIS
(umount = 22.)
sys umount; special

DESCRIPTION
Umountannounces to the system that special filespecialis no longer to contain a removable file
system. The file associated with the special file reverts to its ordinary interpretation; seemount
(II).

SEE ALSO
umount (VIII), mount (II)

DIAGNOSTICS
Error bit (c-bit) set if no file system was mounted on the special file or if there are still active
files on the mounted file system.

- 1 -

-

UNLINK (II) 8/5/73 UNLINK (II)

NAME
unlink − remove directory entry

SYNOPSIS
(unlink = 10.)
sys unlink; name

unlink(name)
char *name;

DESCRIPTION
Namepoints to a null-terminated string.Unlink removes the entry for the file pointed to by
namefrom its directory. If this entry was the last link to the file, the contents of the file are freed
and the file is destroyed. If, however, the file was open in any process, the actual destruction is
delayed until it is closed, even though the directory entry has disappeared.

SEE ALSO
rm (I), rmdir (I), link (II)

DIAGNOSTICS
The error bit (c-bit) is set to indicate that the file does not exist or that its directory cannot be
written. Write permission is not required on the file itself. It is also illegal to unlink a directory
(except for the super-user). From C, a −1 return indicates an error.

- 1 -

-

WAIT (II) 2/9/75 WAIT (II)

NAME
wait − wait for process to terminate

SYNOPSIS
(wait = 7.)
sys wait
(process ID in r0)
(status in r1)

wait(status)
int *status;

DESCRIPTION
Wait causes its caller to delay until one of its child processes terminates. If any child has died
since the lastwait, return is immediate; if there are no children, return is immediate with the er-
ror bit set (resp. with a value of−1 returned). The normal return yields the process ID of the ter-
minated child (in r0). In the case of several children severalwait calls are needed to learn of all
the deaths.

If no error is indicated on return, the r1 high byte (resp. the high byte stored intostatus) contains
the low byte of the child process r0 (resp. the argument ofexit) when it terminated. The r1
(resp. status) low byte contains the termination status of the process. See signal (II) for a list of
termination statuses (signals); 0 status indicates normal termination. A special status (0177) is
returned for a stopped process which has not terminated and can be restarted. See ptrace (II). If
the 0200 bit of the termination status is set, a core image of the process was produced by the sys-
tem.

If the parent process terminates without waiting on its children, the initialization process (pro-
cess ID = 1) inherits the children.

SEE ALSO
exit (II), fork (II), signal (II)

DIAGNOSTICS
The error bit (c-bit) is set if there are no children not previously waited for. From C, a returned
value of −1 indicates an error.

- 1 -

-

WRITE (II) 8/5/73 WRITE (II)

NAME
write − write on a file

SYNOPSIS
(write = 4.)
(file descriptor in r0)
sys write; buffer; nbytes

write(fildes, buffer, nbytes)
char *buffer;

DESCRIPTION
A file descriptor is a word returned from a successfulopen, creat, dup,or pipecall.

Buffer is the address ofnbytescontiguous bytes which are written on the output file. The num-
ber of characters actually written is returned (in r0). It should be regarded as an error if this is
not the same as requested.

Writes which are multiples of 512 characters long and begin on a 512-byte boundary in the file
are more efficient than any others.

SEE ALSO
creat (II), open (II), pipe (II)

DIAGNOSTICS
The error bit (c-bit) is set on an error: bad descriptor, buffer address, or count; physical I/O er-
rors. From C, a returned value of −1 indicates an error.

- 1 -

-

ABORT (III) 4/10/75 ABORT (III)

NAME
abort − generate an IOT fault

SYNOPSIS
abort()

DESCRIPTION
Abort executes the IOT instruction. This is usually considered a program fault by the system and
results in termination with a core dump. It is used to generate a core image for debugging.

SEE ALSO
db (I), cdb (I), signal (II)

DIAGNOSTICS
usually ‘‘IOT trap -- core dumped’’ from the Shell.

BUGS

- 1 -

-

ABS (III) 2/9/75 ABS (III)

NAME
abs, fabs − absolute value

SYNOPSIS
abs(i)
int i;

double fabs(x)
double x;

DESCRIPTION
Absreturns the absolute value of its integer operand;fabsis thedoubleversion.

- 1 -

-

ALLOC (III) 3/1/74 ALLOC (III)

NAME
alloc, free − core allocator

SYNOPSIS
char *alloc(size)

free(ptr)
char *ptr;

DESCRIPTION
Alloc andfreeprovide a simple general-purpose core management package.Alloc is given a size
in bytes; it returns a pointer to an area at least that size which is even and hence can hold an ob-
ject of any type. The argument tofree is a pointer to an area previously allocated byalloc; this
space is made available for further allocation.

Needless to say, grave disorder will result if the space assigned byalloc is overrun or if some
random number is handed tofree.

The routine uses a first-fit algorithm which coalesces blocks being freed with other blocks al-
ready free. It callssbrk (seebreak (II)) to get more core from the system when there is no suit-
able space already free.

DIAGNOSTICS
Returns −1 if there is no available core.

BUGS
Allocated memory contains garbage instead of being cleared.

- 1 -

-

ATAN (III) 4/30/73 ATAN (III)

NAME
atan, atan2 − arc tangent function

SYNOPSIS
jsr pc,atan[2]

double atan(x)
double x;

double atan2(x, y)
double x, y;

DESCRIPTION
Theatanentry returns the arc tangent of fr0 in fr0; from C, the arc tangent ofx is returned. The
range is −π/2 to π/2. Theatan2entry returns the arc tangent of fr0/fr1 in fr0; from C, the arc tan-
gent ofx/y is returned. The range is −πto π.

DIAGNOSTIC
There is no error return.

BUGS

- 1 -

-

ATOF (III) 4/30/73 ATOF (III)

NAME
atof − convert ASCII to floating

SYNOPSIS
double atof(nptr)
char *nptr;

DESCRIPTION
Atof converts a string to a floating number.Nptr should point to a string containing the number;
the first unrecognized character ends the number.

The only numbers recognized are: an optional minus sign followed by a string of digits option-
ally containing one decimal point, then followed optionally by the lettere followed by a signed
integer.

DIAGNOSTICS
There are none; overflow results in a very large number and garbage characters terminate the
scan.

BUGS
The routine should accept initial+, initial blanks, andE for e. Overflow should be signalled.

- 1 -

-

ATOI (III) 2/8/75 ATOI (III)

NAME
atoi − convert ASCII to integer

SYNOPSIS
atoi(nptr)
char *nptr;

DESCRIPTION
Atoi converts the string pointed to bynptr to an integer. The string can contain leading blanks or
tabs, an optional ‘�’, and then an unbroken string of digits. Conversion stops at the first non-
digit.

SEE ALSO
atof (III)

BUGS
There is no provision for overflow.

- 1 -

-

CRYPT (III) 4/30/73 CRYPT (III)

NAME
crypt − password encoding

SYNOPSIS
mov $key,r0
jsr pc,crypt

char *crypt(key)
char *key;

DESCRIPTION
On entry, r0 points to a string of characters terminated by an ASCII NUL. The routine performs
an operation on the key which is difficult to invert (i.e. encrypts it) and leaves the resulting eight
bytes of ASCII alphanumerics in a global cell called ‘‘word’’.

From C, thekeyargument is a string and the value returned is a pointer to the eight-character re-
sult.

This routine is used to encrypt all passwords.

SEE ALSO
passwd(I), passwd(V), login(I)

BUGS
Short or otherwise simple passwords can be decrypted easily by exhaustive search. Six charac-
ters of gibberish is reasonably safe.

- 1 -

-

CTIME (III) 10/15/73 CTIME (III)

NAME
ctime, localtime, gmtime− convert date and time to ASCII

SYNOPSIS
char *ctime(tvec)
int tvec[2];

[from Fortran]
double precision ctime
... = ctime(dummy)

int *localtime(tvec)
int tvec[2];

int *gmtime(tvec)
int tvec[2];

DESCRIPTION
Ctimeconverts a time in the vectortvecsuch as returned by time (II) into ASCII and returns a
pointer to a character string in the form

Sun Sep 16 01:03:52 1973\n\0

All the fields have constant width.

The localtimeandgmtimeentries return pointers to integer vectors containing the broken-down
time. Localtimecorrects for the time zone and possible daylight savings time;gmtimeconverts
directly to GMT, which is the time UNIX uses. The value is a pointer to an array whose compo-
nents are

0 seconds
1 minutes
2 hours
3 day of the month (1-31)
4 month (0-11)
5 year − 1900
6 day of the week (Sunday = 0)
7 day of the year (0-365)
8 Daylight Saving Time flag if non-zero

The external variabletimezonecontains the difference, in seconds, between GMT and local stan-
dard time (in EST, is 5*60*60); the external variabledaylight is non-zero iff the standard U.S.A.
Daylight Savings Time conversion should be applied. The program knows about the peculiari-
ties of this conversion in 1974 and 1975; if necessary, a table for these years can be extended.

A routine namedctime is also available from Fortran. Actually it more resembles thetime (II)
system entry in that it returns the number of seconds since the epoch 0000 GMT Jan. 1, 1970 (as
a floating-point number).

SEE ALSO
time(II)

BUGS

- 1 -

-

ECVT (III) 4/30/73 ECVT (III)

NAME
ecvt, fcvt − output conversion

SYNOPSIS
jsr pc,ecvt

jsr pc,fcvt

char *ecvt(value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *fcvt(value, ndigit, decpt, sign)
...

DESCRIPTION
Ecvt is called with a floating point number in fr0.

On exit, the number has been converted into a string of ascii digits in a buffer pointed to by r0.
The number of digits produced is controlled by a global variable_ndigits.

Moreover, the position of the decimal point is contained in r2: r2=0 means the d.p. is at the left
hand end of the string of digits; r2>0 means the d.p. is within or to the right of the string.

The sign of the number is indicated by r1 (0 for +; 1 for −).

The low order digit has suffered decimal rounding (i. e. may have been carried into).

From C, thevalue is converted and a pointer to a null-terminated string ofndigit digits is re-
turned. The position of the decimal point is stored indirectly throughdecpt(negative means to
the left of the returned digits). If the sign of the result is negative, the word pointed to bysign is
non-zero, otherwise it is zero.

Fcvt is identical toecvt, except that the correct digit been rounded for F-style output of the num-
ber of digits specified by_ndigits.

SEE ALSO
printf (III)

BUGS

- 1 -

-

END (III) 4/28/75 END (III)

NAME
end, etext, edata − last locations in program

SYNOPSIS
extern end;
extern etext;
extern edata;

DESCRIPTION
These names refer neither to routines nor to locations with interesting contents. Instead, their ad-
dresses coincide with the first address above the program text region(etext),above the initialized
data region(edata),or uninitialized data region(end). The last is the same as the program break.
Values are given to these symbols by the link editorld (I) when, and only when, they are referred
to but not defined in the set of programs loaded.

The usage of these symbols is rather specialized, but one plausible possibility is

extern end;
...
... = brk(&end+...);

(seebreak(II)). The problem with this is that it ignores any other subroutines which may want
to extend core for their purposes; these includesbrk (seebreak(II)), alloc (III), and also secret
subroutines invoked by the profile (�p) option ofcc. Of course it was for the benefit of such sys-
tems that the symbols were invented, and user programs, unless they are in firm control of their
environment, are wise not to refer to the absolute symbols directly.

One technique sometimes useful is to callsbrk(0),which returns the value of the current program
break, instead of referring to&end,which yields the program break at the instant execution start-
ed.

These symbols are accessible from assembly language if it is remembered that they should be
prefixed by ‘_’

SEE ALSO
break (II), alloc (III)

BUGS

- 1 -

-

EXP (III) 4/30/73 EXP (III)

NAME
exp − exponential function

SYNOPSIS
jsr pc,exp

double exp(x)
double x;

DESCRIPTION
The exponential of fr0 is returned in fr0. From C, the exponential ofx is returned.

DIAGNOSTICS
If the result is not representable, the c-bit is set and the largest positive number is returned.
From C, no diagnostic is available.

Zero is returned if the result would underflow.

BUGS

- 1 -

-

FLOOR (III) 5/15/74 FLOOR (III)

NAME
floor, ceil − floor and ceiling functions

SYNOPSIS
double floor(x)
double x;

double ceil(x)
double x;

DESCRIPTION
The floor function returns the largest integer (as a double precision number) not greater thanx.

The ceil function returns the smallest integer not less thanx.

BUGS

- 1 -

-

FMOD (III) 2/13/75 FMOD (III)

NAME
fmod − floating modulo function

SYNOPSIS
double fmod(x, y)
double x, y;

DESCRIPTION
Fmodreturns the numberf such thatx = iy + f, i is an integer, and 0 f f < y.

BUGS

- 1 -

-

FPTRAP (III) 11/18/73 FPTRAP (III)

NAME
fptrap − floating point interpreter

SYNOPSIS
sys signal; 4; fptrap

DESCRIPTION
Fptrap is a simulator of the 11/45 FP11-B floating point unit. It works by intercepting illegal in-
struction traps and decoding and executing the floating point operation codes.

FILES
In systems with real floating point, there is a fake routine in /lib/liba.a with this name; when sim-
ulation is desired, the real version should be put in liba.a

DIAGNOSTICS
A break point trap is given when a real illegal instruction trap occurs.

SEE ALSO
signal (II), cc (I) (‘�f’ option)

BUGS
Rounding mode is not interpreted. It’s slow.

- 1 -

-

GETARG (III) 11/24/73 GETARG (III)

NAME
getarg, iargc − get command arguments from Fortran

SYNOPSIS
call getarg (i, iarray [, isize])

... = iargc(dummy)

DESCRIPTION
Thegetargentry fills in iarray (which is considered to beinteger)with the Hollerith string rep-
resenting thei th argument to the command in which it it is called. If noisizeargument is speci-
fied, at least one blank is placed after the argument, and the last word affected is blank padded.
The user should make sure that the array is big enough.

If the isizeargument is given, the argument will be followed by blanks to fill upisizewords, but
even if the argument is long no more than that many words will be filled in.

The blank-padded array is suitable for use as an argument to setfil (III).

The iargc entry returns the number of arguments to the command, counting the first (file-name)
argument.

SEE ALSO
exec (II), setfil (III)

BUGS

- 1 -

-

GETC (III) 4/30/72 GETC (III)

NAME
getc, getw, fopen− buffered input

SYNOPSIS
mov $filename,r0
jsr r5,fopen; iobuf

fopen(filename, iobuf)
char *filename;
struct buf *iobuf;

jsr r5,getc; iobuf
(character in r0)

getc(iobuf)
struct buf *iobuf;

jsr r5,getw; iobuf
(word in r0)

getw(iobuf)
struct buf *iobuf;

DESCRIPTION
These routines provide a buffered input facility.Iobuf is the address of a 518(10) byte buffer
area whose contents are maintained by these routines. Its structure is

struct buf {
int fildes; /* File descriptor */
int nleft; /* Chars left in buffer */
char *nextp; /* Ptr to next character */
char buff[512]; /* The buffer */

};

Fopenmay be called initially to open the file. On return, the error bit (c-bit) is set if the open
failed. If fopenis never called,get will read from the standard input file. From C, the value is
negative if the open failed.

Getcreturns the next byte from the file in r0. The error bit is set on end of file or a read error.
From C, the character is returned as an integer, without sign extension; it is−1 on end-of-file or
error.

Getwreturns the next word in r0.Getcandgetwmay be used alternately; there are no odd/even
problems.Getw is may be called from C;−1 is returned on end-of-file or error, but of course is
also a legitimate value.

Iobufmust be provided by the user; it must be on a word boundary.

To reuse the same buffer for another file, it is sufficient to close the original file and callfopen
again.

SEE ALSO
open (II), read (II), getchar (III), putc (III)

DIAGNOSTICS
c-bit set on EOF or error; from C, negative return indicates error or EOF. Moreover,errno is set
by this routine just as it is for a system call (see introduction (II)).

BUGS

- 1 -

-

GETCHAR (III) 4/7/73 GETCHAR (III)

NAME
getchar − read character

SYNOPSIS
getchar()

DESCRIPTION
Getcharprovides the simplest means of reading characters from the standard input for C pro-
grams. It returns successive characters until end-of-file, when it returns ‘‘\0’’.

Associated with this routine is an external variable calledfin, which is a structure containing a
buffer such as described undergetc(III).

Generally speaking,getcharshould be used only for the simplest applications;getc is better
when there are multiple input files.

SEE ALSO
getc (III)

DIAGNOSTICS
Null character returned on EOF or error.

BUGS
−1 should be returned on EOF; null is a legitimate character.

- 1 -

-

GETPW (III) 4/7/73 GETPW (III)

NAME
getpw − get name from UID

SYNOPSIS
getpw(uid, buf)
char *buf;

DESCRIPTION
Getpwsearches the password file for the (numerical)uid, and fills in buf with the corresponding
line; it returns non-zero ifuid could not be found. The line is null-terminated.

FILES
/etc/passwd

SEE ALSO
passwd (V)

DIAGNOSTICS
non-zero return on error.

BUGS

- 1 -

-

HMUL (III) 4/7/73 HMUL (III)

NAME
hmul − high-order product

SYNOPSIS
hmul(x, y)

DESCRIPTION
Hmul returns the high-order 16 bits of the product ofx andy. (The binary multiplication opera-
tor generates the low-order 16 bits of a product.)

BUGS

- 1 -

-

IERROR (III) 10/29/73 IERROR (III)

NAME
ierror − catch Fortran errors

SYNOPSIS
if (ierror (errno) .ne. 0) gotolabel

DESCRIPTION
Ierror provides a way of detecting errors during the running of a Fortran program. Its argument
is a run-time error number such as enumerated infc (I).

When ierror is called, it returns a 0 value; thus thegoto statement in the synopsis is not exe-
cuted. However, the routine stores inside itself the call point and invocation level. If and when
the indicated error occurs, areturn is simulated fromierror with a non-zero value; thus thegoto
(or other statement) is executed. It is a ghastly error to callierror from a subroutine which has
already returned when the error occurs.

This routine is essentially tailored to catching end-of-file situations. Typically it is called just
before the start of the loop which reads the input file, and thegoto jumps to a graceful termina-
tion of the program.

There is a limit of 5 on the number of different error numbers which can be caught.

SEE ALSO
fc (I)

BUGS
There is no way to ignore errors.

- 1 -

-

LDIV (III) 5/7/73 LDIV (III)

NAME
ldiv, lrem − long division

SYNOPSIS
ldiv(hidividend, lodividend, divisor)

lrem(hidividend, lodividend, divisor)

DESCRIPTION
The concatenation of the signed 16-bithidividendand the unsigned 16-bitlodividendis divided
by divisor. The 16-bit signed quotient is returned byldiv and the 16-bit signed remainder is re-
turned bylrem. Divide check and erroneous results will occur unless the magnitude of the divi-
sor is greater than that of the high-order dividend.

An integer division of an unsigned dividend by a signed divisor may be accomplished by

quo = ldiv(0, dividend, divisor);

and similarly for the remainder operation.

Often both the quotient and the remainder are wanted. Thereforeldiv leaves a remainder in the
external cellldivr.

BUGS
No divide check check.

- 1 -

-

LOCV (III) 3/9/74 LOCV (III)

NAME
locv − long output conversion

SYNOPSIS
char *locv(hi, lo)
int hi, lo;

DESCRIPTION
Locv converts a signed double-precision integer, whose parts are passed as arguments, to the
equivalent ASCII character string and returns a pointer to that string.

BUGS
Sincelocv returns a pointer to a static buffer containing the converted result, it cannot be used
twice in the same expression; the second result overwrites the first.

- 1 -

-

LOG (III) 4/30/72 LOG (III)

NAME
log − natural logarithm

SYNOPSIS
jsr pc,log

double log(x)
double x;

DESCRIPTION
The natural logarithm of fr0 is returned in fr0. From C, the natural logarithm ofx is returned.

DIAGNOSTICS
The error bit (c-bit) is set if the input argument is less than or equal to zero and the result is a
negative number very large in magnitude. From C, there is no error indication.

BUGS

- 1 -

-

MONITOR (III) 2/11/74 MONITOR (III)

NAME
monitor − prepare execution profile

SYNOPSIS
monitor(lowpc, highpc, buffer, bufsize)
int lowpc(), highpc(), buffer[], bufsize;

DESCRIPTION
Monitor is an interface to the system’s profile entry (II).Lowpcandhighpcare the names of two
functions;buffer is the address of a (user supplied) array ofbufsizeintegers. Monitor arranges
for the system to sample the user’s program counter periodically and record the execution his-
togram in the buffer. The lowest address sampled is that oflowpcand the highest is just below
highpc. For the results to be significant, especially where there are small, heavily used routines,
it is suggested that the buffer be no more than a few times smaller than the range of locations
sampled.

To profile the entire program, it is sufficient to use

extern etext;
...
monitor(2, &etext, buf, bufsize);

Etextis a loader-defined symbol which lies just above all the program text.

To stop execution monitoring and write the results on the filemon.out,use

monitor(0);

Then, when the program exits, prof (I) can be used to examine the results.

It is seldom necessary to call this routine directly; the−p option ofcc is simpler if one is satis-
fied with its default profile range and resolution.

FILES
mon.out

SEE ALSO
prof (I), profil (II), cc (I)

- 1 -

-

NARGS (III) 5/10/73 NARGS (III)

NAME
nargs − argument count

SYNOPSIS
nargs()

DESCRIPTION
Nargs returns the number of actual parameters supplied by the caller of the routine which calls
nargs.

The argument count is accurate only when none of the actual parameters isfloat or double. Such
parameters count as four arguments instead of one.

BUGS
As indicated. Also, this routine does not work (and cannot be made to work) in programs with
separated I and D space. Altogether it is best to avoid using this routine and depend, for exam-
ple, on passing an explicit argument count.

- 1 -

-

NLIST (III) 6/12/72 NLIST (III)

NAME
nlist − get entries from name list

SYNOPSIS
nlist(filename, nl)
char *filename;
struct {

char name[8];
int type;
int value;

} nl[];

DESCRIPTION
Nlist examines the name list in the given executable output file and selectively extracts a list of
values. The name list consists of a list of 8-character names (null padded) each followed by two
words. The list is terminated with a null name. Each name is looked up in the name list of the
file. If the name is found, the type and value of the name are placed in the two words following
the name. If the name is not found, the type entry is set to −1.

This subroutine is useful for examining the system name list kept in the file/unix. In this way
programs can obtain system addresses that are up to date.

SEE ALSO
a.out (V)

DIAGNOSTICS
All type entries are set to −1 if the file cannot be found or if it is not a valid namelist.

BUGS

- 1 -

-

PERROR (III) 11/5/73 PERROR (III)

NAME
perror, sys_errlist, sys_nerr, errno − system error messages

SYNOPSIS
perror(s)
char *s;

int sys_nerr;
char *sys_errlist[];

int errno;

DESCRIPTION
Perror produces a short error message describing the last error encountered during a call to the
system from a C program. First the argument strings is printed, then a colon, then the message
and a new-line. Most usefully, the argument string is the name of the program which incurred
the error. The error number is taken from the external variableerrno, which is set when errors
occur but not cleared when non-erroneous calls are made.

To simplify variant formatting of messages, the vector of message stringssys_errlist is provided;
errno can be used as an index in this table to get the message string without the newline.
Sys_nerr is the largest message number provided for in the table; it should be checked because
new error codes may be added to the system before they are added to the table.

SEE ALSO
Introduction to System Calls

BUGS

- 1 -

-

POW (III) 4/30/73 POW (III)

NAME
pow − floating exponentiation

SYNOPSIS
movf x,fr0
movf y,fr1
jsr pc,pow

double pow(x,y)
double x, y;

DESCRIPTION
Pow returns the value ofxy (in fr0). Pow(0.0, y)is 0 for anyy. Pow(−x, y) returns a result only
if y is an integer.

SEE ALSO
exp (III), log (III)

DIAGNOSTICS
The carry bit is set on return in case of overflow,pow(0.0, 0.0),or pow(−x, y) for non-integraly.
From C there is no diagnostic.

BUGS

- 1 -

-

PRINTF (III) 9/17/73 PRINTF (III)

NAME
printf − formatted print

SYNOPSIS
printf(format, arg 1, ...);
char *format;

DESCRIPTION
Printf converts, formats, and prints its arguments after the first under control of the first argu-
ment. The first argument is a character string which contains two types of objects: plain charac-
ters, which are simply copied to the output stream, and conversion specifications, each of which
causes conversion and printing of the next successive argument toprintf.

Each conversion specification is introduced by the character% . Following the% , there may be

− an optional minus sign ‘‘−’’ which specifiesleft adjustmentof the converted argument in
the indicated field;

− an optional digit string specifying afield width; if the converted argument has fewer
characters than the field width it will be blank-padded on the left (or right, if the left-
adjustment indicator has been given) to make up the field width;

− an optional period ‘‘.’’ which serves to separate the field width from the next digit string;

− an optional digit string(precision)which specifies the number of digits to appear after
the decimal point, for e- and f-conversion, or the maximum number of characters to be
printed from a string;

− a character which indicates the type of conversion to be applied.

The conversion characters and their meanings are

d
o
x The integer argument is converted to decimal, octal, or hexadecimal notation respec-

tively.

f The argument is converted to decimal notation in the style ‘‘[−]ddd.ddd’’ where the num-
ber of d’s after the decimal point is equal to the precision specification for the argument.
If the precision is missing, 6 digits are given; if the precision is explicitly 0, no digits and
no decimal point are printed. The argument should befloat or double.

e The argument is converted in the style ‘‘[−]d.ddde±dd’’ where there is one digit before
the decimal point and the number after is equal to the precision specification for the argu-
ment; when the precision is missing, 6 digits are produced. The argument should be a
float or doublequantity.

c The argument character is printed.

s The argument is taken to be a string (character pointer) and characters from the string are
printed until a null character or until the number of characters indicated by the precision
specification is reached; however if the precision is 0 or missing all characters up to a
null are printed.

l The argument is taken to be an unsigned integer which is converted to decimal and print-
ed (the result will be in the range 0 to 65535).

If no recognizable character appears after the% , that character is printed; thus% may be printed
by use of the string%% . In no case does a non-existent or small field width cause truncation of
a field; padding takes place only if the specified field width exceeds the actual width. Characters
generated byprintf are printed by callingputchar.

SEE ALSO
putchar (III)

- 1 -

-

PRINTF (III) 9/17/73 PRINTF (III)

BUGS
Very wide fields (>128 characters) fail.

- 2 -

-

PUTC (III) 6/12/72 PUTC (III)

NAME
putc, putw, fcreat, fflush− buffered output

SYNOPSIS
mov $filename,r0
jsr r5,fcreat; iobuf

fcreat(file, iobuf)
char *file;
struct buf *iobuf;

(get byte in r0)
jsr r5,putc; iobuf

putc(c, iobuf)
int c;
struct buf *iobuf;

(get word in r0)
jsr r5,putw; iobuf

putw(w, iobuf);
int w;
struct buf *iobuf;

jsr r5,flush; iobuf

fflush(iobuf)
struct buf *iobuf;

DESCRIPTION
Fcreatcreates the given file (mode 666) and sets up the bufferiobuf (size 518 bytes);putc and
putwwrite a byte or word respectively onto the file;flush forces the contents of the buffer to be
written, but does not close the file. The structure of the buffer is:
struct buf {

int fildes; /* File descriptor */
int nunused; /* Remaining slots */
char *xfree; /* Ptr to next free slot */
char buff[512]; /* The buffer */

};

Before terminating, a program should callflush to force out the last of the output(fflush from C).

The user must supplyiobuf,which should begin on a word boundary.

To write a new file using the same buffer, it suffices to call[f]flush, close the file, and callfcreat
again.

SEE ALSO
creat (II), write (II), getc (III)

DIAGNOSTICS
Fcreatsets the error bit (c-bit) if the file creation failed (from C, returns−1). Putcandputw re-
turn their character (word) argument. In all callserrno is set appropriately to 0 or to a system er-
ror number. See introduction (II).

BUGS

- 1 -

-

PUTCHAR (III) 5/10/73 PUTCHAR (III)

NAME
putchar, flush − write character

SYNOPSIS
putchar(ch)

flush()

DESCRIPTION
Putcharwrites out its argument and returns it unchanged. Only the low-order byte is written,
and only if it is non-null. Unless other arrangements have been made,putchar writes in un-
buffered fashion on the standard output file.

Associated with this routine is an external variablefout which has the structure of a buffer dis-
cussed under putc (III). If the file descriptor part of this structure (first word) is greater than 2,
output viaputcharis buffered. To achieve buffered output one may say, for example,

fout = dup(1); or
fout = creat(...);

In such a caseflush must be called before the program terminates in order to flush out the buf-
fered output.Flushmay be called at any time.

SEE ALSO
putc (III)

BUGS
Thefout notion is kludgy.

- 1 -

-

QSORT (III) 2/8/75 QSORT (III)

NAME
qsort − quicker sort

SYNOPSIS
qsort(base, nel, width, compar)
char *base;
int (*compar)();

DESCRIPTION
Qsort is an implementation of the quicker-sort algorithm. The first argument is a pointer to the
base of the data; the second is the number of elements; the third is the width of an element in
bytes; the last is the name of the comparison routine. It is called with two arguments which are
pointers to the elements being compared. The routine must return an integer less than, equal to,
or greater than 0 according as the first argument is to be considered less than, equal to, or greater
than the second.

SEE ALSO
sort (I)

BUGS

- 1 -

-

RAND (III) 1/15/73 RAND (III)

NAME
rand, srand − random number generator

SYNOPSIS
(seed in r0)
jsr pc,srand /to initialize

jsr pc,rand /to get a random number

srand(seed)
int seed;

rand()

DESCRIPTION
Randuses a multiplicative congruential random number generator to return successive pseudo-
random numbers (in r0) in the range from 0 to 215−1.

The generator is reinitialized by callingsrandwith 1 as argument (in r0). It can be set to a ran-
dom starting point by callingsrandwith whatever you like as argument, for example the low-
order word of the time.

BUGS
The low-order bits are not very random.

- 1 -

-

RESET (III) 5/10/73 RESET (III)

NAME
reset, setexit − execute non-local goto

SYNOPSIS
setexit()

reset()

DESCRIPTION
These routines are useful for dealing with errors and interrupts encountered in a low-level sub-
routine of a program.

Setexitsaves its stack environment in a static place for later use byreset.

Resetrestores the environment saved by the last call ofsetexit. It then returns in such a way that
execution continues as if the call ofsetexithad just returned. All accessible data have values as
of the timeresetwas called.

The routine that calledsetexitmust still be active whenresetis called.

SEE ALSO
signal (II)

BUGS

- 1 -

-

SETFIL (III) 10/29/73 SETFIL (III)

NAME
setfil − specify Fortran file name

SYNOPSIS
call setfil (unit, hollerith-string)

DESCRIPTION
Setfilprovides a primitive way to associate an integer I/Ounit number with a file named by the
hollerith-string. The end of the file name is indicated by a blank. Subsequent I/O on this unit
number will refer to the file whose name is specified by the string.

Setfil should be called only before any I/O has been done on theunit, or just after doing a
rewind or endfile. It is ineffective for unit numbers 5 and 6.

SEE ALSO
fc (I)

BUGS
The exclusion of units 5 and 6 is unwarranted.

- 1 -

-

SIN (III) 3/15/72 SIN (III)

NAME
sin, cos − trigonometric functions

SYNOPSIS
jsr pc,sin (cos)

double sin(x)
double x;

double cos(x)
double x;

DESCRIPTION
The sine (cosine) of fr0 (resp.x), measured in radians, is returned (in fr0).

The magnitude of the argument should be checked by the caller to make sure the result is mean-
ingful.

BUGS

- 1 -

-

SQRT (III) 3/15/72 SQRT (III)

NAME
sqrt − square root function

SYNOPSIS
jsr pc,sqrt

double sqrt(x)
double x;

DESCRIPTION
The square root of fr0 (resp.x) is returned (in fr0).

DIAGNOSTICS
The c-bit is set on negative arguments and 0 is returned. There is no error return for C programs.

BUGS
No error return from C.

- 1 -

-

TTYN (III) 1/15/73 TTYN (III)

NAME
ttyn − return name of current typewriter

SYNOPSIS
jsr pc,ttyn

ttyn(file)

DESCRIPTION
Ttyn hunts up the last character of the name of the typewriter which is the standard input (from
as) or is specified by the argumentfile descriptor (from C). Ifn is returned, the typewriter name
is then ‘‘/dev/ttyn’’.

x is returned if the indicated file does not correspond to a typewriter.

BUGS

- 1 -

-

CAT (IV) 10/27/73 CAT (IV)

NAME
cat − phototypesetter interface

DESCRIPTION
Cat provides the interface to a Graphic Systems C/A/T phototypesetter. Bytes written on the file
specify font, size, and other control information as well as the characters to be flashed. The cod-
ing will not be described here.

Only one process may have this file open at a time. It is write-only.

FILES
/dev/cat

SEE ALSO
troff (I), Graphic Systems specification (available on request)

BUGS

- 1 -

-

DH (IV) 5/27/74 DH (IV)

NAME
dh − DH-11 communications multiplexer

DESCRIPTION
Each line attached to the DH-11 communications multiplexer behaves as described in tty (IV).
Input and output for each line may independently be set to run at any of 16 speeds; see stty (II)
for the encoding.

FILES
/dev/tty[f-u]

SEE ALSO
tty (IV), stty (II)

BUGS

- 1 -

-

DN (IV) 3/20/74 DN (IV)

NAME
dn − DN-11 ACU interface

DESCRIPTION
Thedn? files are write-only. The permissible codes are:

0-9 dial 0-9
: dial *
; dial #
− 4 second delay for second dial tone
= end-of-number

The entire telephone number must be presented in a singlewrite system call.

It is recommended that an end-of-number code be given even though not all ACU’s actually re-
quire it.

FILES
/dev/dn0connected to 801 with dp0
/dev/dn1not currently connected
/dev/dn2not currently connected

SEE ALSO
dp (IV)

BUGS

- 1 -

-

DP (IV) 8/24/73 DP (IV)

NAME
dp − DP-11 201 data-phone interface

DESCRIPTION
The dp0 file is a 201 data-phone interface.Readandwrite calls to dp0 are limited to a maxi-
mum of 512 bytes. Each write call is sent as a single record. Seven bits from each byte are writ-
ten along with an eighth odd parity bit. The sync must be user supplied. Each read call returns
characters received from a single record. Seven bits are returned unaltered; the eighth bit is set if
the byte was not received in odd parity. A 10 second time out is set and a zero-byte record is re-
turned if nothing is received in that time.

FILES
/dev/dp0

SEE ALSO
dn (IV), gerts (III)

BUGS

- 1 -

-

HP (IV) 2/9/75 HP (IV)

NAME
hp − RH-11/RP04 moving-head disk

DESCRIPTION
The fileshp0 ... hp7refer to sections of RP disk drive 0. The fileshp8 ... hp15refer to drive 1
etc. This is done since the size of a full RP drive is 170,544 blocks and internally the system is
only capable of addressing 65536 blocks. Also since the disk is so large, this allows it to be bro-
ken up into more manageable pieces.

The origin and size of the pseudo-disks on each drive are as follows:

disk start length
0 0 9614
1 18392 65535
2 48018 65535
3 149644 20900
4 0 40600
5 41800 40600
6 83600 40600
7 125400 40600

It is unwise for all of these files to be present in one installation, since there is overlap in ad-
dresses and protection becomes a sticky matter.

Thehp files access the disk via the system’s normal buffering mechanism and may be read and
written without regard to physical disk records. There is also a ‘‘raw’’ interface which provides
for direct transmission between the disk and the user’s read or write buffer. A single read or
write call results in exactly one I/O operation and therefore raw I/O is considerably more effi-
cient when many words are transmitted. The names of the raw RP files begin withrhp and end
with a number which selects the same disk section as the correspondinghp file.

In raw I/O the buffer must begin on a word boundary, and counts should be a multiple of 512
bytes (a disk block). Likewiseseekcalls should specify a multiple of 512 bytes.

FILES
/dev/hp?, /dev/rhp?

BUGS

- 1 -

-

HS (IV) 2/9/75 HS (IV)

NAME
hs − RH11/RS03-RS04 fixed-head disk file

DESCRIPTION
The fileshs0 ... hs7refer to RJS03 disk drives 0 through 7. The fileshs8 ... hs15refer to RJS04
disk drives 0 through 7. The RJS03 drives are each 1024 blocks long and the RJS04 drives are
2048 blocks long.

Thehs files access the disk via the system’s normal buffering mechanism and may be read and
written without regard to physical disk records. There is also a ‘‘raw’’ inteface which provides
for direct transmission between the disk and the user’s read or write buffer. A single read or
write call results in exactly one I/O operation and therefore raw I/O is considerably more effi-
cient when many words are transmitted. The names of the raw HS files begin withrhs. The
same minor device considerations hold for the raw interface as for the normal interface.

In raw I/O the buffer must begin on a word boundary, and counts should be a multiple of 512
bytes (a disk block). Likewiseseekcalls should specify a multiple of 512 bytes.

FILES
/dev/hs?, /dev/rhs?

BUGS

- 1 -

-

HT (IV) 2/9/75 HT (IV)

NAME
ht − RH-11/TU-16 magtape interface

DESCRIPTION
The files mt0, ..., mt7refer to the DEC RH/TM/TU16 magtape. When opened for reading or
writing, the tape is rewound. When closed, it is rewound; if it was open for writing, a double
end-of-file is written first.

A standard tape consists of a series of 512 byte records terminated by a double end-of-file. To
the extent possible, the system makes it possible, if inefficient, to treat the tape like any other
file. Seeks have their usual meaning and it is possible to read or write a byte at a time. Writing
in very small units is inadvisable, however, because it tends to create monstrous record gaps.

Themt files discussed above are useful when it is desired to access the tape in a way compatible
with ordinary files. When foreign tapes are to be dealt with, and especially when long records
are to be read or written, the ‘‘raw’’ interface is appropriate. The associated files are named
rmt0, ..., rmt7. Eachreador write call reads or writes the next record on the tape. In the write
case the record has the same length as the buffer given. During a read, the record size is passed
back as the number of bytes read, provided it is no greater than the buffer size; if the record is
long, an error is indicated. In raw tape I/O, the buffer must begin on a word boundary and the
count must be even. Seeks are ignored. An error is returned when a tape mark is read, but an-
other read will fetch the first record of the new tape file.

FILES
/dev/mt?, /dev/rmt?

SEE ALSO
tp (I)

BUGS
Raw I/O doesnt work yet. The magtape system is supposed to be able to take 64 drives. Such
addressing has never been tried. These bugs will be fixed when we get more experience with
this device.

If any non-data error is encountered, it refuses to do anything more until closed. In raw I/O,
there should be a way to perform forward and backward record and file spacing and to write an
EOF mark.

- 1 -

-

KL (IV) 5/27/74 KL (IV)

NAME
kl − KL-11 or DL-11 asynchronous interface

DESCRIPTION
The discussion of typewriter I/O given in tty (IV) applies to these devices.

Since they run at a constant speed, attempts to change the speed via stty (II) are ignored.

The on-line console typewriter is interfaced using a KL-11 or DL-11. By appropriate switch set-
tings during a reboot, UNIX will come up as a single-user system with I/O on the console type-
writer.

FILES
/dev/tty8console

SEE ALSO
tty (IV), init (VIII)

BUGS
Modem control for the DL-11E is not implemented.

- 1 -

-

LP (IV) 5/27/74 LP (IV)

NAME
lp − line printer

DESCRIPTION
Lp provides the interface to any of the standard DEC line printers. When it is opened or closed,
a suitable number of page ejects is generated. Bytes written are printed.

An internal parameter within the driver determines whether or not the device is treated as having
a 96- or 64-character set. In half-ASCII mode, lower case letters are turned into upper case and
certain characters are escaped according to the following table:

{ −(
} −)
` −́
 −!
˜ −̂

The driver correctly interprets carriage returns, backspaces, tabs, and form feeds. A sequence of
newlines which extends over the end of a page is turned into a form feed. All lines are indented
8 characters. Lines longer than 80 characters are truncated. These numbers are parameters in the
driver; another parameter allows indenting all printout if it is unpleasantly near the left margin.

FILES
/dev/lp

SEE ALSO
lpr (I)

BUGS
Half-ASCII mode, the indent and the maximum line length should be settable by a call analo-
gous to stty (II).

- 1 -

-

MEM (IV) 5/27/74 MEM (IV)

NAME
mem, kmem, null− core memory

DESCRIPTION
Mem is a special file that is an image of the core memory of the computer. It may be used, for
example, to examine, and even to patch the system using the debugger.

A memory address is an 18-bit quantity which is used directly as a UNIBUS address. Refer-
ences to non-existent locations cause errors to be returned.

Examining and patching device registers is likely to lead to unexpected results when read-only or
write-only bits are present.

The file kmemis the same asmemexcept that kernel virtual memory rather than physical mem-
ory is accessed. In particular, the I/O area ofkmemis located beginning at 160000 (octal) rather
than at 760000. The 1K region beginning at 140000 (octal) is the system’s data for the current
process.

The filenull returns end-of-file onreadand ignoreswrite.

FILES
/dev/mem, /dev/kmem, /dev/null

- 1 -

-

PC (IV) 10/15/73 PC (IV)

NAME
pc − PC-11 paper tape reader/punch

DESCRIPTION
Ppt refers to the PC-11 paper tape reader or punch, depending on whether it is read or written.

Whenppt is opened for writing, a 100-character leader is punched. Thereafter each byte written
is punched on the tape. No editing of the characters is performed. When the file is closed, a
100-character trailer is punched.

Whenppt is opened for reading, the process waits until tape is placed in the reader and the reader
is on-line. Then requests to read cause the characters read to be passed back to the program,
again without any editing. This means that several null leader characters will usually appear at
the beginning of the file. Likewise several nulls are likely to appear at the end. End-of-file is
generated when the tape runs out.

Seek calls for this file are meaningless.

FILES
/dev/ppt

BUGS
If both the reader and the punch are open simultaneously, the trailer is sometimes not punched.
Sometimes the reader goes into a dead state in which it cannot be opened.

- 1 -

-

RF (IV) 10/15/73 RF (IV)

NAME
rf − RF11/RS11 fixed-head disk file

DESCRIPTION
This file refers to the concatenation of all RS-11 disks.

Each disk contains 1024 256-word blocks. The length of the combined RF file is 1024×(mi-
nor+1) blocks. That is minor device zero is taken to be 1024 blocks long; minor device one is
2048, etc.

Therf0 file accesses the disk via the system’s normal buffering mechanism and may be read and
written without regard to physical disk records. There is also a ‘‘raw’’ interface which provides
for direct transmission between the disk and the user’s read or write buffer. A single read or
write call results in exactly one I/O operation and therefore raw I/O is considerably more effi-
cient when many words are transmitted. The name of the raw RF file isrrf0. The same minor
device considerations hold for the raw interface as for the normal interface.

In raw I/O the buffer must begin on a word boundary, and counts should be a multiple of 512
bytes (a disk block). Likewiseseekcalls should specify a multiple of 512 bytes.

FILES
/dev/rf0, /dev/rrf0

BUGS
The 512-byte restrictions on the raw device are not physically necessary, but are still imposed.

- 1 -

-

RK (IV) 10/15/73 RK (IV)

NAME
rk − RK-11/RK03 (or RK05) disk

DESCRIPTION
Rk? refers to an entire RK03 disk as a single sequentially-addressed file. Its 256-word blocks
are numbered 0 to 4871.

Drive numbers (minor devices) of eight and larger are treated specially. Drive 8+x is the x+1
way interleaving of devices rk0 to rkx. Thus blocks on rk10 are distributed alternately among
rk0, rk1, and rk2.

The rk files discussed above access the disk via the system’s normal buffering mechanism and
may be read and written without regard to physical disk records. There is also a ‘‘raw’’ interface
which provides for direct transmission between the disk and the user’s read or write buffer. A
single read or write call results in exactly one I/O operation and therefore raw I/O is considerably
more efficient when many words are transmitted. The names of the raw RK files begin withrrk
and end with a number which selects the same disk as the correspondingrk file.

In raw I/O the buffer must begin on a word boundary, and counts should be a multiple of 512
bytes (a disk block). Likewiseseekcalls should specify a multiple of 512 bytes.

FILES
/dev/rk?, /dev/rrk?

BUGS
Care should be taken in using the interleaved files. First, the same drive should not be accessed
simultaneously using the ordinary name and as part of an interleaved file, because the same
physical blocks have in effect two different names; this fools the system’s buffering strategy.
Second, the combined files cannot be used for swapping or raw I/O.

- 1 -

-

RP (IV) 2/21/74 RP (IV)

NAME
rp − RP-11/RP03 moving-head disk

DESCRIPTION
The filesrp0 ... rp7refer to sections of RP disk drive 0. The filesrp8 ... rp15refer to drive 1 etc.
This is done since the size of a full RP drive is 81200 blocks and internally the system is only ca-
pable of addressing 65536 blocks. Also since the disk is so large, this allows it to be broken up
into more manageable pieces.

The origin and size of the pseudo-disks on each drive are as follows:

disk start length
0 0 40600
1 40600 40600
2 0 9200
3 72000 9200
4 0 65535
5 15600 65535
6-7 unassigned

It is unwise for all of these files to be present in one installation, since there is overlap in ad-
dresses and protection becomes a sticky matter. Here is a suggestion for two useful configura-
tions: If the root of the file system is on some other device and the RP used as a mounted device,
thenrp0 andrp1, which divide the disk into two equal size portions, is a good idea. Other things
being equal, it is advantageous to have two equal-sized portions since one can always be copied
onto the other, which is occasionally useful.

If the RP is the only disk and has to contain the root and the swap area, the root can be put on
rp2 and a mountable file system onrp5. Then the swap space can be put in the unused blocks
9200 to 15600 ofrp0 (or, equivalently,rp4). This arrangement puts the root file system, the
swap area, and the i-list of the mounted file system relatively near each other and thus tends to
minimize head movement.

The rp files access the disk via the system’s normal buffering mechanism and may be read and
written without regard to physical disk records. There is also a ‘‘raw’’ interface which provides
for direct transmission between the disk and the user’s read or write buffer. A single read or
write call results in exactly one I/O operation and therefore raw I/O is considerably more effi-
cient when many words are transmitted. The names of the raw RP files begin withrrp and end
with a number which selects the same disk section as the correspondingrp file.

In raw I/O the buffer must begin on a word boundary, and counts should be a multiple of 512
bytes (a disk block). Likewiseseekcalls should specify a multiple of 512 bytes.

FILES
/dev/rp?, /dev/rrp?

BUGS

- 1 -

-

TC (IV) 10/15/73 TC (IV)

NAME
tc − TC-11/TU56 DECtape

DESCRIPTION
The filestap0 ... tap7refer to the TC-11/TU56 DECtape drives 0 to 7.

The 256-word blocks on a standard DECtape are numbered 0 to 577.

FILES
/dev/tap?

SEE ALSO
tp (I)

BUGS

- 1 -

-

TM (IV) 2/21/74 TM (IV)

NAME
tm − TM-11/TU-10 magtape interface

DESCRIPTION
The filesmt0, ..., mt7refer to the DEC TU10/TM11 magtape. When opened for reading or writ-
ing, the tape is rewound. When closed, it is rewound; if it was open for writing, an end-of-file is
written first.

A standard tape consists of a series of 512 byte records terminated by an end-of-file. To the ex-
tent possible, the system makes it possible, if inefficient, to treat the tape like any other file.
Seeks have their usual meaning and it is possible to read or write a byte at a time. Writing in
very small units is inadvisable, however, because it tends to create monstrous record gaps.

Themt files discussed above are useful when it is desired to access the tape in a way compatible
with ordinary files. When foreign tapes are to be dealt with, and especially when long records
are to be read or written, the ‘‘raw’’ interface is appropriate. The associated files are named
rmt0, ..., rmt7. Eachreador write call reads or writes the next record on the tape. In the write
case the record has the same length as the buffer given. During a read, the record size is passed
back as the number of bytes read, provided it is no greater than the buffer size; if the record is
long, an error is indicated. In raw tape I/O, the buffer must begin on a word boundary and the
count must be even. Seeks are ignored. An error is returned when a tape mark is read, but an-
other read will fetch the first record of the new tape file.

FILES
/dev/mt?, /dev/rmt?

SEE ALSO
tp (I)

BUGS
If any non-data error is encountered, it refuses to do anything more until closed. In raw I/O,
there should be a way to perform forward and backward record and file spacing and to write an
EOF mark.

- 1 -

-

TTY (IV) 5/27/74 TTY (IV)

NAME
tty − general typewriter interface

DESCRIPTION
This section describes both a particular special file, and the general nature of the typewriter inter-
face.

The file /dev/tty is, in each process, a synonym for the control typewriter associated with that
process. It is useful for programs or Shell sequences which wish to be sure of writing messages
on the typewriter no matter how output has been redirected. It can also be used for programs
which demand a file name for output, when typed output is desired and it is tiresome to find out
which typewriter is currently in use.

As for typewriters in general: all of the low-speed asynchronous communications ports use the
same general interface, no matter what hardware is involved. The remainder of this section dis-
cusses the common features of the interface; the KL, DC, and DH writeups (IV) describe pecu-
liarities of the individual devices.

When a typewriter file is opened, it causes the process to wait until a connection is established.
In practice user’s programs seldom open these files; they are opened byinit and become a user’s
input and output file. The very first typewriter file open in a process becomes thecontrol type-
writer for that process. The control typewriter plays a special role in handling quit or interrupt
signals, as discussed below. The control typewriter is inherited by a child process during afork.

A terminal associated with one of these files ordinarily operates in full-duplex mode. Characters
may be typed at any time, even while output is occurring, and are only lost when the system’s
character input buffers become completely choked, which is rare, or when the user has accumu-
lated the maximum allowed number of input characters which have not yet been read by some
program. Currently this limit is 256 characters. When the input limit is reached all the saved
characters are thrown away without notice.

These special files have a number of modes which can be changed by use of thesttysystem call
(II). When first opened, the interface mode is 300 baud; either parity accepted; 10 bits/character
(one stop bit); and newline action character. Modes that can be changed bystty include the inter-
face speed (if the hardware permits); acceptance of even parity, odd parity, or both; a raw mode
in which all characters may be read one at a time; a carriage return (CR) mode in which CR is
mapped into newline on input and either CR or line feed (LF) cause echoing of the sequence
LF-CR; mapping of upper case letters into lower case; suppression of echoing; a variety of de-
lays after function characters; and the printing of tabs as spaces. Seegetty(VIII) for the way that
terminal speed and type are detected.

Normally, typewriter input is processed in units of lines. This means that a program attempting
to read will be suspended until an entire line has been typed. Also, no matter how many charac-
ters are requested in the read call, at most one line will be returned. It is not however necessary
to read a whole line at once; any number of characters may be requested in a read, even one,
without losing information.

During input, erase and kill processing is normally done. By default, the character ‘#’ erases the
last character typed, except that it will not erase beyond the beginning of a line or an EOT. By
default, the character ‘@’ kills the entire line up to the point where it was typed, but not beyond
an EOT. Both these characters operate on a keystroke basis independently of any backspacing or
tabbing that may have been done. Either ‘@’ or ‘#’ may be entered literally by preceding it by
‘\’; the erase or kill character remains, but the ‘\’ disappears. These two characters may be
changed to others.

When desired, all upper-case letters are mapped into the corresponding lower-case letter. The
upper-case letter may be generated by preceding it by ‘\’. In addition, the following escape se-
quences are generated on output and accepted on input:

for use
` \´
 \!

- 1 -

-

TTY (IV) 5/27/74 TTY (IV)

˜ \ˆ
{ \(
} \)

In raw mode, the program reading is awakened on each character. No erase or kill processing is
done; and the EOT, quit and interrupt characters are not treated specially. The input parity bit is
passed back to the reader, but parity is still generated for output characters.

The ASCII EOT (control-D) character may be used to generate an end of file from a typewriter.
When an EOT is received, all the characters waiting to be read are immediately passed to the
program, without waiting for a new-line, and the EOT is discarded. Thus if there are no charac-
ters waiting, which is to say the EOT occurred at the beginning of a line, zero characters will be
passed back, and this is the standard end-of-file indication. The EOT is passed back unchanged
in raw mode.

When the carrier signal from the dataset drops (usually because the user has hung up his termi-
nal) a hangupsignal is sent to all processes with the typewriter as control typewriter. Unless
other arrangements have been made, this signal causes the processes to terminate. If the hangup
signal is ignored, any read returns with an end-of-file indication. Thus programs which read a
typewriter and test for end-of-file on their input can terminate appropriately when hung up on.

Two characters have a special meaning when typed. The ASCII DEL character (sometimes
called ‘rubout’) is not passed to a program but generates aninterrupt signal which is sent to all
processes with the associated control typewriter. Normally each such process is forced to termi-
nate, but arrangements may be made either to ignore the signal or to receive a trap to an agreed-
upon location. Seesignal(II).

The ASCII character FS generates thequit signal. Its treatment is identical to the interrupt signal
except that unless a receiving process has made other arrangements it will not only be terminated
but a core image file will be generated. If you find it hard to type this character, try control-\ or
control-shift-L.

When one or more characters are written, they are actually transmitted to the terminal as soon as
previously-written characters have finished typing. Input characters are echoed by putting them
in the output queue as they arrive. When a process produces characters more rapidly than they
can be typed, it will be suspended when its output queue exceeds some limit. When the queue
has drained down to some threshold the program is resumed. Even parity is always generated on
output. The EOT character is not transmitted (except in raw mode) to prevent terminals which
respond to it from hanging up.

FILES
/dev/tty

SEE ALSO
dc (IV), kl (IV), dh (IV), getty (VIII), stty (I, II), gtty (I, II), signal (II)

BUGS
Half-duplex terminals are not supported. On raw-mode output, parity should be transmitted as
specified in the characters written.

- 2 -

-

A.OUT (V) 9/9/73 A.OUT (V)

NAME
a.out − assembler and link editor output

DESCRIPTION
A.outis the output file of the assemblerasand the link editorld. Both programs makea.outexe-
cutable if there were no errors and no unresolved external references.

This file has four sections: a header, the program and data text, a symbol table, and relocation
bits (in that order). The last two may be empty if the program was loaded with the ‘‘−s’’ option
of ld or if the symbols and relocation have been removed bystrip.

The header always contains 8 words:

1 A magic number (407, 410, or 411(8))
2 The size of the program text segment
3 The size of the initialized portion of the data segment
4 The size of the uninitialized (bss) portion of the data segment
5 The size of the symbol table
6 The entry location (always 0 at present)
7 Unused
8 A flag indicating relocation bits have been suppressed

The sizes of each segment are in bytes but are even. The size of the header is not included in any
of the other sizes.

When a file produced by the assembler or loader is loaded into core for execution, three logical
segments are set up: the text segment, the data segment (with uninitialized data, which starts off
as all 0, following initialized), and a stack. The text segment begins at 0 in the core image; the
header is not loaded. If the magic number (word 0) is 407, it indicates that the text segment is
not to be write-protected and shared, so the data segment is immediately contiguous with the text
segment. If the magic number is 410, the data segment begins at the first 0 mod 8K byte bound-
ary following the text segment, and the text segment is not writable by the program; if other pro-
cesses are executing the same file, they will share the text segment. If the magic number is 411,
the text segment is again pure, write-protected, and shared, and moreover instruction and data
space are separated; the text and data segment both begin at location 0. See the 11/45 handbook
for restrictions which apply to this situation.

The stack will occupy the highest possible locations in the core image: from 177776(8) and
growing downwards. The stack is automatically extended as required. The data segment is only
extended as requested by thebreaksystem call.

The start of the text segment in the file is 20(8); the start of the data segment is 20+St (the size of
the text) the start of the relocation information is 20+St+Sd; the start of the symbol table is
20+2(St+Sd) if the relocation information is present, 20+St+Sd if not.

The symbol table consists of 6-word entries. The first four words contain the ASCII name of the
symbol, null-padded. The next word is a flag indicating the type of symbol. The following val-
ues are possible:

00 undefined symbol
01 absolute symbol
02 text segment symbol
03 data segment symbol
37 file name symbol (produced by ld)
04 bss segment symbol
40 undefined external (.globl) symbol
41 absolute external symbol
42 text segment external symbol
43 data segment external symbol
44 bss segment external symbol

- 1 -

-

A.OUT (V) 9/9/73 A.OUT (V)

Values other than those given above may occur if the user has defined some of his own instruc-
tions.

The last word of a symbol table entry contains the value of the symbol.

If the symbol’s type is undefined external, and the value field is non-zero, the symbol is inter-
preted by the loaderld as the name of a common region whose size is indicated by the value of
the symbol.

The value of a word in the text or data portions which is not a reference to an undefined external
symbol is exactly that value which will appear in core when the file is executed. If a word in the
text or data portion involves a reference to an undefined external symbol, as indicated by the re-
location bits for that word, then the value of the word as stored in the file is an offset from the as-
sociated external symbol. When the file is processed by the link editor and the external symbol
becomes defined, the value of the symbol will be added into the word in the file.

If relocation information is present, it amounts to one word per word of program text or initial-
ized data. There is no relocation information if the ‘‘suppress relocation’’ flag in the header is
on.

Bits 3-1 of a relocation word indicate the segment referred to by the text or data word associated
with the relocation word:

00 indicates the reference is absolute
02 indicates the reference is to the text segment
04 indicates the reference is to initialized data
06 indicates the reference is to bss (uninitialized data)
10 indicates the reference is to an undefined external symbol.

Bit 0 of the relocation word indicates ifon that the reference is relative to the pc (e.g. ‘‘clr x’’); if
off, that the reference is to the actual symbol (e.g., ‘‘clr *$x’’).

The remainder of the relocation word (bits 15-4) contains a symbol number in the case of exter-
nal references, and is unused otherwise. The first symbol is numbered 0, the second 1, etc.

SEE ALSO
as (I), ld (I), strip (I), nm (I)

- 2 -

-

ARCHIVE (V) 9/10/73 ARCHIVE (V)

NAME
ar − archive (library) file format

DESCRIPTION
The archive commandar is used to combine several files into one. Archives are used mainly as
libraries to be searched by the link-editorld.

A file produced byar has a magic number at the start, followed by the constituent files, each pre-
ceded by a file header. The magic number is 177555(8) (it was chosen to be unlikely to occur
anywhere else). The header of each file is 16 bytes long:

0-7 file name, null padded on the right
8-11 modification time of the file
12 user ID of file owner
13 file mode
14-15 file size

Each file begins on a word boundary; a null byte is inserted between files if necessary. Never-
theless the size give reflects the actual size of the file exclusive of padding.

Notice there is no provision for empty areas in an archive file.

SEE ALSO
ar (I), ld (I)

BUGS
Names are only 8 characters, not 14. More important, there isn’t enough room to store the prop-
er mode, soar always extracts in mode 666.

- 1 -

-

ASCII (V) 6/12/72 ASCII (V)

NAME
ascii − map of ASCII character set

SYNOPSIS
cat /usr/pub/ascii

DESCRIPTION
Ascii is a map of the ASCII character set, to be printed as needed. It contains:

 000 nu l 001 soh 002 s t x 003 e t x 004 eo t 005 enq 006 ack 007 be l
 010 bs  011 h t  012 n l  013 v t  014 np  015 c r  016 so  017 s i 
 020 d l e 021 dc1 022 dc2 023 dc3 024 dc4 025 nak 026 syn 027 e t b
 030 can 031 em  032 sub 033 esc 034 f s  035 gs  036 r s  037 us 
 040 sp  041 !  042 "  043 #  044 $  045 %  046 &  047 ´ 
 050 ( 051)  052 *  053 +  054 ,  055 −  056 .  057 / 
 060 0  061 1  062 2  063 3  064 4  065 5  066 6  067 7 
 070 8  071 9  072 :  073 ;  074 <  075 =  076 >  077 ? 
 100 @  101 A  102 B  103 C  104 D  105 E  106 F  107 G 
 110 H  111 I  112 J  113 K  114 L  115 M  116 N  117 O 
 120 P  121 Q  122 R  123 S  124 T  125 U  126 V  127 W 
 130 X  131 Y  132 Z  133 [ 134 \  135]  136 ˆ  137 _ 
 140 `  141 a  142 b  143 c  144 d  145 e  146 f  147 g 
 150 h  151 i  152 j  153 k  154 l  155 m  156 n  157 o 
 160 p  161 q  162 r  163 s  164 t  165 u  166 v  167 w 
 170 x  171 y  172 z  173 {  174   175 }  176 ˜  177 de l

FILES
found in /usr/pub

- 1 -

-

CORE (V) 2/11/75 CORE (V)

NAME
core − format of core image file

DESCRIPTION
UNIX writes out a core image of a terminated process when any of various errors occur. See
signal (II) for the list of reasons; the most common are memory violations, illegal instructions,
bus errors, and user-generated quit signals. The core image is called ‘‘core’’ and is written in the
process’s working directory (provided it can be; normal access controls apply).

The first 1024 bytes of the core image are a copy of the system’s per-user data for the process,
including the registers as they were at the time of the fault. The remainder represents the actual
contents of the user’s core area when the core image was written. If the text segment is write-
protected and shared, it is not dumped; otherwise the entire address space is dumped.

The format of the information in the first 1024 bytes is described by theuserstructure of the sys-
tem. The important stuff not detailed therein is the locations of the registers. Here are their off-
sets. The parenthesized numbers for the floating registers are used if the floating-point hardware
is in single precision mode, as indicated in the status register.

fpsr 0004
fr0 0006 (0006)
fr1 0036 (0022)
fr2 0046 (0026)
fr3 0056 (0032)
fr4 0016 (0012)
fr5 0026 (0016)
r0 1772
r1 1766
r2 1750
r3 1752
r4 1754
r5 1756
sp 1764
pc 1774
ps 1776

In general the debuggersdb (I) andcdb (I)are sufficient to deal with core images.

SEE ALSO
cdb (I), db (I), signal (II)

- 1 -

-

DIRECTORY (V) 9/10/73 DIRECTORY (V)

NAME
dir − format of directories

DESCRIPTION
A directory behaves exactly like an ordinary file, save that no user may write into a directory.
The fact that a file is a directory is indicated by a bit in the flag word of its i-node entry. Direc-
tory entries are 16 bytes long. The first word is the i-number of the file represented by the entry,
if non-zero; if zero, the entry is empty.

Bytes 2-15 represent the (14-character) file name, null padded on the right. These bytes are not
cleared for empty slots.

By convention, the first two entries in each directory are for ‘‘.’’ and ‘‘ ..’’. The first is an entry
for the directory itself. The second is for the parent directory. The meaning of ‘‘..’’ is modified
for the root directory of the master file system and for the root directories of removable file sys-
tems. In the first case, there is no parent, and in the second, the system does not permit off-
device references. Therefore in both cases ‘‘..’’ has the same meaning as ‘‘.’’.

SEE ALSO
file system (V)

- 1 -

-

DUMP (V) 2/11/75 DUMP (V)

NAME
dump − incremental dump tape format

DESCRIPTION
Thedumpandrestorcommands are used to write and read incremental dump magnetic tapes.

The dump tape consists of blocks of 512-bytes each. The first block has the following structure.

struct {
int isize;
int fsize;
int date[2];
int ddate[2];
int tsize;

};

Isize,and fsizeare the corresponding values from the super block of the dumped file system.
(See file system (V).)Date is the date of the dump.Ddate is the incremental dump date. The
incremental dump contains all files modified betweenddateand date. Tsizeis the number of
blocks per reel. This block checksums to the octal value 031415.

Next there are enough whole tape blocks to contain one word per file of the dumped file system.
This is isizedivided by 16 rounded to the next higher integer. The first word corresponds to i-
node 1, the second to i-node 2, and so forth. If a word is zero, then the corresponding file exists,
but was not dumped. (Was not modified afterddate)If the word is−1, the file does not exist.
Other values for the word indicate that the file was dumped and the value is one more than the
number of blocks it contains.

The rest of the tape contains for each dumped file a header block and the data blocks from the
file. The header contains an exact copy of the i-node (see file system (V)) and also checksums to
031415. The next-to-last word of the block contains the tape block number, to aid in (unimple-
mented) recovery after tape errors. The number of data blocks per file is directly specified by
the control word for the file and indirectly specified by the size in the i-node. If these numbers
differ, the file was dumped with a ‘phase error’.

SEE ALSO
dump (VIII), restor (VIII), file system(V)

- 1 -

-

FILE SYSTEM (V) 2/9/75 FILE SYSTEM (V)

NAME
fs − format of file system volume

DESCRIPTION
Every file system storage volume (e.g. RF disk, RK disk, RP disk, DECtape reel) has a common
format for certain vital information. Every such volume is divided into a certain number of 256
word (512 byte) blocks. Block 0 is unused and is available to contain a bootstrap program, pack
label, or other information.

Block 1 is thesuper block.Starting from its first word, the format of a super-block is

struct {
int isize;
int fsize;
int nfree;
int free[100];
int ninode;
int inode[100];
char flock;
char ilock;
char fmod;
int time[2];

};

Isizeis the number of blocks devoted to the i-list, which starts just after the super-block, in block
2. Fsize is the first block not potentially available for allocation to a file. These numbers are
used by the system to check for bad block numbers; if an ‘‘impossible’’ block number is allo-
cated from the free list or is freed, a diagnostic is written on the on-line console. Moreover, the
free array is cleared, so as to prevent further allocation from a presumably corrupted free list.

The free list for each volume is maintained as follows. Thefree array contains, infree[1], ... ,
free[nfree−1], up to 99 numbers of free blocks.Free[0] is the block number of the head of a
chain of blocks constituting the free list. The first word in each free-chain block is the number
(up to 100) of free-block numbers listed in the next 100 words of this chain member. The first of
these 100 blocks is the link to the next member of the chain. To allocate a block: decrement
nfree,and the new block isfree[nfree]. If the new block number is 0, there are no blocks left, so
give an error. Ifnfree became 0, read in the block named by the new block number, replace
nfreeby its first word, and copy the block numbers in the next 100 words into thefreearray. To
free a block, check ifnfreeis 100; if so, copynfreeand thefreearray into it, write it out, and set
nfreeto 0. In any event setfree[nfree]to the freed block’s number and incrementnfree.

Ninodeis the number of free i-numbers in theinodearray. To allocate an i-node: ifninode is
greater than 0, decrement it and returninode[ninode]. If it was 0, read the i-list and place the
numbers of all free inodes (up to 100) into theinodearray, then try again. To free an i-node,
providedninodeis less than 100, place its number intoinode[ninode]and incrementninode. If
ninodeis already 100, don’t bother to enter the freed i-node into any table. This list of i-nodes is
only to speed up the allocation process; the information as to whether the inode is really free or
not is maintained in the inode itself.

Flock and ilock are flags maintained in the core copy of the file system while it is mounted and
their values on disk are immaterial. The value offmodon disk is likewise immaterial; it is used
as a flag to indicate that the super-block has changed and should be copied to the disk during the
next periodic update of file system information.

Time is the last time the super-block of the file system was changed, and is a double-precision
representation of the number of seconds that have elapsed since 0000 Jan. 1 1970 (GMT). Dur-
ing a reboot, thetimeof the super-block for the root file system is used to set the system’s idea
of the time.

- 1 -

-

FILE SYSTEM (V) 2/9/75 FILE SYSTEM (V)

I-numbers begin at 1, and the storage for i-nodes begins in block 2. Also, i-nodes are 32 bytes
long, so 16 of them fit into a block. Therefore, i-nodei is located in block (i + 31) / 16, and be-
gins 32.((i + 31) (mod 16) bytes from its start. I-node 1 is reserved for the root directory of the
file system, but no other i-number has a built-in meaning. Each i-node represents one file. The
format of an i-node is as follows.

struct {
int flags; /* +0: see below */
char nlinks; /* +2: number of links to file */
char uid; /* +3: user ID of owner */
char gid; /* +4: group ID of owner */
char size0; /* +5: high byte of 24-bit size */
int size1; /* +6: low word of 24-bit size */
int addr[8]; /* +8: block numbers or device number */
int actime[2]; /* +24: time of last access */
int modtime[2]; /* +28: time of last modification */

};

The flags are as follows:

100000 i-node is allocated
060000 2-bit file type:

000000 plain file
040000 directory
020000 character-type special file
060000 block-type special file.

010000 large file
004000 set user-ID on execution
002000 set group-ID on execution
000400 read (owner)
000200 write (owner)
000100 execute (owner)
000070 read, write, execute (group)
000007 read, write, execute (others)

Special files are recognized by their flags and not by i-number. A block-type special file is basi-
cally one which can potentially be mounted as a file system; a character-type special file cannot,
though it is not necessarily character-oriented. For special files the high byte of the first address
word specifies the type of device; the low byte specifies one of several devices of that type. The
device type numbers of block and character special files overlap.

The address words of ordinary files and directories contain the numbers of the blocks in the file
(if it is small) or the numbers of indirect blocks (if the file is large). Byte numbern of a file is
accessed as follows.N is divided by 512 to find its logical block number (sayb) in the file. If
the file is small (flag 010000 is 0), thenb must be less than 8, and the physical block number is
addr[b].

If the file is large,b is divided by 256 to yieldi. If i is less than 7, thenaddr[i] is the physical
block number of the indirect block. The remainder from the division yields the word in the indi-
rect block which contains the number of the block for the sought-for byte.

If i is equal to 7, then the file has become extra-large (huge), andaddr[7] is the address of a first
indirect block. Each word in this block is the number of a second-level indirect block; each
word in the second-level indirect blocks points to a data block. Notice that extra-large files are
not marked by any mode bit, but only by havingaddr[7] non-zero; and that although this
scheme allows for more than 256×256×512 = 33,554,432 bytes per file, the length of files is
stored in 24 bits so in practice a file can be at most 16,777,216 bytes long.

For blockb in a file to exist, it is not necessary that all blocks less thanb exist. A zero block
number either in the address words of the i-node or in an indirect block indicates that the corre-
sponding block has never been allocated. Such a missing block reads as if it contained all zero
words.

- 2 -

-

FILE SYSTEM (V) 2/9/75 FILE SYSTEM (V)

SEE ALSO
icheck, dcheck (VIII)

- 3 -

-

GREEK (V) 10/31/72 GREEK (V)

NAME
greek − graphics for extended TTY-37 type-box

SYNOPSIS
cat /usr/pub/greek

DESCRIPTION
Greekgives the mapping from ascii to the ‘‘shift out’’ graphics in effect between SO and SI on
model 37 Teletypes with a 128-character type-box. It contains:

alpha α A beta β B gamma γ \
GAMMA Γ G delta δ D DELTA ∆ W
epsilon ε S zeta ζ Q eta η N
THETA Θ T theta θ O lambda λ L
LAMBDA Λ E mu µ M nu ν @
xi ξ X pi π J PI Π P
rho ρ K sigma σ Y SIGMA Σ R
tau τ I phi φ U PHI Φ F
psi ψ V PSI Ψ H omega ω C
OMEGA Ω Z nabla � [not ¬ _
partial �] integral + ˆ

SEE ALSO
ascii (VII)

- 1 -

-

GROUP (V) 2/10/75 GROUP (V)

NAME
group − group file

DESCRIPTION
Groupcontains for each group the following information:

group name
encrypted password
numerical group ID
a comma separated list of all users allowed in the group

This is an ASCII file. The fields are separated by colons; Each group is separated from the next
by a new-line. If the password field is null, no password is demanded.

This file resides in directory /etc. Because of the encrypted passwords, it can and does have gen-
eral read permission and can be used, for example, to map numerical group ID’s to names.

FILES
/etc/group

SEE ALSO
newgrp (I), login (I), crypt (III), passwd (I)

- 1 -

-

MTAB (V) 1/6/74 MTAB (V)

NAME
mtab − mounted file system table

DESCRIPTION
Mtab resides in directory/etc and contains a table of devices mounted by themountcommand.
Umountremoves entries.

Each entry is 64 bytes long; the first 32 are the null-padded name of the place where the special
file is mounted; the second 32 are the null-padded name of the special file. The special file has
all its directories stripped away; that is, everything through the last ‘‘/’’ is thrown away.

This table is present only so people can look at it. It does not matter tomountif there are dupli-
cated entries nor toumountif a name cannot be found.

FILES
/etc/mtab

SEE ALSO
mount (VIII), umount (VIII)

BUGS

- 1 -

-

PASSWD (V) 9/10/73 PASSWD (V)

NAME
passwd − password file

DESCRIPTION
Passwdcontains for each user the following information:

name (login name, contains no upper case)
encrypted password
numerical user ID
numerical group ID (for now, always 1)
GCOS job number, box number, optional GCOS user-id
initial working directory
program to use as Shell

This is an ASCII file. Each field within each user’s entry is separated from the next by a colon.
The GCOS field is used only when communicating with that system, and in other installations
can contain any desired information. Each user is separated from the next by a new-line. If the
password field is null, no password is demanded; if the Shell field is null, the Shell itself is used.

This file resides in directory /etc. Because of the encrypted passwords, it can and does have gen-
eral read permission and can be used, for example, to map numerical user ID’s to names.

FILES
/etc/passwd

SEE ALSO
login (I), crypt (III), passwd (I), group (V)

- 1 -

-

TABS (V) 6/15/72 TABS (V)

NAME
tabs − set tab stops

SYNOPSIS
cat /usr/pub/tabs

DESCRIPTION
Printing this file on a suitable terminal sets tab stops every 8 columns. Suitable terminals in-
clude the Teletype model 37 and the GE TermiNet 300.

These tab stop settings are desirable because UNIX assumes them in calculating delays.

- 1 -

-

TP (V) 9/10/73 TP (V)

NAME
tp − DEC/mag tape formats

DESCRIPTION
The commandtp dumps files to and extracts files from DECtape and magtape. The formats of
these tapes are the same except that magtapes have larger directories.

Block zero contains a copy of a stand-alone bootstrap program. See boot procedures (VIII).

Blocks 1 through 24 for DECtape (1 through 62 for magtape) contain a directory of the tape.
There are 192 (resp. 496) entries in the directory; 8 entries per block; 64 bytes per entry. Each
entry has the following format:

path name 32 bytes
mode 2 bytes
uid 1 byte
gid 1 byte
unused 1 byte
size 3 bytes
time modified 4 bytes
tape address 2 bytes
unused 16 bytes
check sum 2 bytes

The path name entry is the path name of the file when put on the tape. If the pathname starts
with a zero word, the entry is empty. It is at most 32 bytes long and ends in a null byte. Mode,
uid, gid, size and time modified are the same as described under i-nodes (file system (V)). The
tape address is the tape block number of the start of the contents of the file. Every file starts on a
block boundary. The file occupies (size+511)/512 blocks of continuous tape. The checksum en-
try has a value such that the sum of the 32 words of the directory entry is zero.

Blocks 25 (resp. 63) on are available for file storage.

A fake entry (see tp (I)) has a size of zero.

SEE ALSO
file system (V), tp (I)

- 1 -

-

TTYS (V) 2/11/75 TTYS (V)

NAME
ttys − typewriter initialization data

DESCRIPTION
The ttys file is read by theinit program and specifies which typewriter special files are to have a
process created for them which will allow people to log in. It consists of lines of 3 characters
each.

The first character is either ‘0’ or ‘1’; the former causes the line to be ignored, the latter causes it
to be effective. The second character is the last character in the name of a typewriter; e.g.x
refers to the file ‘/dev/ttyx’. The third character is used as an argument to thegetty program,
which performs such tasks as baud-rate recognition, reading the login name, and callinglogin.
For normal lines, the character is ‘0’; other characters can be used, for example, with hard-wired
terminals where speed recognition is unnecessary or which have special characteristics. (Getty
will have to be fixed in such cases.)

FILES
/etc/ttys

SEE ALSO
init (VIII), getty (VIII), login (I)

- 1 -

-

UTMP (V) 9/10/73 UTMP (V)

NAME
utmp − user information

DESCRIPTION
This file allows one to discover information about who is currently using UNIX. The file is bi-
nary; each entry is 16(10) bytes long. The first eight bytes contain a user’s login name or are
null if the table slot is unused. The low order byte of the next word contains the last character of
a typewriter name. The next two words contain the user’s login time. The last word is unused.

FILES
/etc/utmp

SEE ALSO
init (VIII) and login (I), which maintain the file; who (I), which interprets it.

- 1 -

-

WTMP (V) 2/22/74 WTMP (V)

NAME
wtmp − user login history

DESCRIPTION
This file records all logins and logouts. Its format is exactly like utmp (V) except that a null user
name indicates a logout on the associated typewriter. Furthermore, the typewriter name ‘˜’ indi-
cates that the system was rebooted at the indicated time; the adjacent pair of entries with type-
writer names ‘ ’ and ‘}’ indicate the system-maintained time just before and just after adate
command has changed the system’s idea of the time.

Wtmpis maintained by login (I) and init (VIII). Neither of these programs creates the file, so if
it is removed record-keeping is turned off. It is summarized by ac (VIII).

FILES
/usr/adm/wtmp

SEE ALSO
utmp (V), login (I), init (VIII), ac (VIII), who (I)

- 1 -

-

AZEL (VI) 6/3/74 AZEL (VI)

NAME
azel − satellite predictions

SYNOPSIS
azel[�d] [�l] satellite1 [�d] [�l] satellite2 ...

DESCRIPTION
Azelpredicts, in convenient form, the apparent trajectories of Earth satellites whose orbital ele-
ments are given in the argument files. If a given satellite name cannot be read, an attempt is
made to find it in a directory of satellites maintained by the programs’s author. The�d option
causesazelto ask for a date and read line 1 data (see below) from the standard input. The�l op-
tion causesazelto ask for the observer’s latitude, west-longitude, and height above sea level.

For each satellite given the program types its full name, the date, and a sequence of lines each
containing a time, an azimuth, an elevation, a distance, and a visual magnitude. Each such line
indicates that: at the indicated time, the satellite may be seen from Murray Hill (or provided lo-
cation) at the indicated azimuth and elevation, and that its distance and apparent magnitude are
as given. Predictions are printed only when the sky is dark (sun more than 5 degrees below the
horizon) and when the satellite is not eclipsed by the earth’s shadow. Satellites which have not
been seen and verified will not have had their visual magnitude level set correctly.

All times input and output byazelare GMT (Universal Time).

The satellites for which elements are maintained are:

sla,b,e,f,k Skylab A through Skylab K. Skylab A is the laboratory; B was the rocket but it has
crashed. A and probably K have been verified.

cop Copernicus I. Never verified.

oao Orbiting Astronomical Observatory. Seen and verified.

pag Pageos I. Seen and verified; fairly dim (typically 2nd-3rd magnitude), but elements
are extremely accurate.

exp19 Explorer 19; seen and verified, but quite dim (4th-5th magnitude) and fast-moving.

c103b, c156b, c184b, c206b, c220b, c461b, c500b
Various of the USSR Cosmos series; none seen.

7276a Unnamed (satellite # 72-76A); not seen.

The element files used byazelcontain five lines. The first line gives a year, month number, day,
hour, and minute at which the program begins its consideration of the satellite, followed by a
number of minutes and an interval in minutes. If the year, month, and day are 0, they are taken
to be the current date (taken to change at 6 A.M. local time). The output report starts at the indi-
cated epoch and prints the position of the satellite for the indicated number of minutes at times
separated by the indicated interval. This line is ended by two numbers which specify options to
the program governing the completeness of the report; they are ordinarily both ‘‘1’’. The first
option flag suppresses output when the sky is not dark; the second supresses output when the
satellite is eclipsed by the earth’s shadow. The next line of an element file is the full name of the
satellite. The next three are the elements themselves (including certain derivatives of the ele-
ments).

FILES
/usr/jfo/el/* − orbital element files

SEE ALSO
sky (VI)

AUTHOR
J. F. Ossanna

- 1 -

-

AZEL (VI) 6/3/74 AZEL (VI)

BUGS

- 2 -

-

BJ (VI) 3/15/72 BJ (VI)

NAME
bj − the game of black jack

SYNOPSIS
/usr/games/bj

DESCRIPTION
Bj is a serious attempt at simulating the dealer in the game of black jack (or twenty-one) as
might be found in Reno. The following rules apply:

The bet is $2 every hand.

A player ‘natural’ (black jack) pays $3. A dealer natural loses $2. Both dealer and player
naturals is a ‘push’ (no money exchange).

If the dealer has an ace up, the player is allowed to make an ‘insurance’ bet against the
chance of a dealer natural. If this bet is not taken, play resumes as normal. If the bet is
taken, it is a side bet where the player wins $2 if the dealer has a natural and loses $1 if the
dealer does not.

If the player is dealt two cards of the same value, he is allowed to ‘double’. He is allowed
to play two hands, each with one of these cards. (The bet is doubled also; $2 on each
hand.)

If a dealt hand has a total of ten or eleven, the player may ‘double down’. He may double
the bet ($2 to $4) and receive exactly one more card on that hand.

Under normal play, the player may ‘hit’ (draw a card) as long as his total is not over
twenty-one. If the player ‘busts’ (goes over twenty-one), the dealer wins the bet.

When the player ‘stands’ (decides not to hit), the dealer hits until he attains a total of sev-
enteen or more. If the dealer busts, the player wins the bet.

If both player and dealer stand, the one with the largest total wins. A tie is a push.

The machine deals and keeps score. The following questions will be asked at appropriate times.
Each question is answered byy followed by a new line for ‘yes’, or just new line for ‘no’.

? (means, ‘‘do you want a hit?’’)
Insurance?
Double down?

Every time the deck is shuffled, the dealer so states and the ‘action’ (total bet) and ‘standing’ (to-
tal won or lost) is printed. To exit, hit the interrupt key (DEL) and the action and standing will
be printed.

BUGS

- 1 -

-

CAL (VI) 11/1/73 CAL (VI)

NAME
cal − print calendar

SYNOPSIS
cal [month] year

DESCRIPTION
Cal prints a calendar for the specified year. If a month is also specified, a calendar just for that
month is printed.Yearcan be between 1 and 9999. Themonthis a number between 1 and 12.
The calendar produced is that for England and her colonies.

Try September 1752.

BUGS
The year is always considered to start in January even though this is historically naive.

- 1 -

-

CHESS (VI) 11/1/73 CHESS (VI)

NAME
chess − the game of chess

SYNOPSIS
/usr/games/chess

DESCRIPTION
Chessis a computer program that plays class D chess. Moves may be given either in standard
(descriptive) notation or in algebraic notation. The symbol ‘+’ is used to specify check; ‘o-o’
and ‘o-o-o’ specify castling. To play black, type ‘first’; to print the board, type an empty line.

Each move is echoed in the appropriate notation followed by the program’s reply.

FILES
/usr/lib/book opening ‘book’

DIAGNOSTICS
The most cryptic diagnostic is ‘eh?’ which means that the input was syntactically incorrect.

WARNING
Over-use of this program will cause it to go away.

BUGS
Pawns may be promoted only to queens.

- 1 -

-

COL (VI) 5/20/74 COL (VI)

NAME
col − filter reverse line feeds

SYNOPSIS
col

DESCRIPTION
Col reads the standard input and writes the standard output. It performs the line overlays implied
by reverse line feeds (ascii code ESC-7).Col is particularly useful for filtering multicolumn out-
put made with the ‘.rt’ command ofnroff.

SEE ALSO
nroff (I)

BUGS
Can’t back up more than 102 lines.

- 1 -

-

CUBIC (VI) 11/1/73 CUBIC (VI)

NAME
cubic − three dimensional tic-tac-toe

SYNOPSIS
/usr/games/cubic

DESCRIPTION
Cubic plays the game of three dimensional 4×4×4 tic-tac-toe. Moves are given by the three
digits (each 1-4) specifying the coordinate of the square to be played.

WARNING
Too much playing of the game will cause it to disappear.

BUGS

- 1 -

-

FACTOR (VI) 1/15/73 FACTOR (VI)

NAME
factor − discover prime factors of a number

SYNOPSIS
factor

DESCRIPTION
Whenfactor is invoked without an argument, it waits for a number to be typed in. If you type in
a positive number less than 256 (about 7.2×1016) it will factor the number and print its prime fac-
tors; each one is printed the proper number of times. Then it waits for another number. It exits
if it encounters a zero or any non-numeric character.

If factor is invoked with an argument, it factors the number as above and then exits.

Maximum time to factor is proportional to�n and occurs whenn is prime or the square of a
prime. It takes 1 minute to factor a prime near 1013.

DIAGNOSTICS
‘Ouch.’ for input out of range or for garbage input.

BUGS

- 1 -

-

FED (VI) 1/15/73 FED (VI)

NAME
fed − edit form letter memory

SYNOPSIS
fed

DESCRIPTION
Fed is used to edit a form letter associative memory file,form.m, which consists of named
strings. Commands consist of single letters followed by a list of string names separated by a sin-
gle space and ending with a new line. The conventions of the Shell with respect to ‘*’ and ‘?’
hold for all commands butm. The commands are:

ename ...
Fed writes the string whose name isnameonto a temporary file and executesed. On exit
from theed the temporary file is copied back into the associative memory. Each argument is
operated on separately. Be sure to give an editorw command (without a filename) to rewrite
fed’stemporary file before quitting out ofed.

d [name ...]
deletes a string and its name from the memory. When called with no argumentsd operates
in a verbose mode typing each string name and deleting only if ay is typed. Aq response re-
turns tofed’s command level. Any other response does nothing.

m name1 name2 ...
(move) changes the name of name1 to name2 and removes previous string name2 if one ex-
ists. Several pairs of arguments may be given. Literal strings are expected for the names.

n [name ...]
(names) lists the string names in the memory. If called with the optional arguments, it just
lists those requested.

p name ...
prints the contents of the strings with names given by the arguments.

q
returns to the system.

c [p] [f]
checks the associative memory file for consistency and reports the number of free headers
and blocks. The optional arguments do the following:

p causes any unaccounted-for string to be printed.

f fixes broken memories by adding unaccounted-for headers to free storage and removing
references to released headers from associative memory.

FILES
/tmp/ftmp? temporary
form.m associative memory

SEE ALSO
form (VI), ed (I), sh (I)

WARNING
It is legal but unwise to have string names with blanks, ‘*’ or ‘?’ in them.

BUGS

- 1 -

-

FORM (VI) 6/15/72 FORM (VI)

NAME
form − form letter generator

SYNOPSIS
form proto arg ...

DESCRIPTION
Form generates a form letter from a prototype letter, an associative memory, arguments and in a
special case, the current date.

If form is invoked with theproto argumentx, the associative memory is searched for an entry
with namex and the contents filed under that name are used as the prototype. If the search fails,
the message ‘[x]:’ is typed on the console and whatever text is typed in from the console, termi-
nated by two new lines, is used as the prototype. If the prototype argument is missing, ‘{letter}’
is assumed.

Basically,form is a copy process from the prototype to the output file. If an element of the form
[n] (wheren is a digit from 1 to 9) is encountered, then-th arg is inserted in its place, and that ar-
gument is then rescanned. If [0] is encountered, the current date is inserted. If the desired argu-
ment has not been given, a message of the form ‘[n]:’ is typed. The response typed in then is
used for that argument.

If an element of the form [name] or {name} is encountered, thenameis looked up in the associa-
tive memory. If it is found, the contents of the memory under thisnamereplaces the original el-
ement (again rescanned). If thenameis not found, a message of the form ‘[name]:’ is typed.
The response typed in is used for that element. The response is entered in the memory under the
name if the name is enclosed in []. The response is not entered in the memory but is remem-
bered for the duration of the letter if the name is enclosed in {}. Brackets and braces may be
nested.

In both of the above cases, the response is typed in by entering arbitrary text terminated by two
new lines. Only the first of the two new lines is passed with the text.

If one of the special characters [{]}\ is preceded by a \, it loses its special character.

If a file named ‘forma’ already exists in the user’s directory, ‘formb’ is used as the output file
and so forth to ‘formz’.

The file ‘form.m’ is created if none exists. Because form.m is operated on by the disc allocator,
it should only be changed by usingfed,the form letter editor, orform.

FILES
form.m associative memory
form? output file (read only)

SEE ALSO
fed (VI), roff (I)

BUGS
An unbalanced] or } acts as an end of file but may add a few strange entries to the associative
memory.

- 1 -

-

GRAPH (VI) 2/20/75 GRAPH (VI)

NAME
graph − draw a graph

SYNOPSIS
graph [option] ...  plotter

DESCRIPTION
Graphwith no options takes pairs of numbers from the standard input as abscissas and ordinates
of a graph. The graph is written on the standard output to be piped to the plotter program for a
particular device; seeplot (VI). These plotters exist:gsip, for the GSI and other Diablo termi-
nals;tek,for the Tektronix 4014 terminal; andvt0 for the on-line storage scope.

The following options are recognized, each as a separate argument.

a Supply abscissas automatically (they are missing from the input); spacing is given by the
next argument, or is assumed to be 1 if next argument is not a number. A second optional
argument is the starting point for the automatic abscissa.

c Place character string given by next argument at each point.

d Omit connections between points. (Disconnect.)

gn Grid style:
n=0, no grid
n=1, axes only
n=2, complete grid (default).

s Save screen, don’t erase before plotting.

x Next 1 (or 2) arguments are lower (and upper)x limits.

y Next 1 (or 2) arguments are lower (and upper)y limits.

h Next argument is fraction of space for height

w Next argument is fraction of space for width.

r Next argument is fraction of space to move right before plotting.

u Next argument is fraction of space to move up before plotting.

Points are connected by straight line segments in the order they appear in input. If a specified
lower limit exceeds the upper limit, or if the automatic increment is negative, the graph is plotted
upside down. Automatic abscissas begin with the lowerx limit, or with 0 if no limit is specified.
Grid lines and automatically determined limits fall on round values, however roundness may be
subverted by giving an inappropriately rounded lower limit. Plotting symbols specified byc are
placed so that a small initial letter, such as + o x, will fall approximately on the plotting point.

SEE ALSO
spline (VI), plot (VI)

BUGS
A limit of 1000 points is enforced silently.

- 1 -

-

GSI (VI) 3/20/74 GSI (VI)

NAME
gsi − interpret extended character set on GSI terminal

SYNOPSIS
gsi

DESCRIPTION
Gsi interprets special characters understood by the Model 37 Teletype terminal and turns them
into the escape sequences understood by the GSI and other Diablo-based terminals. The things
interpreted include vertical motions and extended graphic characters. It is most often used in a
pipeline like

neqn file ...  nroff  gsi

SEE ALSO
greek (V)

BUGS
Some funny characters can’t be correctly printed in column 1 because you can’t move to the left
from there.

- 1 -

-

M6 (VI) 2/19/74 M6 (VI)

NAME
m6 − general purpose macroprocessor

SYNOPSIS
m6 [name]

DESCRIPTION
M6 copies the standard input to the standard output, with substitutions for any macro calls that
appear. When a file name argument is given, that file is read before the standard input.

The processor is as described in the reference with these exceptions:

#def,arg1,arg2,arg3:causesarg1 to become a macro with defining textarg2 and (optional)
built-in serial numberarg3.

#del,arg1:deletes the definition of macroarg1.

#end:is not implemented.

#list,arg1: sends the name of the macro designated byarg1 to the current destination without
recognition of any warning characters;arg1 is 1 for the most recently defined macro, 2 for the
next most recent, and so on. The name is taken to be empty whenarg1doesn’t make sense.

#warn,arg1,arg2:replaces the old warning characterarg1by the new warning characterarg2.

#quote,arg1:sends the definition text of macroarg1 to the current destination without recog-
nition of any warning characters.

#serial,arg1:delivers the built-in serial number associated with macroarg1.

#source,arg1:is not implemented.

#trace,arg1:with arg1= ‘1’ causes a reconstruction of each later call to be placed on the stan-
dard output with a call level number; other values ofarg1 turn tracing off.

The built-in ‘warn’ may be used to replace inconvenient warning characters. The example below
replaces ‘#’ ‘:’ ‘<’ ‘>’ by ‘[’ ‘]’ ‘{’ ‘}’.

#warn,<#>,[:
[warn,<:>,]:
[warn,[substr,<<>>,1,1;,{]
[warn,[substr,{{>>,2,1;,}]
[now,{calls look like this}]

Every built-in function has a serial number, which specifies the action to be performed before the
defining text is expanded. The serial numbers are: 1 gt, 2 eq, 3 ge, 4 lt, 5 ne, 6 le, 7 seq, 8 sne, 9
add, 10 sub, 11 mpy, 12 div, 13 exp, 20 if, 21 def, 22 copy, 23 warn, 24 size, 25 substr, 26 go, 27
gobk, 28 del, 29 dnl, 32 quote, 33 serial, 34 list, 35 trace. Serial number 0 specifies no built-in
action.

SEE ALSO
A. D. Hall, M6 Reference Manual. Computer Science Technical Report #2, Bell Laboratories,
1969.

DIAGNOSTICS
Various table overflows and ‘‘impossible’’ conditions result in comment and dump. There are
no diagnostics for poorly formed input.

AUTHOR
M. D. McIlroy

BUGS
Provision should be made to extend tables as needed, instead of wasting a big fixed core alloca-
tion. You get what the PDP11 gives you for arithmetic.

- 1 -

-

MOO (VI) 11/1/73 MOO (VI)

NAME
moo − guessing game

SYNOPSIS
/usr/games/moo

DESCRIPTION
Moo is a guessing game imported from England. The computer picks a number consisting of
four distinct decimal digits. The player guesses four distinct digits being scored on each guess.
A ‘cow’ is a correct digit in an incorrect position. A ‘bull’ is a correct digit in a correct position.
The game continues until the player guesses the number (a score of four bulls).

BUGS

- 1 -

-

PLOT (VI) 3/10/75 PLOT (VI)

NAME
plot: tek, gsip, vt0 − graphics filters

SYNOPSIS
source  tek
source  gsip
source  vt0

DESCRIPTION
These commands produce graphical output on the Tektronix 4014 terminal, the GSI or other
Diablo-mechanism terminals, and the on-line storage scope respectively. They read the standard
input to obtain plotting instructions, which are usually generated by a program calling the graph-
ics subroutines described inplot (VII). Each instruction consists of an ASCII letter usually fol-
lowed by binary information. A plotting coordinate is transmitted as four bytes representing the
x and y values; each value is a signed number transmitted low-order byte first. The assumed
plotting space is set by request. The instructions are taken from

m move: the next four bytes specify the coordinates of a point to move to. This is used before
writing a label.

p point: the next four bytes specify the coordinates at which a point is drawn.

l line: the next eight bytes are taken as two pairs of coordinates specifying the endpoints of a
line to be drawn.

t label: the bytes up to a new-line are written as ASCII starting at the last point drawn or
moved to.

a arc: the first four bytes specify the center, the next four specify the starting point, and the last
four specify the end point of a circular arc. The least significant coordinate of the end point
is used only to determine the quadrant. The arc is drawn counter-clockwise. This command
is not necessarily implemented on all (or even any) of the output devices.

c circle: The first four bytes specify the center of the circle, the next two the radius.

e erases the screen

f linemod: takes the following string as the type for all future lines. The types are ‘dotted,’
‘solid,’ ‘longdashed,’ ‘shortdashed,’ and ‘dotdashed.’ This instruction is effective only with
the Tektronix terminal.

d dotline: takes the first four bytes as the coordinates of the beginning of a dotted line. The
next two are a signed x-increment, and the next two are a word count. Following are the in-
dicated number of byte-pairs representing words. For each bit in this list of words a point is
plotted which is visible if the bit is ‘1,’ invisible if not. Each point is offset rightward by the
x-increment. The instruction is effective only on the vt0 scope.

SEE ALSO
plot (VII), graph (VI)

BUGS

- 1 -

-

PRIMES (VI) 4/10/75 PRIMES (VI)

NAME
primes − print all primes larger than somewhat

SYNOPSIS
primes

DESCRIPTION
Whenprimesis invoked, it waits for a number to be typed in. If you type in a positive number
less than 256 (about 7.2×1016) it will print all primes greater than or equal to this number.

DIAGNOSTICS
‘Ouch.’ for input out of range or for garbage input.

BUGS

- 1 -

-

QUIZ (VI) 9/7/74 QUIZ (VI)

NAME
quiz − test your knowledge

SYNOPSIS
quiz [−i file] [−t] [category1 category2]

DESCRIPTION
Quizgives associative knowledge tests on various subjects. It asks items chosen fromcategory1
and expects answers fromcategory2. If no categories are specified,quiz gives instructions and
lists the available categories.

Quiz tells a correct answer whenever you type a bare newline. At the end of input, upon inter-
rupt, or when questions run out,quizreports a score and terminates.

The−t flag specifies ‘tutorial’ mode, where missed questions are repeated later, and material is
gradually introduced as you learn.

The−i flag causes the named file to be substituted for the default index file. The lines of these
files have the syntax:

line = category newline  category ‘:’ line
category = alternate  category ‘ ’ alternate
alternate = empty  alternate primary
primary = character  ‘[’ category ‘]’  option
option = ‘{’ category ‘}’

The first category on each line of an index file names an information file. The remaining cate-
gories specify the order and contents of the data in each line of the information file. Information
files have the same syntax. Backslash ‘\’ is used as withsh (I) to quote syntactically significant
characters or to insert transparent newlines into a line. When either a question or its answer is
empty,quizwill refrain from asking it.

FILES
/usr/lib/quiz/index
/usr/lib/quiz/*

BUGS

- 1 -

-

SKY (VI) 9/22/73 SKY (VI)

NAME
sky − obtain ephemerides

SYNOPSIS
sky [�l]

DESCRIPTION
Skypredicts the apparent locations of the Sun, the Moon, the planets out to Saturn, stars of mag-
nitude at least 2.5, and certain other celestial objects.Skyreads the standard input to obtain a
GMT time typed on one line with blanks separating year, month number, day, hour, and minute;
if the year is missing the current year is used. If a blank line is typed the current time is used.
The program prints the azimuth, elevation, and magnitude of objects which are above the hori-
zon at the ephemeris location of Murray Hill at the indicated time. The ‘�l’ flag causes it to ask
for another location.

Placing a ‘‘1’’ input after the minute entry causes the program to print out the Greenwich Side-
real Time at the indicated moment and to print for each body its topographic right ascension and
declination as well as its azimuth and elevation. Also, instead of the magnitude, the semidiame-
ter of the body, in seconds of arc, is reported.

A ‘‘2’’ after the minute entry makes the coordinate system geocentric.

The effects of atmospheric extinction on magnitudes are not included; the brightest magnitudes
of variable stars are marked with ‘‘*’’.

For all bodies, the program takes into account precession and nutation of the equinox, annual
(but not diurnal) aberration, diurnal parallax, and the proper motion of stars. In no case is refrac-
tion included.

The program takes into account perturbations of the Earth due to the Moon, Venus, Mars, and
Jupiter. The expected accuracies are: for the Sun and other stellar bodies a few tenths of seconds
of arc; for the Moon (on which particular care is lavished) likewise a few tenths of seconds. For
the Sun, Moon and stars the accuracy is sufficient to predict the circumstances of eclipses and
occultations to within a few seconds of time. The planets may be off by several minutes of arc.

There are lots of special options not described here, which do things like substituting named star
catalogs, smoothing nutation and aberration to aid generation of mean places of stars, and mak-
ing conventional adjustments to the Moon to improve eclipse predictions.

For the most accurate use of the program it is necessary to know that it actually runs in Ephem-
eris time.

FILES
/usr/lib/startab, /usr/lib/moontab

SEE ALSO
azel (VI)
American Ephemeris and Nautical Almanac,for the appropriate years; also, theExplanatory
Supplement to the American Ephemeris and Nautical Almanac.

AUTHOR
R. Morris

BUGS

- 1 -

-

SNO (VI) 2/9/73 SNO (VI)

NAME
sno − Snobol interpreter

SYNOPSIS
sno [file]

DESCRIPTION
Snois a Snobol III (with slight differences) compiler and interpreter.Snoobtains input from the
concatenation offile and the standard input. All input through a statement containing the label
‘end’ is considered program and is compiled. The rest is available to ‘syspit’.

Snodiffers from Snobol III in the following ways.

There are no unanchored searches. To get the same effect:

a ** b unanchored search for b
a *x* b = x c unanchored assignment

There is no back referencing.

x = "abc"
a *x* x is an unanchored search for ‘abc’

Function declaration is different. The function declaration is done at compile time by the use of
the label ‘define’. Thus there is no ability to define functions at run time and the use of the name
‘define’ is preempted. There is also no provision for automatic variables other than the parame-
ters. For example:

define f()

or

define f(a,b,c)

All labels except ‘define’ (even ‘end’) must have a non-empty statement.

If ‘start’ is a label in the program, program execution will start there. If not, execution begins
with the first executable statement. ‘define’ is not an executable statement.

There are no builtin functions.

Parentheses for arithmetic are not needed. Normal precedence applies. Because of this, the
arithmetic operators ‘/’ and ‘*’ must be set off by space.

The right side of assignments must be non-empty.

Either ´ or " may be used for literal quotes.

The pseudo-variable ‘sysppt’ is not available.

SEE ALSO
Snobol III manual. (JACM; Vol. 11 No. 1; Jan 1964; pp 21)

BUGS

- 1 -

-

SPEAK (VI) 4/26/75 SPEAK (VI)

NAME
speak − word to voice translator

SYNOPSIS
speak[−efpsv] [vocabulary [output]]

DESCRIPTION
Speakturns a stream of words into utterances and outputs them to a voice synthesizer, or to the
specifiedoutput. It has facilities for maintaining a vocabulary. It receives, from the standard in-
put

− working lines: text of words separated by blanks
− phonetic lines: strings of phonemes for one word preceded and separated by commas. The

phonemes may be followed by comma-percent then a ‘replacement part’ − an ASCII string
with no spaces. The phonetic code is given invs(V).

− empty lines
− command lines: beginning with!. The following command lines are recognized:

!r file replace coded vocabulary from file
!w file write coded vocabulary on file
!p print phonetics for working word
!l list vocabulary on standard output with phonetics
!c word copy phonetics from working word to specified word
!d print decomposition of working word into substrings
!f n turn off (or on) English preprocessing rule numbern (see listing for meaning

of n)

Each working line replaces its predecessor. Its first word is the ‘working word’. Each phonetic
line replaces the phonetics stored for the working word. In particular, a phonetic line of comma
only deletes the entry for the working word. Each working line, phonetic line or empty line
causes the working line to be uttered. The process terminates at the end of input.

Unknown words are pronounced by rules, and failing that, are spelled. For the builtin part of the
rules, see the reference. Spelling is done by taking each character of the word, prefixing it with
‘*’, and looking it up. Unspellable words burp.

Words not found verbatim in the vocabulary are pronounced piecewise. First the word is brack-
eted by sharps: ‘#...#’. The vocabulary is then searched for the longest fragment that matches the
beginning of the word. The phonetic part of the phonetic string is uttered, and the matched frag-
ment is replaced by the replacement part of the phonetic string, if any. The process is repeated
until the word is exhausted. A fragment is entered into the vocabulary as a working word pre-
fixed by ‘%’.

Speakis initialized with a coded vocabulary stored in file/usr/lib/speak.m.The vocabulary op-
tion substitutes a different file for/usr/lib/speak.m.Other vocabularies, to be used with option
−e, exist in /usr/vs/latin.m and /usr/vs/polish.m.

A set of single letter options may appear in any order preceded by−. Their meanings are:

e suppress English preprocessing
f equivalent to ‘f1, f2,...’
p suppress pronunciation by rule
s suppress spelling
v suppress voice output

The following input will reconstitute a coded vocabulary, ‘speak.m’, from an ascii listing,
‘speak.v’, that was created using!l .

(cat speak.v; echo !w speak.m) speak −v /dev/null

FILES
/usr/lib/speak.m

- 1 -

-

SPEAK (VI) 4/26/75 SPEAK (VI)

SEE ALSO
M. D. McIlroy, ‘‘Synthetic English Speech by Rule,’’ Computing Science Technical Report #14,
Bell Laboratories, 1973
vs (V), vs (IV)

BUGS
Excessively long words cause dumps.
Space is not reclaimed from changed entries; use!w and!r to effect reclamation.
!p doesn’t always work as advertised.

- 2 -

-

SPLINE (VI) 5/15/74 SPLINE (VI)

NAME
spline − interpolate smooth curve

SYNOPSIS
spline [option] ...

DESCRIPTION
Splinetakes pairs of numbers from the standard input as abcissas and ordinates of a function. It
produces a similar set, which is approximately equally spaced and includes the input set, on the
standard output. The cubic spline output (R. W. Hamming,Numerical Methods for Scientists
and Engineers,2nd ed., 349ff) has two continuous derivatives, and sufficiently many points to
look smooth when plotted, for example byplot (I).

The following options are recognized, each as a separate argument.

a Supply abscissas automatically (they are missing from the input); spacing is given by the
next argument, or is assumed to be 1 if next argument is not a number.

k The constantk used in the boundary value computation

y′′0 = ky′′1 , y′′n = ky′′n−1

is set by the next argument. By defaultk = 0.

n Space output points so that approximatelyn points occur between the lower and upperx
limits. (Defaultn = 100.)

p Make output periodic, i.e. match derivatives at ends. First and last input values should
normally agree.

x Next 1 (or 2) arguments are lower (and upper)x limits. Normally these limits are calcu-
lated from the data. Automatic abcissas start at lower limit (default 0).

SEE ALSO
plot (I)

AUTHOR
M. D. McIlroy

BUGS
A limit of 1000 input points is enforced silently.

- 1 -

-

TBL (VI) 2/2/75 TBL (VI)

NAME
tbl − format tables for nroff or troff

SYNOPSIS
tbl [files] ...

DESCRIPTION
Tbl is an nroff (I) or troff(I) preprocessor for formatting tables. The input files are copied to the
standard output, except for lines between .TS and .TE command lines, which are assumed to de-
scribe tables and reformatted. The first line after .TS specifies the various columns: it consists of
a list of column describers separated by blanks or tabs. Each column describer is a character
string made up of the letters ‘n’, ‘r’, ‘c’, ‘l’ and ‘s’, which mean:

c center within the column

r right-adjust

l left-adjust

n numerical adjustment: the units digits of numbers are aligned.

s span the previous entry over this column.

The column describer may be followed by an integer giving the number of spaces between this
column and the next; 3 is default. The describer ‘ccr5’ indicates that the first two lines in this
column are centered; the third and remaining lines are right-adjusted; and the column should be
separated from the column to the right by 5 spaces. Letting \t represent a tab (which must be
typed as a genuine tab) the input

.TS
cccl sccn sscn
Household Population
Town\tHouseholds
\tNumber\tSize
Bedminster\t789\t3.26
Bernards Twp.\t3087\t3.74
Bernardsville\t2018\t3.30
Bound Brook\t3425\t3.04
Branchburg\t1644\t3.49
Bridgewater\t7897\t3.81
Far Hills\t240\t3.19
.TE

yields
Household Population

Town Households
Number Size

Bedminster 789 3.26
Bernards Twp. 3087 3.74
Bernardsville 2018 3.30
Bound Brook 3425 3.04
Branchburg 1644 3.49
Bridgewater 7897 3.81
Far Hills 240 3.19

If no arguments are given,tbl reads the standard input, so it may be used as a filter. When it is
used witheqnor neqnthe tbl command should be first, to minimize the volume of data passed
through pipes.

BUGS
No column describer may end with ‘s’.

- 1 -

-

TMG (VI) 10/21/72 TMG (VI)

NAME
tmg − compiler-compiler

SYNOPSIS
tmg name

DESCRIPTION
Tmgproduces a translator for the language whose parsing and translation rules are described in
file name.t. The new translator appears in a.out and may be used thus:

a.out input [output]

Except in rare cases input must be a randomly addressable file. If no output file is specified, the
standard output file is assumed.

FILES
name.s: assembly language version ofname.t
/usr/lib/tmg: the compiler-compiler
/usr/lib/tmg[abc], /lib/libs.a: libraries
alloc.d: scratch file for table storage

SEE ALSO
A Manual for the Tmg Compiler-writing Language, internal memorandum.

DIAGNOSTICS
Syntactic errors result in "???" followed by the offending line.
Situations such as space overflow with which the Tmg processor or a Tmg-produced processor
can not cope result in a descriptive comment and a dump.

AUTHOR
M. D. McIlroy

BUGS
Footnote 1 of Section 9.2 of Tmg Manual is not enforced, causing trouble.
Restrictions (7.) against mixing bundling primitives should be lifted.
Certain hidden reserved words exist: gpar, classtab, trans, goto, alt, salt.
Octal digits include 8=10 and 9=11.

- 1 -

-

TTT (VI) 11/1/73 TTT (VI)

NAME
ttt − the game of tic-tac-toe

SYNOPSIS
/usr/games/ttt

DESCRIPTION
Ttt is the X and O game popular in the first grade. This is a learning program that never makes
the same mistake twice.

Although it learns, it learns slowly. It must lose nearly 80 games to completely know the game.

FILES
/usr/games/ttt.k learning file

BUGS

- 1 -

-

UNITS (VI) 8/30/74 UNITS (VI)

NAME
units − conversion program

SYNOPSIS
Units converts quantities expressed in various standard scales to their equivalents in other scales.
It works interactively in this fashion:

You have:inch
You want:cm

* 2.54000e+00
/ 3.93701e�01

A quantity is specified as a multiplicative combination of units optionally preceded by a numeric
multiplier. Powers are indicated by suffixed positive integers, division by the usual sign:

You have:15 pounds force/in2
You want:atm

* 1.02069e+00
/ 9.79730e�01

Units only does multiplicative scale changes. Thus it can convert Kelvin to Rankine, but not
Centigrade to Fahrenheit. Most familiar units, abbreviations, and metric prefixes are recognized,
together with a generous leavening of exotica and a few constants of nature including:

pi ratio of circumference to diameter
c speed of light
e charge on an electron
g acceleration of gravity
force same as g
mole Avogadro’s number
water pressure head per unit height of water
au astronomical unit

‘Pound’ is a unit of mass. Compound names are run together, e.g. ‘lightyear’. British units that
differ from their US counterparts are prefixed thus: ‘brgallon’. For a complete list of units, ‘cat
/usr/lib/units’.

FILES
/usr/lib/units

BUGS

- 1 -

-

WUMP (VI) 11/25/73 WUMP (VI)

NAME
wump − the game of hunt-the-wumpus

SYNOPSIS
/usr/games/wump

DESCRIPTION
Wumpplays the game of ‘‘Hunt the Wumpus.’’ A Wumpus is a creature that lives in a cave with
several rooms connected by tunnels. You wander among the rooms, trying to shoot the Wumpus
with an arrow, meanwhile avoiding being eaten by the Wumpus and falling into Bottomless Pits.
There are also Super Bats which are likely to pick you up and drop you in some random room.

The program asks various questions which you answer one per line; it will give a more detailed
description if you want.

This program is based on one described inPeople’s Computer Company, 2,2 (November 1973).

BUGS
It will never replace Space War.

- 1 -

-

CR (VII) 1/4/75 CR (VII)

NAME
crfork, crexit, crread, crwrite, crexch, crprior − coroutine scheme

SYNOPSIS
int crfork([stack, nwords])
int stack[];
int nwords;

crexit()

int crread(connector, buffer, nbytes)
int *connector[2];
char *buffer;
int nbytes;

crwrite(connector, buffer, nbytes)
int *connector[2];
char *buffer;
int nbytes;

crexch(conn1, conn2, i)
int *conn1[2], *conn2[2];
int i;

#define logical char *
crprior(p)
logical p;

DESCRIPTION
These functions are named by analogy tofork, exit, read, write(II). They establish and synchro-
nize ‘coroutines’, which behave in many respects like a set of processes working in the same ad-
dress space. The functions live in/usr/lib/cr.a.

Coroutines are placed on queues to indicate their state of readiness. One coroutine is always dis-
tinguished as ‘running’. Coroutines that are runnable but not running are registered on a ‘ready
queue’. The head member of the ready queue is started whenever no other coroutine is specifi-
cally caused to be running.

Each connector heads two queues:Connector[0]is the queue of unsatisfiedcrreadsoutstanding
on the connector.Connector[1]is the queue ofcrwrites. All queues must start empty,i.e. with
heads set to zero.

Crfork is normally called with no arguments. It places the running coroutine at the head of the
ready queue, creates a new coroutine, and starts the new one running.Crfork returns immedi-
ately in the new coroutine with value 0, and upon restarting of the old coroutine with value 1.

Crexitstops the running coroutine and does not place it in any queue.

Crread copies characters from thebuffer of the crwrite at the head of theconnector’swrite
queue to thebuffer of crread. If the write queue is empty, copying is delayed and the running
coroutine is placed on the read queue. The number of characters copied is the minimum of
nbytesand the number of characters remaining in the writebuffer,and is returned as the value of
crread. After copying, the location of the writebufferand the correspondingnbytesare updated
appropriately. If zero characters remain, the coroutine of thecrwrite is moved to the head of the
ready queue. If the write queue remains nonempty, the head member of the read queue is moved
to the head of the ready queue.

Crwrite queues the running coroutine on theconnector’swrite queue, and records the fact that
nbytes(zero or more) characters in the stringbufferare available tocrreads. If the read queue is
not empty, its head member is started running.

Crexchexchanges the read queues of connectorsconn1andconn2if i=0; and it exchanges the
write queues ifi=1. If a nonempty read queue that had been paired with an empty write queue
becomes paired with a nonempty write queue,crexchmoves the head member of that read queue

- 1 -

-

CR (VII) 1/4/75 CR (VII)

to the head of the ready queue.

Crprior sets a priority on the running coroutine to control the queuing ofcrreadsandcrwrites.
When queued, the running coroutine will take its place before coroutines whose priorities exceed
its own priority and after others. Priorities are compared as logical,i.e. unsigned, quantities.
Initially each coroutine’s priority is set as large as possible, so default queuing is FIFO.

Storage allocation. The old and new coroutine share the same activation record in the function
that invokedcrfork, so only one may return from the invoking function, and then only when the
other has completed execution in that function.

The activation record for each function execution is dynamically allocated rather than stacked; a
factor of 3 in running time overhead can result if function calls are very frequent. The overhead
may be overcome by providing a separate stack for each coroutine and dispensing with dynamic
allocation. The base (lowest) address and size of the new coroutine’s stack are supplied tocrfork
as optional argumentsstackandnwords. Stacked allocation and dynamic allocation cannot be
mixed in one run. For stacked operation, obtain the coroutine functions from/usr/lib/scr.a in-
stead of/usr/lib/cr.a.

FILES
/usr/lib/cr.a
/usr/lib/scr.a

DIAGNOSTICS
‘rsave doesn’t work’− an old C compilation has called ‘rsave’. It must be recompiled to work
with the coroutine scheme.

BUGS
Under /usr/lib/cr.a each function has just 12 words of anonymous stack for hard expressions and
arguments of further calls, regardless of actual need. There is no checking for stack overflow.
Under /usr/lib/scr.a stack overflow checking is not rigorous.

- 2 -

-

MS (VII) 11/6/74 MS (VII)

NAME
ms − macros for formatting manuscripts

SYNOPSIS
nroff −ms [options] file ...
troff −ms [options] file ...

DESCRIPTION
This package ofnroff andtroff macro definitions provides a canned formatting facility for tech-
nical papers. When producing 2-column output on a terminal, its output should be filtered
throughcol (I).

The package supports three different formats: BTL technical memorandum with cover sheet, re-
leased paper with cover sheet, and an abbreviated ‘debugging’ form without cover sheet.

The macro requests are defined in the attached Request Reference. Manynroff andtroff requests
are unsafe in conjunction with this package, however the requests listed below may be used with
impunity after the first .PP.

.bp begin new page

.br break output line here

.sp n insert n spacing lines

.ls n (line spacing) n=1 single, n=2 double space

.na no alignment of right margin

Output of theeqn, neqnandtbl (I) preprocessors for equations and tables is acceptable as input.

FILES
/usr/lib/tmac.s

SEE ALSO
eqn (I), nroff (I), troff (I), tbl (VI)

BUGS

- 1 -

-

MS (VII) 11/6/74 MS (VII)

REQUEST REFERENCE

Request Initial Cause
Form Value Break Explanation

.1C yes yes One column format on a new page.

.2C no yes Two column format.

.AB no yes Begin abstract.

.AE - yes End abstract.

.AI no yes Author’s institution follows. Suppressed in TM.

.AU x y no yes Author’s name follows.x is location andy is extension, ignored except in
TM.

.B no no Boldface text follows.

.CS x... - yes Cover sheet info if TM format, suppressed otherwise. Arguments are num-
ber of text pages, other pages, total pages, figures, tables, references.

.DA x nroff no ‘Date line’ at bottom of page isx. Default is today.

.DE - yes End displayed text. Implies .KE.

.DS x no yes Start of displayed text, to appear verbatim line-by-line.x=I for indented dis-
play (default),x=L for left-justified on the page,x=C for centered. Implies
.KS.

.EN - yes Space after equation produced byeqnor neqn.

.EQx - yes Space before equation. Equation number isx.

.FE - yes End footnote.

.FS no no Start footnote. The note will be moved to the bottom of the page.

.HO - no ‘Bell Laboratories, Holmdel, New Jersey 07733’.

.I no no Italic text follows.

.IP x y no yes Start indented paragraph, with hanging tagx. Indentation isy ens (default 5).

.KE - yes End keep. Put kept text on next page if not enough room.

.KF no yes Start floating keep. If the kept text must be moved to the next page, float
later text back to this page.

.KS no yes Start keeping following text.

.LG no no Make letters larger.

.LP yes yes Start left-blocked paragraph.

.MH - no ‘Bell Laboratories, Murray Hill, New Jersey 07974’.

.ND troff no No date line at bottom of page.

.NH n - yes Same as .SH, with section number supplied automatically. Numbers are mul-
tilevel, like 1.2.3, wheren tells what level is wanted (default is 1).

.NL yes no Make letters normal size.

.OK - yes ‘Other keywords’ for TM cover sheet follow.

.PP no yes Begin paragraph. First line indented.

.R yes no Roman text follows.

.RE - yes End relative indent level.

.RP no - Cover sheet and first page for released paper. Must precede other requests.

.RS - yes Start level of relative indentation. Following .IP’s measured from current in-
dentation.

.SGx no yes Insert signature(s) of author(s), ignored except in TM.x is the reference line
(initials of author and typist).

.SH - yes Section head follows, font automatically bold.

.SM no no Make letters smaller.

.TL no yes Title follows.

.TM x y z no - BTL TM cover sheet and first page,x=TM number,y=(quoted list of) case
number(s),z=file number. Must precede other requests.

.WH - no ‘Bell Laboratories, Whippany, New Jersey 07981’.

- 2 -

-

PLOT (VII) 2/25/75 PLOT (VII)

NAME
plot: openpl et al. − graphics interface

SYNOPSIS
openpl()

erase()

label(s)
char s[];

line(x1, y1, x2, y2)

circle(x, y, r)

arc(x, y, x0, y0, x1, y1)

dot(x, y, dx, n, pattern)
int pattern[];

move(x, y)

point(x, y)

linemod(s)
char s[];

space(x0, y0, x1, y1)

closepl()

DESCRIPTION
These subroutines generate graphic output in a relatively device-independent manner. Seeplot
(VI) for a description of the meaning of the subroutines.

There are four libraries containing these routines, one that produces general graphics commands
on the standard output, and one each for the vt0 storage scope, the Diablo plotting terminal and
the Tektronix 4014 terminal.Openplmust be used before any of the others to open the device
for writing. Closeplflushes the output.

FILES
/usr/lib/plot.a produces output for plotting filters
/usr/lib/vt0.a produces output on vt0 storage scope
/usr/lib/gsip.a produces output on Diablo terminal
/usr/lib/tek.a produces output for the Tektronix 4014 terminal

SEE ALSO
plot (VI), graph (VI)

BUGS

- 1 -

-

SALLOC (VII) 6/15/72 SALLOC (VII)

NAME
salloc − string allocation and manipulation

SYNOPSIS
(get size in r0)
jsr pc,allocate
(header address in r1)

(get source header address in r0,
destination header address in r1)
jsr pc,copy

jsr pc,wc

(all following routines assume r1 contains header address)

jsr pc,release

(get character in r0)
jsr pc,putchar

jsr pc,lookchar
(character in r0)

jsr pc,getchar
(character in r0)

(get character in r0)
jsr pc,alterchar

(get position in r0)
jsr pc,seekchar

jsr pc,backspace
(character in r0)

(get word in r0)
jsr pc,putword

jsr pc,lookword
(word in r0)

jsr pc,getword
(word in r0)

(get word in r0)
jsr pc,alterword

jsr pc,backword
(word in r0)

jsr pc,length
(length in r0)

jsr pc,position
(position in r0)

jsr pc,rewind

jsr pc,create

jsr pc,fsfile

jsr pc,zero

DESCRIPTION
This package is a complete set of routines for dealing with almost arbitrary length strings of
words and bytes. It lives in/lib/libs.a. The strings are stored on a disk file, so the sum of their
lengths can be considerably larger than the available core. A small buffer cache makes for rea-

- 1 -

-

SALLOC (VII) 6/15/72 SALLOC (VII)

sonable speed.

For each string there is a header of four words, namely a write pointer, a read pointer and point-
ers to the beginning and end of the block containing the string. Initially the read and write point-
ers point to the beginning of the string. All routines that refer to a string require the header ad-
dress in r1. Unless the string is destroyed by the call, upon return r1 will point to the same
string, although the string may have grown to the extent that it had to be be moved.

Allocateobtains a string of the requested size and returns a pointer to its header in r1.

Releasereleases a string back to free storage.

Putchar and putword write a byte or word respectively into the string and advance the write
pointer.

Lookcharandlookwordread a byte or word respectively from the string but do not advance the
read pointer.

Getcharand getword read a byte or word respectively from the string and advance the read
pointer.

Altercharandalterwordwrite a byte or word respectively into the string where the read pointer
is pointing and advance the read pointer.

Backspaceandbackwordread the last byte or word written and decrement the write pointer.

All write operations will automatically get a larger block if the current block is exceeded. All
read operations return with the error bit set if attempting to read beyond the write pointer.

Seekcharmoves the read pointer to the offset specified in r0.

Lengthreturns the current length of the string (beginning pointer to write pointer) in r0.

Positionreturns the current offset of the read pointer in r0.

Rewindmoves the read pointer to the beginning of the string.

Createreturns the read and write pointers to the beginning of the string.

Fsfile moves the read pointer to the current position of the write pointer.

Zerozeros the whole string and sets the write pointer to the beginning of the string.

Copycopies the string whose header pointer is in r0 to the string whose header pointer is in r1.
Care should be taken in using the copy instruction since r1 will be changed if the contents of the
source string is bigger than the destination string.

Wcforces the contents of the internal buffers and the header blocks to be written on disc.

An in-core version of this allocator exists indc (I), and a permanent-file version exists inform
andfed(VI).

FILES
/lib/libs.a library, accessed byld ... -ls
alloc.d temporary file for string storage

SEE ALSO
alloc (III)

DIAGNOSTICS
‘error in copy’ − disk write error encountered incopy.
‘error in allocator’ − routine called with bad header pointer.
‘cannot open output file’ − temp filealloc.dcannot be created or opened.
‘out of space’ − no sufficiently large block or no header is available for a new or growing block.

BUGS

- 2 -

-

AC (VIII) 2/20/74 AC (VIII)

NAME
ac − login accounting

SYNOPSIS
ac [−w wtmp] [−p] [−d] people

DESCRIPTION
Ac produces a printout giving connect time for each user who has logged in during the life of the
currentwtmp file. A total is also produced.−w is used to specify an alternatewtmp file. −p
prints individual totals; without this option, only totals are printed.−d causes a printout for each
midnight to midnight period. Anypeoplewill limit the printout to only the specified login
names. If nowtmpfile is given,/usr/adm/wtmpis used.

The accounting file/usr/adm/wtmpis maintained byinit and login. Neither of these programs
creates the file, so if it does not exist no connect-time accounting is done. To start accounting, it
should be created with length 0. On the other hand if the file is left undisturbed it will grow
without bound, so periodically any information desired should be collected and the file trun-
cated.

FILES
/usr/adm/wtmp

SEE ALSO
init (VIII), login (I), wtmp (V).

BUGS

- 1 -

-

BOOT PROCEDURES (VIII) 2/11/75 BOOT PROCEDURES (VIII)

NAME
boot procedures − UNIX startup

DESCRIPTION
How to start UNIX. UNIX is started by placing it in core at location zero and transferring to
zero. Since the system is not reenterable, it is necessary to read it in from disk or tape.

The tp command places a bootstrap program on the otherwise unused block zero of the tape.
The DECtape version of this program is calledtboot, the magtape versionmboot. If tboot or
mbootis read into location zero and executed there, it will type ‘=’ on the console, read in atp
entry name, load that entry into core, and transfer to zero. Thus one way to run UNIX is to
maintain the system code on a tape usingtp. Caution: the file /usr/mdec/tboot (DECtape) or
/usr/mdec/mboot (magtape) must be present when the tape is made! When a boot is required,
execute (somehow) a program which reads in and jumps to the first block of the tape. In re-
sponse to the ‘=’ prompt, type the entry name of the system on the tape (we use plain ‘unix’). It
is strongly recommended that a current version of the system be maintained in this way, even if
it is usually booted from disk.

The standard DEC ROM which loads DECtape is sufficient to read intboot, but the magtape
ROM loads block one, not zero. If no suitable ROM is available, magtape and DECtape pro-
grams are presented below which may be manually placed in core and executed.

The system can also be booted from a disk file with the aid of theubootprogram. When read
into location 0 and executed,uboot reads a single character (eitherp or k for RP or RK, both
drive 0) to specify which device is to be searched. Then it reads a UNIX pathname from the
console, finds the corresponding file on the given device, loads that file into core location zero,
and transfers to it.Uboot operates under very severe space constraints. It supplies no prompts,
except that it echoes a carriage return and line feed after thep or k. No diagnostic is provided if
the indicated file cannot be found, nor is there any means of correcting typographical errors in
the file name except to start the program over. If it fails to find the file, however, it jumps back
to its start, so another try can be attempted, starting again with thep or k. Notice thatubootwill
only load a file from drive 0, and the file system it searches must start at the beginning of the
disk. Uboot itself usually resides in the otherwise unused block 0 of the disk, so it can be loaded
by ROM program;mkfscan be used to put it there when the file system is created. It can also be
loaded from atp tape as described above.

The switches. The console switches play an important role in the use and especially the booting
of UNIX. During operation, the console switches are examined 60 times per second, and the
contents of the address specified by the switches are displayed in the display register. (This is
not true on the 11/40 since there is no display register on that machine.) If the switch address is
even, the address is interpreted in kernel (system) space; if odd, the rounded-down address is in-
terpreted in the current user space.

If any diagnostics are produced by the system, they are printed on the console only if the
switches are non-zero. Thus it is wise to have a non-zero value in the switches at all times.

During the startup of the system, theinit program (VIII) reads the switches and will come up
single-user if the switches are set to 173030.

It is unwise to have a non-existent address in the switches. This causes a bus error in the system
(displayed as 177777) at the rate of 60 times per second. If there is a transfer of more than 16ms
duration on a device with a data rate faster than the bus error timeout (about 10µs) then a perma-
nent disk non-existent-memory error will occur.

ROM programs. Here are some programs which are suitable for installing in read-only memo-
ries, or for manual keying into core if no ROM is present. Each program is position-independent
but should be placed well above location 0 so it will not be overwritten. Each reads a block from
the beginning of a device into core location zero. The octal words constituting the program are
listed on the left.

- 1 -

-

BOOT PROCEDURES (VIII) 2/11/75 BOOT PROCEDURES (VIII)

DECtape (drive 0) from endzone:
012700 mov $tcba,r0
177346
010040 mov r0,−(r0) / use tc addr for wc
012710 mov $3,(r0) / read bn forward
000003
105710 1: tstb (r0) / wait for ready
002376 bge 1b
112710 movb $5,(r0) / read (forward)
000005
000777 br . / loop; now halt and start at 0

DECtape (drive 0) with search:
012700 1: mov $tcba,r0
177346
010040 mov r0,−(r0) / use tc addr for wc
012740 mov $4003,−(r0) / read bn reverse
004003
005710 2: tst (r0)
002376 bge 2b / wait for error
005760 tst −2(r0) / loop if not end zone
177776
002365 bge 1b
012710 mov $3,(r0) / read bn forward
000003
105710 2: tstb (r0) / wait for ready
002376 bge 2b
112710 movb $5,(r0) / read (forward)
000005
105710 2: tstb (r0) / wait for ready
002376 bge 2b
005007 clr pc / transfer to zero

Caution: both of these DECtape programs will (literally) blow a fuse if 2 drives are dialed to
zero.

Magtape from load point:
012700 mov $mtcma,r0
172526
010040 mov r0,−(r0) / usr mt addr for wc
012740 mov $60003,−(r0) / read 9−track
060003
000777 br . / loop; now halt and start at 0

RK (drive 0):
012700 mov $rkda,r0
177412
005040 clr −(r0) / rkda cleared by start
010040 mov r0,−(r0)
012740 mov $5,−(r0)
000005
105710 1: tstb (r0)
002376 bge 1b
005007 clr pc

- 2 -

-

BOOT PROCEDURES (VIII) 2/11/75 BOOT PROCEDURES (VIII)

RP (drive 0)
012700 mov $rpmr,r0
176726
005040 clr −(r0)
005040 clr −(r0)
005040 clr −(r0)
010040 mov r0,−(r0)
012740 mov $5,−(r0)
000005
105710 1: tstb (r0)
002376 bge 1b
005007 clr pc

FILES
/unix − UNIX code
/usr/mdec/mboot − tp magtape bootstrap
/usr/mdec/tboot − tp DECtape bootstrap
/usr/mdec/uboot − file system bootstrap

SEE ALSO
tp (I), init (VIII)

- 3 -

-

CHGRP (VIII) 2/8/75 CHGRP (VIII)

NAME
chgrp − change group

SYNOPSIS
chgrp group file ...

DESCRIPTION
The group-ID of the files is changed togroup. The group may be either a decimal GID or a
group name found in the group-ID file.

Only the super-user is allowed to change the group of a file, in order to simplify as yet unimple-
mented accounting procedures.

SEE ALSO
chown (VIII)

FILES
/etc/group

BUGS

- 1 -

-

CHOWN (VIII) 2/8/75 CHOWN (VIII)

NAME
chown − change owner

SYNOPSIS
chown owner file ...

DESCRIPTION
The user-ID of the files is changed toowner. The owner may be either a decimal UID or a login
name found in the password file.

Only the super-user is allowed to change the owner of a file, in order to simplify as yet unimple-
mented accounting procedures.

FILES
/etc/passwd

SEE ALSO
chgrp (VIII)

BUGS

- 1 -

-

CLRI (VIII) 10/31/73 CLRI (VIII)

NAME
clri − clear i-node

SYNOPSIS
clri i-number [filesystem]

DESCRIPTION
Clri writes zeros on the 32 bytes occupied by the i-node numberedi-number. If the file system
argument is given, the i-node resides on the given device, otherwise on a default file system.
The file system argument must be a special file name referring to a device containing a file sys-
tem. Afterclri, any blocks in the affected file will show up as ‘‘missing’’ in anicheckof of the
file system.

Read and write permission is required on the specified file system device. The i-node becomes
allocatable.

The primary purpose of this routine is to remove a file which for some reason appears in no di-
rectory. If it is used to zap an i-node which does appear in a directory, care should be taken to
track down the entry and remove it. Otherwise, when the i-node is reallocated to some new file,
the old entry will still point to that file. At that point removing the old entry will destroy the new
file. The new entry will again point to an unallocated i-node, so the whole cycle is likely to be
repeated again and again.

BUGS
Whatever the default file system is, it is likely to be wrong. Specify the file system explicitly.

If the file is open,clri is likely to be ineffective.

- 1 -

-

CRASH (VIII) 2/12/75 CRASH (VIII)

NAME
crash − what to do when the system crashes

DESCRIPTION
This section gives at least a few clues about how to proceed if the system crashes. It can’t pre-
tend to be complete.

How to bring it back up. If the reason for the crash is not evident (see below for guidance on
‘evident’) you may want to try to dump the system if you feel up to debugging. At the moment a
dump can be taken only on magtape. With a tape mounted and ready, stop the machine, load ad-
dress 44, and start. This should write a copy of all of core on the tape with an EOF mark. Cau-
tion: Any error is taken to mean the end of core has been reached. This means that you must be
sure the ring is in, the tape is ready, and the tape is clean and new. If the dump fails, you can try
again, but some of the registers will be lost. See below for what to do with the tape.

In restarting after a crash, always bring up the system single-user. This is accomplished by fol-
lowing the directions inboot procedures(VIII) as modified for your particular installation; a
single-user system is indicated by having a particular value in the switches (173030 unless
you’ve changedinit) as the system starts executing. When it is running, perform adcheckand
icheck(VIII) on all file systems which could have been in use at the time of the crash. If any se-
rious file system problems are found, they should be repaired. When you are satisfied with the
health of your disks, check and set the date if necessary, then come up multi-user. This is most
easily accomplished by changing the single-user value in the switches to something else, then
logging out by typing an EOT.

To even bootUNIX at all, three files (and the directories leading to them) must be intact. First,
the initialization program/etc/init must be present and executable. If it is not, the CPU will loop
in user mode at location 6. Forinit to work correctly,/dev/tty8and /bin/shmust be present. If
either does not exist, the symptom is best described as thrashing.Init will go into a fork/exec
loop trying to create a Shell with proper standard input and output.

If you cannot get the system to boot, a runnable system must be obtained from a backup medi-
um. The root file system may then be doctored as a mounted file system as described below. If
there are any problems with the root file system, it is probably prudent to go to a backup system
to avoid working on a mounted file system.

Repairing disks. The first rule to keep in mind is that an addled disk should be treated gently; it
shouldn’t be mounted unless necessary, and if it is very valuable yet in quite bad shape, perhaps
it should be dumped before trying surgery on it. This is an area where experience and informed
courage count for much.

The problems reported byichecktypically fall into two kinds. There can be problems with the
free list: duplicates in the free list, or free blocks also in files. These can be cured easily with an
icheck−s. If the same block appears in more than one file or if a file contains bad blocks, the
files should be deleted, and the free list reconstructed. The best way to delete such a file is to use
clri (VIII), then remove its directory entries. If any of the affected files is really precious, you
can try to copy it to another device first.

Dcheckmay report files which have more directory entries than links. Such situations are poten-
tially dangerous;clri discusses a special case of the problem. All the directory entries for the file
should be removed. If on the other hand there are more links than directory entries, there is no
danger of spreading infection, but merely some disk space that is lost for use. It is sufficient to
copy the file (if it has any entries and is useful) then useclri on its inode and remove any direc-
tory entries that do exist.

Finally, there may be inodes reported bydcheckthat have 0 links and 0 entries. These occur on
the root device when the system is stopped with pipes open, and on other file systems when the
system stops with files that have been deleted while still open. Aclri will free the inode, and an
icheck -swill recover any missing blocks.

- 1 -

-

CRASH (VIII) 2/12/75 CRASH (VIII)

Why did it crash? UNIX types a message on the console typewriter when it voluntarily crashes.
Here is the current list of such messages, with enough information to provide a hope at least of
the remedy. The message has the form ‘panic: ...’, possibly accompanied by other information.
Left unstated in all cases is the possibility that hardware or software error produced the message
in some unexpected way.

blkdev
The getblk routine was called with a nonexistent major device as argument. Definitely
hardware or software error.

devtab
Null device table entry for the major device used as argument togetblk. Definitely hard-
ware or software error.

iinit
An I/O error reading the super-block for the root file system during initialization.

out of inodes
A mounted file system has no more i-nodes when creating a file. Sorry, the device isn’t
available; theicheckshould tell you.

no fs
A device has disappeared from the mounted-device table. Definitely hardware or software
error.

no imt
Like ‘no fs’, but produced elsewhere.

no inodes
The in-core inode table is full. Try increasing NINODE in param.h. Shouldn’t be a panic,
just a user error.

no clock
During initialization, neither the line nor programmable clock was found to exist.

swap error
An unrecoverable I/O error during a swap. Really shouldn’t be a panic, but it is hard to
fix.

unlink � iget
The directory containing a file being deleted can’t be found. Hardware or software.

out of swap space
A program needs to be swapped out, and there is no more swap space. It has to be in-
creased. This really shouldn’t be a panic, but there is no easy fix.

out of text
A pure procedure program is being executed, and the table for such things is full. This
shouldn’t be a panic.

trap
An unexpected trap has occurred within the system. This is accompanied by three num-
bers: a ‘ka6’, which is the contents of the segmentation register for the area in which the
system’s stack is kept; ‘aps’, which is the location where the hardware stored the program
status word during the trap; and a ‘trap type’ which encodes which trap occurred. The trap
types are:

0 bus error
1 illegal instruction
2 BPT/trace
3 IOT
4 power fail
5 EMT
6 recursive system call (TRAP instruction)
7 11/70 cache parity, or programmed interrupt

- 2 -

-

CRASH (VIII) 2/12/75 CRASH (VIII)

10 floating point trap
11 segmentation violation

In some of these cases it is possible for octal 20 to be added into the trap type; this indicates that
the processor was in user mode when the trap occurred. If you wish to examine the stack after
such a trap, either dump the system, or use the console switches to examine core; the required
address mapping is described below.

Interpreting dumps. All file system problems should be taken care of before attempting to look
at dumps. The dump should be read into the file/usr/sys/core; cp(I) will do. At this point, you
should executeps−alxk andwho to print the process table and the users who were on at the time
of the crash. You should dump (od (I)) the first 30 bytes of/usr/sys/core.Starting at location 4,
the registers R0, R1, R2, R3, R4, R5, SP and KDSA6 (KISA6 for 11/40s) are stored. If the
dump had to be restarted, R0 will not be correct. Next, take the value of KA6 (location 22(8) in
the dump) multiplied by 100(8) and dump 1000(8) bytes starting from there. This is the per-
process data associated with the process running at the time of the crash. Relabel the addresses
140000 to 141776. R5 is C’s frame or display pointer. Stored at (R5) is the old R5 pointing to
the previous stack frame. At (R5)+2 is the saved PC of the calling procedure. Trace this calling
chain until you obtain an R5 value of 141756, which is where the user’s R5 is stored. If the
chain is broken, you have to look for a plausible R5, PC pair and continue from there. Each PC
should be looked up in the system’s name list usingdb (I) and its ‘:’ command, to get a reverse
calling order. In most cases this procedure will give an idea of what is wrong. A more complete
discussion of system debugging is impossible here.

SEE ALSO
clri, icheck, dcheck, boot procedures (VIII)

BUGS

- 3 -

-

CRON (VIII) 10/25/74 CRON (VIII)

NAME
cron − clock daemon

SYNOPSIS
/etc/cron

DESCRIPTION
Cron executes commands at specified dates and times according to the instructions in the file
/usr/lib/crontab. Sincecron never exits, it should only be executed once. This is best done by
runningcron from the initialization process through the file /etc/rc; seeinit (VIII).

Crontab consists of lines of six fields each. The fields are separated by spaces or tabs. The first
five are integer patterns to specify the minute (0-59), hour (0-23), day of the month (1-31),
month of the year (1-12), and day of the week (1-7 with 1=monday). Each of these patterns may
contain a number in the range above; two numbers separated by a minus meaning a range inclu-
sive; a list of numbers separated by commas meaning any of the numbers; or an asterisk meaning
all legal values. The sixth field is a string that is executed by the Shell at the specified times. A
percent character in this field is translated to a new-line character. Only the first line (up to a %
or end of line) of the command field is executed by the Shell. The other lines are made available
to the command as standard input.

Crontab is examined bycron every hour. Thus it could take up to an hour for entries to become
effective. If it receives a hangup signal, however, the table is examined immediately; so ‘kill�1
...’ can be used.

FILES
/usr/lib/crontab

SEE ALSO
init(VIII), sh(I), kill (I)

DIAGNOSTICS
None � illegal lines in crontab are ignored.

BUGS
A more efficient algorithm could be used. The overhead in runningcron is about one percent of
the machine, exclusive of any commands executed.

- 1 -

-

DCHECK (VIII) 2/8/75 DCHECK (VIII)

NAME
dcheck − file system directory consistency check

SYNOPSIS
dcheck[−i numbers] [filesystem]

DESCRIPTION
Dcheckreads the directories in a file system and compares the link-count in each i-node with the
number of directory entries by which it is referenced. If the file system is not specified, a set of
default file systems is checked.

The−i flag is followed by a list of i-numbers; when one of those i-numbers turns up in a direc-
tory, the number, the i-number of the directory, and the name of the entry are reported.

The program is fastest if the raw version of the special file is used, since the i-list is read in large
chunks.

FILES
Currently, /dev/rrk2 and /dev/rrp0 are the default file systems.

DIAGNOSTICS
When a file turns up for which the link-count and the number of directory entries disagree, the
relevant facts are reported. Allocated files which have 0 link-count and no entries are also listed.
The only dangerous situation occurs when there are more entries than links; if entries are re-
moved, so the link-count drops to 0, the remaining entries point to thin air. They should be re-
moved. When there are more links than entries, or there is an allocated file with neither links nor
entries, some disk space may be lost but the situation will not degenerate.

SEE ALSO
icheck (VIII), fs (V), clri (VIII), ncheck (VIII)

BUGS
Sincedcheckis inherently two-pass in nature, extraneous diagnostics may be produced if applied
to active file systems.

- 1 -

-

DF (VIII) 1/20/73 DF (VIII)

NAME
df − disk free

SYNOPSIS
df [filesystem]

DESCRIPTION
Df prints out the number of free blocks available on a file system. If the file system is unspeci-
fied, the free space on all of the normally mounted file systems is printed.

FILES
/dev/rf?, /dev/rk?, /dev/rp?

SEE ALSO
icheck (VIII)

BUGS

- 1 -

-

DPD (VIII) 3/15/72 DPD (VIII)

NAME
dpd − data phone daemon

SYNOPSIS
/etc/dpd

DESCRIPTION
Dpd is the 201 data phone daemon. It is designed to submit jobs to the Honeywell 6070 com-
puter via the GRTS interface.

Dpd uses the directory/usr/dpd. The file lock in that directory is used to prevent two daemons
from becoming active. After the daemon has successfully set the lock, it forks and the main path
exits, thus spawning the daemon. The directory is scanned for files beginning withdf. Each
such file is submitted as a job. Each line of a job file must begin with a key character to specify
what to do with the remainder of the line.

S directsdpd to generate a unique snumb card. This card is generated by incrementing the
first word of the file /usr/dpd/snumband converting that to three-digit octal concatenated
with the station ID.

L specifies that the remainder of the line is to be sent as a literal.

B specifies that the rest of the line is a file name. That file is to be sent as binary cards.

F is the same asB except a form feed is prepended to the file.

U specifies that the rest of the line is a file name. After the job has been transmitted, the file
is unlinked.

M is followed by a user ID; after the job is sent, the snumb number and the first line of infor-
mation in the file is mailed to the user to verify the sending of the job.

Any error encountered will cause the daemon to drop the call, wait up to 20 minutes and start
over. This means that an improperly constructeddf file may cause the same job to be submitted
every 20 minutes.

While waiting, the daemon checks to see that thelock file still exists. If it is gone, the daemon
will exit.

FILES
/dev/dn0, /dev/dp0, /usr/dpd/*

SEE ALSO
opr (I)

- 1 -

-

DUMP (VIII) 11/24/73 DUMP (VIII)

NAME
dump − incremental file system dump

SYNOPSIS
dump [key [arguments] filesystem]

DESCRIPTION
Dump makes an incremental file system dump on magtape of all files changed after a certain
date. Thekeyargument specifies the date and other options about the dump.Key consists of
characters from the setabcfiu0hds.

a Normally files larger than 1000 blocks are not incrementally dump; this flag forces them
to be dumped.

b The next argument is taken to be the maximum size of the dump tape in blocks (sees).

c If the tape overflows, increment the last character of its name and continue on that drive.
(Normally it asks you to change tapes.)

f Place the dump on the next argument file instead of the tape.

i the dump date is taken from the entry in the file /etc/dtab corresponding to the last time
this file system was dumped with the-u option.

u the date just prior to this dump is written on /etc/dtab upon successful completion of this
dump. This file contains a date for every file system dumped with this option.

0 the dump date is taken as the epoch (beginning of time). Thus this option causes an entire
file system dump to be taken.

h the dump date is some number of hours before the current date. The number of hours is
taken from the next argument inarguments.

d the dump date is some number of days before the current date. The number of days is tak-
en from the next argument inarguments.

s the size of the dump tape is specified in feet. The number of feet is taken from the next ar-
gument inarguments. It is assumed that there are 9 standard UNIX records per foot.
When the specified size is reached, the dump will wait for reels to be changed. The de-
fault size is 2200 feet.

If no arguments are given, thekey is assumed to bei and the file system is assumed to be
/dev/rp0.

Full dumps should be taken on quiet file systems as follows:

dump 0u /dev/rp0
ncheck /dev/rp0

Thencheckwill come in handy in case it is necessary to restore individual files from this dump.
Incremental dumps should then be taken when desired by:

dump

When the incremental dumps get cumbersome, a new complete dump should be taken. In this
way, a restore requires loading of the complete dump tape and only the latest incremental tape.

DIAGNOSTICS
If the dump requires more than one tape, it will ask you to change tapes. Reply with a new-line
when this has been done. If the first block on the new tape is not writable, e.g. because you for-
got the write ring, you get a chance to fix it. Generally, however, read or write failures are fatal.

FILES
/dev/mt0magtape
/dev/rp0 default file system
/etc/dtab

- 1 -

-

DUMP (VIII) 11/24/73 DUMP (VIII)

SEE ALSO
restor (VIII), ncheck (VIII), dump (V)

BUGS

- 2 -

-

GETTY (VIII) 2/11/75 GETTY (VIII)

NAME
getty − set typewriter mode

SYNOPSIS
/etc/getty[char]

DESCRIPTION
Getty is invoked byinit (VIII) immediately after a typewriter is opened following a dial-up. It
reads the user’s name and invokes thelogin command (I) with the name as argument. While
reading the namegettyattempts to adapt the system to the speed and type of terminal being used.

Init calls gettywith an argument specified by thettys file entry for the typewriter line. Argu-
ments other than ‘0’ can be used to makegetty treat the line specially. Normally, it sets the
speed of the interface to 300 baud, specifies that raw mode is to be used (break on every charac-
ter), that echo is to be suppressed, and either parity allowed. It types the ‘‘login:’’ message,
which includes the characters which put the Terminet 300 terminal into full-duplex and return
the GSI terminal to non-graphic mode. Then the user’s name is read, a character at a time. If a
null character is received, it is assumed to be the result of the user pushing the ‘‘break’’ (‘‘inter-
rupt’’) key. The speed is then changed to 150 baud and the ‘‘login:’’ is typed again, this time in-
cluding the character sequence which puts a Teletype 37 into full-duplex. If a subsequent null
character is received, the speed is changed back to 300 baud.

The user’s name is terminated by a new-line or carriage-return character. The latter results in the
system being set to treat carriage returns appropriately (seestty(II)).

The user’s name is scanned to see if it contains any lower-case alphabetic characters; if not, and
if the name is nonempty, the system is told to map any future upper-case characters into the cor-
responding lower-case characters.

Finally, login is called with the user’s name as argument.

SEE ALSO
init (VIII), login (I), stty (II), ttys (V)

BUGS

- 1 -

-

GLOB (VIII) 9/19/73 GLOB (VIII)

NAME
glob − generate command arguments

SYNOPSIS
/etc/globcommand [arguments]

DESCRIPTION
Glob is used to expand arguments to the shell containing ‘‘*’’, ‘‘[’’, or ‘‘?’’. It is passed the ar-
gument list containing the metacharacters;glob expands the list and calls the indicated com-
mand. The actions ofglob are detailed in the Shell writeup.

SEE
sh (I)

BUGS

- 1 -

-

ICHECK (VIII) 2/9/75 ICHECK (VIII)

NAME
icheck − file system storage consistency check

SYNOPSIS
icheck [−s] [−b numbers] [filesystem]

DESCRIPTION
Icheck examines a file system, builds a bit map of used blocks, and compares this bit map
against the free list maintained on the file system. If the file system is not specified, a set of de-
fault file systems is checked. The normal output oficheckincludes a report of

The number of blocks missing; i.e. not in any file nor in the free list,
The number of special files,
The total number of files,
The number of large and huge files,
The number of directories,
The number of indirect blocks, and the number of double-indirect blocks in huge files,
The number of blocks used in files,
The number of free blocks.

The−s flag causesicheckto ignore the actual free list and reconstruct a new one by rewriting the
super-block of the file system. The file system should be dismounted while this is done; if this is
not possible (for example if the root file system has to be salvaged) care should be taken that the
system is quiescent and that it is rebooted immediately afterwards so that the old, bad in-core
copy of the super-block will not continue to be used. Notice also that the words in the super-
block which indicate the size of the free list and of the i-list are believed. If the super-block has
been curdled these words will have to be patched. The−s flag causes the normal output reports
to be suppressed.

Following the�b flag is a list of block numbers; whenever any of the named blocks turns up in a
file, a diagnostic is produced.

Icheckis faster if the raw version of the special file is used, since it reads the i-list many blocks
at a time.

FILES
Currently, /dev/rrk2 and /dev/rrp0 are the default file systems.

SEE ALSO
dcheck (VIII), ncheck (VIII), fs (V), clri (VIII), restor(VIII)

DIAGNOSTICS
For duplicate blocks and bad blocks (which lie outside the file system)icheckannounces the dif-
ficulty, the i-number, and the kind of block involved. If a read error is encountered, the block
number of the bad block is printed andicheckconsiders it to contain 0. ‘‘Bad freeblock’’ means
that a block number outside the available space was encountered in the free list. ‘‘n dups in
free’’ means thatn blocks were found in the free list which duplicate blocks either in some file
or in the earlier part of the free list.

BUGS
Sinceicheckis inherently two-pass in nature, extraneous diagnostics may be produced if applied
to active file systems.
It believes even preposterous super-blocks and consequently can get core images.

- 1 -

-

INIT (VIII) 2/22/74 INIT (VIII)

NAME
init − process control initialization

SYNOPSIS
/etc/init

DESCRIPTION
Init is invoked inside UNIX as the last step in the boot procedure. Generally its role is to create
a process for each typewriter on which a user may log in.

First, init checks to see if the console switches contain 173030. (This number is likely to vary
between systems.) If so, the console typewriter/dev/tty8 is opened for reading and writing and
the Shell is invoked immediately. This feature is used to bring up a single-user system. When
the system is brought up in this way, thegettyandlogin routines mentioned below and described
elsewhere are not used. If the Shell terminates,init starts over looking for the console switch
setting.

Otherwise,init invokes a Shell, with input taken from the file/etc/rc. This command file per-
forms housekeeping like removing temporary files, mounting file systems, and starting daemons.

Then init reads the file/etc/ttysand forks several times to create a process for each typewriter
specified in the file. Each of these processes opens the appropriate typewriter for reading and
writing. These channels thus receive file descriptors 0 and 1, the standard input and output.
Opening the typewriter will usually involve a delay, since theopenis not completed until some-
one is dialed up and carrier established on the channel. Then/etc/gettyis called with argument
as specified by the last character of thettys file line. Gettyreads the user’s name and invokeslo-
gin (q.v.) to log in the user and execute the Shell.

Ultimately the Shell will terminate because of an end-of-file either typed explicitly or generated
as a result of hanging up. The main path ofinit, which has been waiting for such an event,
wakes up and removes the appropriate entry from the fileutmp, which records current users, and
makes an entry in/usr/adm/wtmp, which maintains a history of logins and logouts. Then the ap-
propriate typewriter is reopened andgettyis reinvoked.

Init catches thehangupsignal (signal #1) and interprets it to mean that the switches should be
examined as in a reboot: if they indicate a multi-user system, the/etc/ttysfile is read again. The
Shell process on each line which used to be active inttys but is no longer there is terminated; a
new process is created for each added line; lines unchanged in the file are undisturbed. Thus it is
possible to drop or add phone lines without rebooting the system by changing thettys file and
sending ahangupsignal to theinit process: use ‘‘kill −1 1.’’

FILES
/dev/tty?, /etc/utmp, /usr/adm/wtmp, /etc/ttys, /etc/rc

SEE ALSO
login (I), kill (I), sh (I), ttys (V), getty (VIII)

- 1 -

-

LPD (VIII) 6/1/74 LPD (VIII)

NAME
lpd − line printer daemon

SYNOPSIS
/etc/lpd

DESCRIPTION
Lpd is the line printer daemon (spool area handler) invoked byopr. It uses the directory/usr/lpd.
The file lock in that directory is used to prevent two daemons from becoming active simultane-
ously. After the daemon has successfully set the lock, it scans the directory for files beginning
with ‘‘df.’’ Lines in each df file specify files to be printed in the same way as is done by the
data-phone daemon dpd (VIII).

FILES
/usr/lpd/* spool area
/dev/lp printer

SEE ALSO
dpd (VIII), opr (I)

BUGS

- 1 -

-

MKFS (VIII) 11/1/73 MKFS (VIII)

NAME
mkfs − construct a file system

SYNOPSIS
/etc/mkfsspecial proto

DESCRIPTION
Mkfs constructs a file system by writing on the special filespecialaccording to the directions
found in the prototype fileproto. The prototype file contains tokens separated by spaces or new
lines. The first token is the name of a file to be copied onto block zero as the bootstrap program
(see boot procedures (VIII)). The second token is a number specifying the size of the created file
system. Typically it will be the number of blocks on the device, perhaps diminished by space for
swapping. The next token is the i-list size in blocks (remember there are 16 i-nodes per block).
The next set of tokens comprise the specification for the root file. File specifications consist of
tokens giving the mode, the user-id, the group id, and the initial contents of the file. The syntax
of the contents field depends on the mode.

The mode token for a file is a 6 character string. The first character specifies the type of the file.
(The characters−bcd specify regular, block special, character special and directory files respec-
tively.) The second character of the type is eitheru or − to specify set-user-id mode or not. The
third is g or − for the set-group-id mode. The rest of the mode is a three digit octal number giv-
ing the owner, group, and other read, write, execute permissions (seechmod(I)).

Two decimal number tokens come after the mode; they specify the user and group ID’s of the
owner of the file.

If the file is a regular file, the next token is a pathname whence the contents and size are copied.

If the file is a block or character special file, two decimal number tokens follow which give the
major and minor device numbers.

If the file is a directory,mkfsmakes the entries. and.. and then reads a list of names and (recur-
sively) file specifications for the entries in the directory. The scan is terminated with the token
$.

If the prototype file cannot be opened and its name consists of a string of digits,mkfsbuilds a
file system with a single empty directory on it. The size of the file system is the value ofproto
interpreted as a decimal number. The i-list size is the file system size divided by 43 plus the size
divided by 1000. (This corresponds to an average size of three blocks per file for a 4000 block
file system and six blocks per file at 40,000.) The boot program is left uninitialized.

A sample prototype specification follows:

/usr/mdec/uboot
4872 55
d−−777 3 1
usr d−−777 3 1

sh −−−755 3 1 /bin/sh
ken d−−755 6 1

$
b0 b−−644 3 1 0 0
c0 c−−644 3 1 0 0
$

$

SEE ALSO
file system (V), directory (V), boot procedures (VIII)

BUGS
It is not possible to initialize a file larger than 64K bytes.
The size of the file system is restricted to 64K blocks.
There should be some way to specify links.

- 1 -

-

MKNOD (VIII) 2/11/75 MKNOD (VIII)

NAME
mknod − build special file

SYNOPSIS
/etc/mknodname [c] [b] major minor

DESCRIPTION
Mknodmakes a directory entry and corresponding i-node for a special file. The first argument is
the nameof the entry. The second isb if the special file is block-type (disks, tape) orc if it is
character-type (other devices). The last two arguments are numbers specifying themajor device
type and theminor device (e.g. unit, drive, or line number).

The assignment of major device numbers is specific to each system. They have to be dug out of
the system source fileconf.c.

SEE ALSO
mknod (II)

BUGS

- 1 -

-

MOUNT (VIII) 10/31/73 MOUNT (VIII)

NAME
mount − mount file system

SYNOPSIS
/etc/mountspecial file [−r]

DESCRIPTION
Mountannounces to the system that a removable file system is present on the device correspond-
ing to special filespecial(which must refer to a disk or possibly DECtape). Thefile must exist
already; it becomes the name of the root of the newly mounted file system.

Mountmaintains a table of mounted devices; if invoked without an argument it prints the table.

The optional last argument indicates that the file is to be mounted read-only. Physically write-
protected and magnetic tape file systems must be mounted in this way or errors will occur when
access times are updated, whether or not any explicit write is attempted.

SEE ALSO
mount (II), mtab (V), umount (VIII)

BUGS
Mounting file systems full of garbage will crash the system.

- 1 -

-

NCHECK (VIII) 2/8/75 NCHECK (VIII)

NAME
ncheck − generate names from i-numbers

SYNOPSIS
ncheck[−i numbers] [−a] [filesystem]

DESCRIPTION
Ncheckwith no argument generates a pathname vs. i-number list of all files on a set of default
file systems. The−i flag reduces the report to only those files whose i-numbers follow.−a al-
lows printing of the names ‘.’ and ‘..’, which are ordinarily suppressed. A file system may be
specified.

The full report is in no useful order, and probably should be sorted.

SEE ALSO
dcheck (VIII), icheck (VIII), sort (I)

BUGS

- 1 -

-

RESTOR (VIII) 11/24/73 RESTOR (VIII)

NAME
restor − incremental file system restore

SYNOPSIS
restor key [arguments]

DESCRIPTION
Restoris used to read magtapes dumped with thedumpcommand. Thekeyargument specifies
what is to be done.Key is a character from the settrxw.

t The date that the tape was made and the date that was specified in thedumpcommand are
printed. A list of all of the i-numbers on the tape is also given.

r The tape is read and loaded into the file system specified inarguments.This should not be
done lightly (see below).

x Each file on the tape is individually extracted into a file whose name is the file’s i-number.
If there arearguments,they are interpreted as i-numbers and only they are extracted.

c If the tape overflows, increment the last character of its name and continue on that drive.
(Normally it asks you to change tapes.)

f Read the dump from the next argument file instead of the tape.

i All read and checksum errors are reported, but will not cause termination.

w In conjunction with thex option, before each file is extracted, its i-number is typed out.
To extract this file, you must respond withy.

Thex option is used to retrieve individual files. If the i-number of the desired file is not known,
it can be discovered by following the file system directory search algorithm. First retrieve the
root directory whose i-number is 1. List this file withls −fi 1. This will give names and i-
numbers of sub-directories. Iterating, any file may be retrieved.

The r option should only be used to restore a complete dump tape onto a clear file system or to
restore an incremental dump tape onto this. Thus

/etc/mkfs /dev/rp0 40600
restor r /dev/rp0

is a typical sequence to restore a complete dump. Anotherrestor can be done to get an incre-
mental dump in on top of this.

A dumpfollowed by amkfsand arestor is used to change the size of a file system.

FILES
/dev/mt0

SEE ALSO
ls (I), dump (VIII), mkfs (VIII), clri (VIII)

DIAGNOSTICS
There are various diagnostics involved with reading the tape and writing the disk. There are also
diagnostics if the i-list or the free list of the file system is not large enough to hold the dump.

If the dump extends over more than one tape, it may ask you to change tapes. Reply with a
new-line when the next tape has been mounted.

BUGS
There is redundant information on the tape that could be used in case of tape reading problems.
Unfortunately,restor’sapproach is to exit if anything is wrong.

- 1 -

-

SA (VIII) 6/1/74 SA (VIII)

NAME
sa − Shell accounting

SYNOPSIS
sa [−abcjlnrstuv] [file]

DESCRIPTION
When a user logs in, if the Shell is able to open the file/usr/adm/sha,then as each command
completes the Shell writes at the end of this file the name of the command, the user, system, and
real time consumed, and the user ID.Sareports on, cleans up, and generally maintains this and
other accounting files. To turn accounting on and off, the accounting file must be created or de-
stroyed externally.

Sa is able to condense the information in/usr/adm/shainto a summary file/usr/adm/shtwhich
contains a count of the number of times each command was called and the time resources con-
sumed. This condensation is desirable because on a large systemshacan grow by 100 blocks
per day. The summary file is read before the accounting file, so the reports include all available
information.

If a file name is given as the last argument, that file will be treated as the accounting file;sha is
the default. There are zillions of options:

a Place all command names containing unprintable characters and those used only once under
the name ‘‘***other.’’

b Sort output by sum of user and system time divided by number of calls. Default sort is by
sum of user and system times.

c Besides total user, system, and real time for each command print percentage of total time
over all commands.

j Instead of total minutes time for each category, give seconds per call.

l Separate system and user time; normally they are combined.

n Sort by number of calls.

r Reverse order of sort.

s Merge accounting file into summary file/usr/adm/shtwhen done.

t For each command report ratio of real time to the sum of user and system times.

u Superseding all other flags, print for each command in the accounting file the day of the year,
time, day of the week, user ID and command name.

v If the next character is a digitn, then type the name of each command usedn times or fewer.
Await a reply from the typewriter; if it begins with ‘‘y’’, add the command to the category
‘‘**junk**.’’ This is used to strip out garbage.

FILES
/usr/adm/sha accounting
/usr/adm/sht summary

SEE ALSO
ac (VIII)

BUGS

- 1 -

-

SU (VIII) 10/31/73 SU (VIII)

NAME
su − become privileged user

SYNOPSIS
su

DESCRIPTION
Suallows one to become the super-user, who has all sorts of marvelous (and correspondingly
dangerous) powers. In order forsu to do its magic, the user must supply a password. If the pass-
word is correct,su will execute the Shell with the UID set to that of the super-user. To restore
normal UID privileges, type an end-of-file to the super-user Shell.

The password demanded is that of the entry ‘‘root’’ in the system’s password file.

To remind the super-user of his responsibilities, the Shell substitutes ‘#’ for its usual prompt
‘%’.

SEE ALSO
sh (I)

- 1 -

-

SYNC (VIII) 11/1/73 SYNC (VIII)

NAME
sync − update the super block

SYNOPSIS
sync

DESCRIPTION
Syncexecutes thesyncsystem primitive. If the system is to be stopped,syncmust be called to
insure file system integrity. See sync (II) for details.

SEE ALSO
sync (II)

BUGS

- 1 -

-

UMOUNT (VIII) 10/31/73 UMOUNT (VIII)

NAME
umount − dismount file system

SYNOPSIS
/etc/umountspecial

DESCRIPTION
Umountannounces to the system that the removable file system previously mounted on special
file specialis to be removed.

SEE ALSO
mount (VIII), umount (II), mtab (V)

FILES
/etc/mtab mounted device table

DIAGNOSTICS
It complains if the special file is not mounted or if it is busy. The file system is busy if there is
an open file on it or if someone has his current directory there.

BUGS

- 1 -

-

UPDATE (VIII) 11/1/73 UPDATE (VIII)

NAME
update − periodically update the super block

SYNOPSIS
update

DESCRIPTION
Updateis a program that executes thesyncprimitive every 30 seconds. This insures that the file
system is fairly up to date in case of a crash. This command should not be executed directly, but
should be executed out of the initialization shell command file. See sync (II) for details.

SEE ALSO
sync (II), init (VIII)

BUGS
With updaterunning, if the CPU is halted just as thesyncis executed, a file system can be dam-
aged. This is partially due to DEC hardware that writes zeros when NPR requests fail. A fix
would be to havesynctemporarily increment the system time by at least 30 seconds to trigger
the execution ofupdate.This would give 30 seconds grace to halt the CPU.

- 1 -

-

WALL (VIII) 4/10/75 WALL (VIII)

NAME
wall − write to all users

SYNOPSIS
/etc/wall

DESCRIPTION
Wall reads its standard input until an end-of-file. It then sends this message to all currently
logged in users preceded by ‘‘Broadcast Message ...’’. It is used to warn all users, typically prior
to shutting down the system.

The sender should be super-user to override any protections the users may have invoked.

FILES
/dev/tty?

SEE ALSO
mesg (I), write (I)

DIAGNOSTICS
‘‘Cannot send to ...’’ when the open on a user’s tty file fails.

BUGS

- 1 -

