
-

INTRO (II) 11/5/73 INTRO (II)

INTRODUCTION TO SYSTEM CALLS

Section II of this manual lists all the entries into the system. In most cases two calling sequences are
specified, one of which is usable from assembly language, and the other from C. Most of these calls have
an error return. From assembly language an erroneous call is always indicated by turning on the c-bit of
the condition codes. The presence of an error is most easily tested by the instructionsbes and bec
(‘‘branch on error set (or clear)’’). These are synonyms for thebcsandbcc instructions.

From C, an error condition is indicated by an otherwise impossible returned value. Almost always this is
−1; the individual sections specify the details.

In both cases an error number is also available. In assembly language, this number is returned in r0 on er-
roneous calls. From C, the external variableerrno is set to the error number.Errno is not cleared on suc-
cessful calls, so it should be tested only after an error has occurred. There is a table of messages associ-
ated with each error, and a routine for printing the message. Seeperror (III).

The possible error numbers are not recited with each writeup in section II, since many errors are possible
for most of the calls. Here is a list of the error numbers, their names inside the system (for the benefit of
system-readers), and the messages available usingperror. A short explanation is also provided.

0 − (unused)

1 EPERM Not owner and not super-user
Typically this error indicates an attempt to modify a file in some way forbidden except to its own-
er. It is also returned for attempts by ordinary users to do things allowed only to the super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should exist but doesn’t, or when one
of the directories in a path name does not exist.

3 ESRCH No such process
The process whose number was given tosignaldoes not exist, or is already dead.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user has elected to catch, occurred
during a system call. If execution is resumed after processing the signal, it will appear as if the in-
terrupted system call returned this error condition.

5 EIO I/O error
Some physical I/O error occurred during areador write. This error may in some cases occur on a
call following the one to which it actually applies.

6 ENXIO No such device or address
I/O on a special file refers to a subdevice which does not exist, or beyond the limits of the device.
It may also occur when, for example, a tape drive is not dialled in or no disk pack is loaded on a
drive.

7 E2BIG Arg list too long
An argument list longer than 512 bytes (counting the null at the end of each argument) is pre-
sented toexec.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the appropriate permissions, does not
start with one of the magic numbers 407 or 410.

- 1 -

-

INTRO (II) 11/5/73 INTRO (II)

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read (resp. write) request is made to a file which
is open only for writing (resp. reading).

10 ECHILD No children
Wait and the process has no living or unwaited-for children.

11 EAGAIN No more processes
In a fork, the system’s process table is full and no more processes can for the moment be created.

12 ENOMEM Not enough core
During anexecor break,a program asks for more core than the system is able to supply. This is
not a temporary condition; the maximum core size is a system parameter. The error may also oc-
cur if the arrangement of text, data, and stack segments is such as to require more than the existing
8 segmentation registers.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by the protection system.

14 − (unused)

15 ENOTBLK Block device required
A plain file was mentioned where a block device was required, e.g. inmount.

16 EBUSY Mount device busy
An attempt to mount a device that was already mounted or an attempt was made to dismount a de-
vice on which there is an open file or some process’s current directory.

17 EEXIST File exists
An existing file was mentioned in an inappropriate context, e.g.link.

18 EXDEV Cross-device link
A link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate system call to a device; e.g. read a write-only de-
vice.

20 ENOTDIR Not a directory
A non-directory was specified where a directory is required, for example in a path name or as an
argument tochdir.

21 EISDIR Is a directory
An attempt to write on a directory.

22 EINVAL Invalid argument
Some invalid argument: currently, dismounting a non-mounted device, mentioning an unknown
signal insignal,and giving an unknown request instty to the TIU special file.

23 ENFILE File table overflow
The system’s table of open files is full, and temporarily no moreopenscan be accepted.

24 EMFILE Too many open files
Only 15 files can be open per process.

25 ENOTTY Not a typewriter
The file mentioned instty or gtty is not a typewriter or one of the other devices to which these

- 2 -

-

INTRO (II) 11/5/73 INTRO (II)

calls apply.

26 ETXTBSY Text file busy
An attempt to execute a pure-procedure program which is currently open for writing (or reading!).
Also an attempt to open for writing a pure-procedure program that is being executed.

27 EFBIG File too large
An attempt to make a file larger than the maximum of 32768 blocks.

28 ENOSPC No space left on device
During awrite to an ordinary file, there is no free space left on the device.

29 ESPIPE Seek on pipe
A seekwas issued to a pipe. This error should also be issued for other non-seekable devices.

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a device mounted read-only.

31 EMLINK Too many links
An attempt to make more than 127 links to a file.

32 EPIPE Write on broken pipe
A write on a pipe for which there is no process to read the data. This condition normally generates
a signal; the error is returned if the signal is ignored.

- 3 -

-

BREAK (II) 8/5/73 BREAK (II)

NAME
break, brk, sbrk − change core allocation

SYNOPSIS
(break = 17.)
sys break; addr

char *brk(addr)

char *sbrk(incr)

DESCRIPTION
Breaksets the system’s idea of the lowest location not used by the program (called the break) to
addr (rounded up to the next multiple of 64 bytes). Locations not less thanaddr and below the
stack pointer are not in the address space and will thus cause a memory violation if accessed.

From C,brk will set the break toaddr. The old break is returned.

In the alternate entrysbrk, incrmore bytes are added to the program’s data space and a pointer to
the start of the new area is returned.

When a program begins execution viaexecthe break is set at the highest location defined by the
program and data storage areas. Ordinarily, therefore, only programs with growing data areas
need to usebreak.

SEE ALSO
exec (II), alloc (III), end (III)

DIAGNOSTICS
The c-bit is set if the program requests more memory than the system limit or if more than 8 seg-
mentation registers would be required to implement the break. From C,−1 is returned for these
errors.

BUGS
Setting the break in the range 0177700 to 0177777 is the same as setting it to zero.

- 1 -

-

CHDIR (II) 8/5/73 CHDIR (II)

NAME
chdir − change working directory

SYNOPSIS
(chdir = 12.)
sys chdir; dirname

chdir(dirname)
char *dirname;

DESCRIPTION
Dirname is the address of the pathname of a directory, terminated by a null byte.Chdir causes
this directory to become the current working directory.

SEE ALSO
chdir (I)

DIAGNOSTICS
The error bit (c-bit) is set if the given name is not that of a directory or is not readable. From C,
a −1 returned value indicates an error, 0 indicates success.

- 1 -

-

SORT (I) 6/11/74 SORT (I)

NAME
sort − sort or merge files

SYNOPSIS
sort [−abdnrtx] [+pos [−pos]] . . . [−mo] [name] . . .

DESCRIPTION
Sortsorts all the named files together and writes the result on the standard output. The name ‘−’
means the standard input. The standard input is also used if no input file names are given. Thus
sort may be used as a filter.

The default sort key is an entire line. Default ordering is lexicographic in ASCII collating se-
quence, except that lower-case letters are considered the same as the corresponding upper-case
letters. Non-ASCII bytes are ignored. The ordering is affected by the flags−abdnrt, one or
more of which may appear:

a Do not map lower case letters.

b Leading blanks (spaces and tabs) are not included in fields.

d ‘Dictionary’ order: only letters, digits and blanks are significant in ASCII comparisons.

n An initial numeric string, consisting of optional minus sign, digits and optionally included
decimal point, is sorted by arithmetic value.

r Reverse the sense of comparisons.

tx Tab character between fields isx.

Selected parts of the line, specified by+posand−pos, may be used as sort keys.Poshas the
form m.n,wherem specifies a number of fields to skip, andn a number of characters to skip fur-
ther into the next field. A missing is taken to be 0.+posdenotes the beginning of the key;−pos
denotes the first position after the key (end of line by default). The ordering rule may be over-
ridden for a particular key by appending one or more of the flagsabdnr to +pos.

When no tab character has been specified, a field consists of nonblanks and any preceding
blanks. Under the−b flag, leading blanks are excluded from a field. When a tab character has
been specified, a field is a string ending with a tab character.

When keys are specified, later keys are compared only when all earlier ones compare equal.
Lines that compare equal are ordered with all bytes significant.

These flag arguments are also understood:

−m Merge only, the input files are already sorted.

−o The next argument is the name of an output file to use instead of the standard output. This
file may be the same as one of the inputs, except under the merge flag−m.

FILES
/usr/tmp/stm???

- 1 -

-

CHOWN (II) 12/15/74 CHOWN (II)

NAME
chown − change owner and group of a file

SYNOPSIS
(chmod = 16.)
sys chown; name; owner

chown(name, owner)
char *name;

DESCRIPTION
The file whose name is given by the null-terminated string pointed to bynamehas its owner and
group changed to the low and high bytes ofowner respectively. Only the super-user may exe-
cute this call, because if users were able to give files away, they could defeat the (nonexistent)
file-space accounting procedures.

SEE ALSO
chown (VIII), chgrp (VIII), passwd (V)

DIAGNOSTICS
The error bit (c-bit) is set on illegal owner changes. From C a−1 returned value indicates error,
0 indicates success.

- 1 -

-

CLOSE (II) 8/5/73 CLOSE (II)

NAME
close − close a file

SYNOPSIS
(close = 6.)
(file descriptor in r0)
sys close

close(fildes)

DESCRIPTION
Given a file descriptor such as returned from anopen, creat,or pipecall, closecloses the associ-
ated file. A close of all files is automatic onexit,but since processes are limited to 15 simultane-
ously open files,closeis necessary for programs which deal with many files.

SEE ALSO
creat (II), open (II), pipe (II)

DIAGNOSTICS
The error bit (c-bit) is set for an unknown file descriptor. From C a−1 indicates an error, 0 indi-
cates success.

- 1 -

-

CREAT (II) 8/5/73 CREAT (II)

NAME
creat − create a new file

SYNOPSIS
(creat = 8.)
sys creat; name; mode
(file descriptor in r0)

creat(name, mode)
char *name;

DESCRIPTION
Creatcreates a new file or prepares to rewrite an existing file calledname,given as the address
of a null-terminated string. If the file did not exist, it is given modemode. Seechmod(II) for
the construction of themodeargument.

If the file did exist, its mode and owner remain unchanged but it is truncated to 0 length.

The file is also opened for writing, and its file descriptor is returned (in r0).

Themodegiven is arbitrary; it need not allow writing. This feature is used by programs which
deal with temporary files of fixed names. The creation is done with a mode that forbids writing.
Then if a second instance of the program attempts acreat,an error is returned and the program
knows that the name is unusable for the moment.

SEE ALSO
write (II), close (II), stat (II)

DIAGNOSTICS
The error bit (c-bit) may be set if: a needed directory is not searchable; the file does not exist and
the directory in which it is to be created is not writable; the file does exist and is unwritable; the
file is a directory; there are already too many files open.

From C, a −1 return indicates an error.

- 1 -

-

CSW (II) 8/5/73 CSW (II)

NAME
csw − read console switches

SYNOPSIS
(csw = 38.; not in assembler)
sys csw

getcsw()

DESCRIPTION
The setting of the console switches is returned (in r0).

- 1 -

-

DUP (II) 8/5/73 DUP (II)

NAME
dup − duplicate an open file descriptor

SYNOPSIS
(dup = 41.; not in assembler)
(file descriptor in r0)
sys dup

dup(fildes)
int fildes;

DESCRIPTION
Given a file descriptor returned from anopen, pipe,or creat call, dup will allocate another file
descriptor synonymous with the original. The new file descriptor is returned in r0.

Dup is used more to reassign the value of file descriptors than to genuinely duplicate a file de-
scriptor. Since the algorithm to allocate file descriptors returns the lowest available value, com-
binations ofdup andclosecan be used to manipulate file descriptors in a general way. This is
handy for manipulating standard input and/or standard output.

SEE ALSO
creat (II), open (II), close (II), pipe (II)

DIAGNOSTICS
The error bit (c-bit) is set if: the given file descriptor is invalid; there are already too many open
files. From C, a −1 returned value indicates an error.

- 1 -

-

EXEC (II) 8/5/73 EXEC (II)

NAME
exec, execl, execv− execute a file

SYNOPSIS
(exec = 11.)
sys exec; name; args
...
name: <...\0>
...
args: arg0; arg1; ...; 0
arg0: <...\0>
arg1: <...\0>

...

execl(name, arg0, arg1, ..., argn, 0)
char *name, *arg0, *arg1, ..., *argn;

execv(name, argv)
char *name;
char *argv[];

DESCRIPTION
Execoverlays the calling process with the named file, then transfers to the beginning of the core
image of the file. There can be no return from the file; the calling core image is lost.

Files remain open acrossexeccalls. Ignored signals remain ignored acrossexec,but signals that
are caught are reset to their default values.

Each user has areal user ID and group ID and aneffectiveuser ID and group ID. The real ID
identifies the person using the system; the effective ID determines his access privileges.Exec
changes the effective user and group ID to the owner of the executed file if the file has the ‘‘set-
user-ID’’ or ‘‘set-group-ID’’ modes. The real user ID is not affected.

The form of this call differs somewhat depending on whether it is called from assembly language
or C; see below for the C version.

The first argument toexecis a pointer to the name of the file to be executed. The second is the
address of a null-terminated list of pointers to arguments to be passed to the file. Convention-
ally, the first argument is the name of the file. Each pointer addresses a string terminated by a
null byte.

Once the called file starts execution, the arguments are available as follows. The stack pointer
points to a word containing the number of arguments. Just above this number is a list of pointers
to the argument strings. The arguments are placed as high as possible in core.

sp� nargs
arg0
...
argn
−1

arg0: <arg0\0>
...

argn: <argn\0>

From C, two interfaces are available.execlis useful when a known file with known arguments
is being called; the arguments toexeclare the character strings constituting the file and the argu-
ments; as in the basic call, the first argument is conventionally the same as the file name (or its
last component). A 0 argument must end the argument list.

The execvversion is useful when the number of arguments is unknown in advance; the argu-
ments toexecvare the name of the file to be executed and a vector of strings containing the argu-
ments. The last argument string must be followed by a 0 pointer.

- 1 -

-

EXEC (II) 8/5/73 EXEC (II)

When a C program is executed, it is called as follows:

main(argc, argv)
int argc;
char **argv;

whereargc is the argument count andargv is an array of character pointers to the arguments
themselves. As indicated,argc is conventionally at least one and the first member of the array
points to a string containing the name of the file.

Argv is not directly usable in anotherexecv,sinceargv[argc] is −1 and not 0.

SEE ALSO
fork (II)

DIAGNOSTICS
If the file cannot be found, if it is not executable, if it does not have a valid header (407, 410, or
411 octal as first word), if maximum memory is exceeded, or if the arguments require more than
512 bytes a return fromexecconstitutes the diagnostic; the error bit (c-bit) is set. Even for the
super-user, at least one of the execute-permission bits must be set for a file to be executed. From
C the returned value is −1.

BUGS
Only 512 characters of arguments are allowed.

- 2 -

-

EXIT (II) 8/5/73 EXIT (II)

NAME
exit − terminate process

SYNOPSIS
(exit = 1.)
(status in r0)
sys exit

exit(status)
int status;

DESCRIPTION
Exit is the normal means of terminating a process.Exit closes all the process’s files and notifies
the parent process if it is executing await. The low byte of r0 (resp. the argument toexit) is
available as status to the parent process.

This call can never return.

SEE ALSO
wait (II)

DIAGNOSTICS
None.

- 1 -

-

FORK (II) 8/5/73 FORK (II)

NAME
fork − spawn new process

SYNOPSIS
(fork = 2.)
sys fork
(new process return)
(old process return)

fork()

DESCRIPTION
Fork is the only way new processes are created. The new process’s core image is a copy of that
of the caller offork. The only distinction is the return location and the fact that r0 in the old
(parent) process contains the process ID of the new (child) process. This process ID is used by
wait.

The two returning processes share all open files that existed before the call. In particular, this is
the way that standard input and output files are passed and also how pipes are set up.

From C, the child process receives a 0 return, and the parent receives a non-zero number which
is the process ID of the child; a return of −1 indicates inability to create a new process.

SEE ALSO
wait (II), exec (II)

DIAGNOSTICS
The error bit (c-bit) is set in the old process if a new process could not be created because of lack
of process space. From C, a return of −1 (not just negative) indicates an error.

- 1 -

-

FSTAT (II) 8/5/73 FSTAT (II)

NAME
fstat − get status of open file

SYNOPSIS
(fstat = 28.)
(file descriptor in r0)
sys fstat; buf

fstat(fildes, buf)
struct inode *buf;

DESCRIPTION
This call is identical tostat,except that it operates on open files instead of files given by name.
It is most often used to get the status of the standard input and output files, whose names are un-
known.

SEE ALSO
stat (II)

DIAGNOSTICS
The error bit (c-bit) is set if the file descriptor is unknown; from C, a−1 return indicates an error,
0 indicates success.

- 1 -

-

GETGID (II) 5/15/74 GETGID (II)

NAME
getgid − get group identifications

SYNOPSIS
(getgid = 47.; not in assembler)
sys getgid

getgid()

DESCRIPTION
Getgid returns a word (in r0), the low byte of which contains the real group ID of the current
process. The high byte contains the effective group ID of the current process. The real group ID
identifies the group of the person who is logged in, in contradistinction to the effective group ID,
which determines his access permission at the moment. It is thus useful to programs which oper-
ate using the ‘‘set group ID’’ mode, to find out who invoked them.

SEE ALSO
setgid (II)

DIAGNOSTICS
−

- 1 -

-

GETPID (II) 2/8/75 GETPID (II)

NAME
getpid − get process identification

SYNOPSIS
(getpid = 20.; not in assembler)
sys getpid
(pid in r0)

getpid()

DESCRIPTION
Getpidreturns the process ID of the current process. Most often it is used to generate uniquely-
named temporary files.

SEE ALSO
−

DIAGNOSTICS
−

- 1 -

-

GETUID (II) 5/15/74 GETUID (II)

NAME
getuid − get user identifications

SYNOPSIS
(getuid = 24.)
sys getuid

getuid()

DESCRIPTION
Getuidreturns a word (in r0), the low byte of which contains the real user ID of the current pro-
cess. The high byte contains the effective user ID of the current process. The real user ID iden-
tifies the person who is logged in, in contradistinction to the effective user ID, which determines
his access permission at the moment. It is thus useful to programs which operate using the ‘‘set
user ID’’ mode, to find out who invoked them.

SEE ALSO
setuid (II)

DIAGNOSTICS
−

- 1 -

-

GTTY (II) 8/5/73 GTTY (II)

NAME
gtty − get typewriter status

SYNOPSIS
(gtty = 32.)
(file descriptor in r0)
sys gtty; arg
...
arg: .=.+6

gtty(fildes, arg)
int arg[3];

DESCRIPTION
Gtty stores in the three words addressed byarg the status of the typewriter whose file descriptor
is given in r0 (resp. given as the first argument). The format is the same as that passed bystty.

SEE ALSO
stty (II)

DIAGNOSTICS
Error bit (c-bit) is set if the file descriptor does not refer to a typewriter. From C, a−1 value is
returned for an error, 0, for a successful call.

- 1 -

-

INDIR (II) 8/5/73 INDIR (II)

NAME
indir − indirect system call

SYNOPSIS
(indir = 0.; not in assembler)
sys indir; syscall

DESCRIPTION
The system call at the locationsyscallis executed. Execution resumes after theindir call.

The main purpose ofindir is to allow a program to store arguments in system calls and execute
them out of line in the data segment. This preserves the purity of the text segment.

If indir is executed indirectly, it is a no-op. If the instruction at the indirect location is not a sys-
tem call, the executing process will get a fault.

SEE ALSO
−

DIAGNOSTICS
−

- 1 -

-

KILL (II) 12/15/74 KILL (II)

NAME
kill − send signal to a process

SYNOPSIS
(kill = 37.; not in assembler)
(process number in r0)
sys kill; sig

kill(pid, sig);

DESCRIPTION
Kill sends the signalsig to the process specified by the process number in r0. See signal (II) for
a list of signals.

The sending and receiving processes must have the same effective user ID, otherwise this call is
restricted to the super-user.

If the process number is 0, the signal is sent to all other processes which have the same control-
ling typewriter and user ID.

In no case is it possible for a process to kill itself.

SEE ALSO
signal (II), kill (I)

DIAGNOSTICS
The error bit (c-bit) is set if the process does not have the same effective user ID and the user is
not super-user, or if the process does not exist. From C, �1 is returned.

- 1 -

-

LINK (II) 8/5/73 LINK (II)

NAME
link − link to a file

SYNOPSIS
(link = 9.)
sys link; name1; name2

link(name1, name2)
char *name1, *name2;

DESCRIPTION
A link to name1is created; the link has the namename2.Either name may be an arbitrary path
name.

SEE ALSO
link (I), unlink (II)

DIAGNOSTICS
The error bit (c-bit) is set whenname1cannot be found; whenname2already exists; when the
directory ofname2cannot be written; when an attempt is made to link to a directory by a user
other than the super-user; when an attempt is made to link to a file on another file system; when
more than 127 links are made. From C, a−1 return indicates an error, a 0 return indicates suc-
cess.

- 1 -

-

MKNOD (II) 8/5/73 MKNOD (II)

NAME
mknod − make a directory or a special file

SYNOPSIS
(mknod = 14.; not in assembler)
sys mknod; name; mode; addr

mknod(name, mode, addr)
char *name;

DESCRIPTION
Mknod creates a new file whose name is the null-terminated string pointed to byname. The
mode of the new file (including directory and special file bits) is initialized frommode. The first
physical address of the file is initialized fromaddr. Note that in the case of a directory,addr
should be zero. In the case of a special file,addrspecifies which special file.

Mknodmay be invoked only by the super-user.

SEE ALSO
mkdir (I), mknod (VIII), fs (V)

DIAGNOSTICS
Error bit (c-bit) is set if the file already exists or if the user is not the super-user. From C, a−1
value indicates an error.

- 1 -

-

MOUNT (II) 5/15/74 MOUNT (II)

NAME
mount − mount file system

SYNOPSIS
(mount = 21.)
sys mount; special; name; rwflag

mount(special, name, rwflag)
char *special, *name;

DESCRIPTION
Mount announces to the system that a removable file system has been mounted on the block-
structured special filespecial;from now on, references to filenamewill refer to the root file on
the newly mounted file system.Specialandnameare pointers to null-terminated strings contain-
ing the appropriate path names.

Namemust exist already. Its old contents are inaccessible while the file system is mounted.

Therwflag argument determines whether the file system can be written on; if it is 0 writing is al-
lowed, if non-zero no writing is done. Physically write-protected and magnetic tape file systems
must be mounted read-only or errors will occur when access times are updated, whether or not
any explicit write is attempted.

SEE ALSO
mount (VIII), umount (II)

DIAGNOSTICS
Error bit (c-bit) set if:specialis inaccessible or not an appropriate file;namedoes not exist;spe-
cial is already mounted;nameis in use; there are already too many file systems mounted.

BUGS
�

- 1 -

-

NICE (II) 8/5/73 NICE (II)

NAME
nice − set program priority

SYNOPSIS
(nice = 34.)
(priority in r0)
sys nice

nice(priority)

DESCRIPTION
The schedulingpriority of the process is changed to the argument. Positive priorities get less
service than normal; 0 is default. Only the super-user may specify a negative priority. The valid
range ofpriority is 20 to−220. The value of 4 is recommended to users who wish to execute
long-running programs without flak from the administration.

The effect of this call is passed to a child process by thefork system call. The effect can be can-
celled by another call tonicewith apriority of 0.

The actual running priority of a process is thepriority argument plus a number that ranges from
100 to 119 depending on the cpu usage of the process.

SEE ALSO
nice (I)

DIAGNOSTICS
The error bit (c-bit) is set if the user requests apriority outside the range of 0 to 20 and is not the
super-user.

- 1 -

-

OPEN (II) 8/5/73 OPEN (II)

NAME
open − open for reading or writing

SYNOPSIS
(open = 5.)
sys open; name; mode
(file descriptor in r0)

open(name, mode)
char *name;

DESCRIPTION
Openopens the filenamefor reading (ifmodeis 0), writing (if modeis 1) or for both reading
and writing (if modeis 2). Nameis the address of a string of ASCII characters representing a
path name, terminated by a null character.

The returned file descriptor should be saved for subsequent calls toread, write,andclose.

SEE ALSO
creat (II), read (II), write (II), close (II)

DIAGNOSTICS
The error bit (c-bit) is set if the file does not exist, if one of the necessary directories does not ex-
ist or is unreadable, if the file is not readable (resp. writable), or if too many files are open. From
C, a −1 value is returned on an error.

- 1 -

-

PIPE (II) 8/5/73 PIPE (II)

NAME
pipe − create an interprocess channel

SYNOPSIS
(pipe = 42.)
sys pipe
(read file descriptor in r0)
(write file descriptor in r1)

pipe(fildes)
int fildes[2];

DESCRIPTION
The pipe system call creates an I/O mechanism called a pipe. The file descriptors returned can
be used in read and write operations. When the pipe is written using the descriptor returned in r1
(resp. fildes[1]), up to 4096 bytes of data are buffered before the writing process is suspended. A
read using the descriptor returned in r0 (resp. fildes[0]) will pick up the data.

It is assumed that after the pipe has been set up, two (or more) cooperating processes (created by
subsequentfork calls) will pass data through the pipe withreadandwrite calls.

The Shell has a syntax to set up a linear array of processes connected by pipes.

Read calls on an empty pipe (no buffered data) with only one end (all write file descriptors
closed) return an end-of-file. Write calls under similar conditions generate a fatal signal (signal
(II)); if the signal is ignored, an error is returned on the write.

SEE ALSO
sh (I), read (II), write (II), fork (II)

DIAGNOSTICS
The error bit (c-bit) is set if too many files are already open. From C, a−1 returned value indi-
cates an error. A signal is generated if a write on a pipe with only one end is attempted.

BUGS

- 1 -

-

PROFIL (II) 5/15/74 PROFIL (II)

NAME
profil − execution time profile

SYNOPSIS
(profil = 44.; not in assembler)
sys profil; buff; bufsiz; offset; scale

profil(buff, bufsiz, offset, scale)
char buff[];
int bufsiz, offset, scale;

DESCRIPTION
Buff points to an area of core whose length (in bytes) is given bybufsiz. After this call, the
user’s program counter (pc) is examined each clock tick (60th second);offsetis subtracted from
it, and the result multiplied byscale. If the resulting number corresponds to a word insidebuff,
that word is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with binary point at the left:
177777(8) gives a 1-1 mapping of pc’s to words inbuff; 77777(8) maps each pair of instruction
words together. 2(8) maps all instructions onto the beginning ofbuff (producing a non-
interrupting core clock).

Profiling is turned off by giving ascaleof 0 or 1. It is rendered ineffective by giving abufsizof
0. Profiling is also turned off when anexecis executed but remains on in child and parent both
after afork.

SEE ALSO
monitor (III), prof (I)

DIAGNOSTICS
−

- 1 -

-

PTRACE (II) 1/25/75 PTRACE (II)

NAME
ptrace − process trace

SYNOPSIS
(ptrace = 26.; not in assembler)
(data in r0)
sys ptrace; pid; addr; request
(value in r0)

ptrace(request, pid, addr, data);

DESCRIPTION
Ptraceprovides a means by which a parent process may control the execution of a child process,
and examine and change its core image. Its primary use is for the implementation of breakpoint
debugging, but it should be adaptable for simulation of non-UNIX environments. There are four
arguments whose interpretation depends on arequestargument. Generally,pid is the process ID
of the traced process, which must be a child (no more distant descendant) of the tracing process.
A process being traced behaves normally until it encounters some signal whether internally gen-
erated like ‘‘illegal instruction’’ or externally generated like ‘‘interrupt.’’ See signal (II) for the
list. Then the traced process enters a stopped state and its parent is notified viawait (II). When
the child is in the stopped state, its core image can be examined and modified usingptrace. If
desired, anotherptracerequest can then cause the child either to terminate or to continue, possi-
bly ignoring the signal.

The value of therequestargument determines the precise action of the call:

0 This request is the only one used by the child process; it declares that the process is to be
traced by its parent. All the other arguments are ignored. Peculiar results will ensue if the
parent does not expect to trace the child.

1,2 The word in the child process’s address space ataddr is returned (in r0). Request 1 indi-
cates the data space (normally used); 2 indicates the instruction space (when I and D space
are separated).addrmust be even. The child must be stopped. The inputdata is ignored.

3 The word of the system’s per-process data area corresponding toaddr is returned. Addr
must be even and less than 512. This space contains the registers and other information
about the process; its layout corresponds to theuserstructure in the system.

4,5 The givendata is written at the word in the process’s address space corresponding toaddr,
which must be even. No useful value is returned. Request 4 specifies data space (normally
used), 5 specifies instruction space. Attempts to write in pure procedure result in termina-
tion of the child, instead of going through or causing an error for the parent.

6 The process’s system data is written, as it is read with request 3. Only a few locations can
be written in this way: the general registers, the floating point status and registers, and cer-
tain bits of the processor status word.

7 Thedata argument is taken as a signal number and the child’s execution continues as if it
had incurred that signal. Normally the signal number will be either 0 to indicate that the
signal which caused the stop should be ignored, or that value fetched out of the process’s
image indicating which signal caused the stop.

8 The traced process terminates.

As indicated, these calls (except for request 0) can be used only when the subject process has
stopped. Thewait call is used to determine when a process stops; in such a case the ‘‘termina-
tion’’ status returned bywait has the value 0177 to indicate stoppage rather than genuine termi-
nation.

To forestall possible fraud,ptraceinhibits the set-user-id facility on subsequentexec(II)
calls.

- 1 -

-

PTRACE (II) 1/25/75 PTRACE (II)

SEE ALSO
wait (II), signal (II), cdb (I)

DIAGNOSTICS
From assembler, the c-bit (error bit) is set on errors; from C,�1 is returned anderrno has the er-
ror code.

BUGS
The request 0 call should be able to specify signals which are to be treated normally and not
cause a stop. In this way, for example, programs with simulated floating point (which use ‘‘ille-
gal instruction’’ signals at a very high rate) could be efficiently debugged.

Also, it should be possible to stop a process on occurrence of a system call; in this way a com-
pletely controlled environment could be provided.

- 2 -

-

READ (II) 8/5/73 READ (II)

NAME
read − read from file

SYNOPSIS
(read = 3.)
(file descriptor in r0)
sys read; buffer; nbytes

read(fildes, buffer, nbytes)
char *buffer;

DESCRIPTION
A file descriptor is a word returned from a successfulopen, creat, dup,or pipecall. Buffer is the
location ofnbytescontiguous bytes into which the input will be placed. It is not guaranteed that
all nbytesbytes will be read; for example if the file refers to a typewriter at most one line will be
returned. In any event the number of characters read is returned (in r0).

If the returned value is 0, then end-of-file has been reached.

SEE ALSO
open (II), creat (II), dup (II), pipe (II)

DIAGNOSTICS
As mentioned, 0 is returned when the end of the file has been reached. If the read was otherwise
unsuccessful the error bit (c-bit) is set. Many conditions can generate an error: physical I/O er-
rors, bad buffer address, preposterousnbytes,file descriptor not that of an input file. From C, a
−1 return indicates the error.

- 1 -

-

SEEK (II) 8/5/73 SEEK (II)

NAME
seek − move read/write pointer

SYNOPSIS
(seek = 19.)
(file descriptor in r0)
sys seek; offset; ptrname

seek(fildes, offset, ptrname)

DESCRIPTION
The file descriptor refers to a file open for reading or writing. The read (resp. write) pointer for
the file is set as follows:

if ptrnameis 0, the pointer is set tooffset.

if ptrnameis 1, the pointer is set to its current location plusoffset.

if ptrnameis 2, the pointer is set to the size of the file plusoffset.

if ptrnameis 3, 4 or 5, the meaning is as above for 0, 1 and 2 except that the offset is multi-
plied by 512.

If ptrnameis 0 or 3,offsetis unsigned, otherwise it is signed.

SEE ALSO
open (II), creat (II)

DIAGNOSTICS
The error bit (c-bit) is set for an undefined file descriptor. From C, a −1 return indicates an error.

- 1 -

-

SETGID (II) 8/5/73 SETGID (II)

NAME
setgid − set process group ID

SYNOPSIS
(setgid = 46.; not in assembler)
(group ID in r0)
sys setgid

setgid(gid)

DESCRIPTION
The group ID of the current process is set to the argument. Both the effective and the real group
ID are set. This call is only permitted to the super-user or if the argument is the real group ID.

SEE ALSO
getgid (II)

DIAGNOSTICS
Error bit (c-bit) is set as indicated; from C, a −1 value is returned.

- 1 -

-

SETUID (II) 8/5/73 SETUID (II)

NAME
setuid − set process user ID

SYNOPSIS
(setuid = 23.)
(user ID in r0)
sys setuid

setuid(uid)

DESCRIPTION
The user ID of the current process is set to the argument. Both the effective and the real user ID
are set. This call is only permitted to the super-user or if the argument is the real user ID.

SEE ALSO
getuid (II)

DIAGNOSTICS
Error bit (c-bit) is set as indicated; from C, a −1 value is returned.

- 1 -

-

SIGNAL (II) 8/5/73 SIGNAL (II)

NAME
signal − catch or ignore signals

SYNOPSIS
(signal = 48.)
sys signal; sig; label
(old value in r0)

signal(sig, func)
int (*func)();

DESCRIPTION
A signal is generated by some abnormal event, initiated either by user at a typewriter (quit, inter-
rupt), by a program error (bus error, etc.), or by request of another program (kill). Normally all
signals cause termination of the receiving process, but this call allows them either to be ignored
or to cause an interrupt to a specified location. Here is the list of signals:

1 hangup
2 interrupt
3* quit
4* illegal instruction (not reset when caught)
5* trace trap (not reset when caught)
6* IOT instruction
7* EMT instruction
8* floating point exception
9 kill (cannot be caught or ignored)
10* bus error
11* segmentation violation
12* bad argument to system call
13 write on a pipe with no one to read it

In the assembler call, iflabel is 0, the process is terminated when the signal occurs; this is the
default action. Iflabel is odd, the signal is ignored. Any other evenlabel specifies an address in
the process where an interrupt is simulated. An RTI or RTT instruction will return from the in-
terrupt. Except as indicated, a signal is reset to 0 after being caught. Thus if it is desired to catch
every such signal, the catching routine must issue anothersignalcall.

In C, if func is 0, the default action for signalsig (termination) is reinstated. Iffunc is 1, the sig-
nal is ignored. Iffunc is non-zero and even, it is assumed to be the address of a function entry
point. When the signal occurs, the function will be called. A return from the function will con-
tinue the process at the point it was interrupted. As in the assembler call,signalmust in general
be called again to catch subsequent signals.

When a caught signal occurs during certain system calls, the call terminates prematurely. In par-
ticular this can occur during aread or write on a slow device (like a typewriter; but not a file);
and during orwait. When such a signal occurs, the saved user status is arranged in such a way
that when return from the signal-catching takes place, it will appear that the system call returned
a characteristic error status. The user’s program may then, if it wishes, re-execute the call.

The starred signals in the list above cause a core image if not caught or ignored.

The value of the call is the old action defined for the signal.

After a fork (II) the child inherits all signals.Exec(II) resets all caught signals to default action.

SEE ALSO
kill (I), kill (II), ptrace (II), reset (III)

DIAGNOSTICS
The error bit (c-bit) is set if the given signal is out of range. In C, a−1 indicates an error; 0 indi-
cates success.

- 1 -

-

SIGNAL (II) 8/5/73 SIGNAL (II)

BUGS

- 2 -

-

SLEEP (II) 8/5/73 SLEEP (II)

NAME
sleep − stop execution for interval

SYNOPSIS
(sleep = 35.; not in assembler)
(seconds in r0)
sys sleep

sleep(seconds)

DESCRIPTION
The current process is suspended from execution for the number of seconds specified by the ar-
gument.

SEE ALSO
sleep (I)

DIAGNOSTICS
−

- 1 -

-

STAT (II) 8/5/73 STAT (II)

NAME
stat − get file status

SYNOPSIS
(stat = 18.)
sys stat; name; buf

stat(name, buf)
char *name;
struct inode *buf;

DESCRIPTION
Namepoints to a null-terminated string naming a file;buf is the address of a 36(10) byte buffer
into which information is placed concerning the file. It is unnecessary to have any permissions
at all with respect to the file, but all directories leading to the file must be readable. Afterstat,
buf has the following structure (starting offset given in bytes):

struct inode {
char minor; /* +0: minor device of i-node */
char major; /* +1: major device */
int inumber; /* +2 */
int flags; /* +4: see below */
char nlinks; /* +6: number of links to file */
char uid; /* +7: user ID of owner */
char gid; /* +8: group ID of owner */
char size0; /* +9: high byte of 24-bit size */
int size1; /* +10: low word of 24-bit size */
int addr[8]; /* +12: block numbers or device number */
int actime[2]; /* +28: time of last access */
int modtime[2]; /* +32: time of last modification */

};

The flags are as follows:

100000 i-node is allocated
060000 2-bit file type:

000000 plain file
040000 directory
020000 character-type special file
060000 block-type special file.

010000 large file
004000 set user-ID on execution
002000 set group-ID on execution
001000 save text image after execution
000400 read (owner)
000200 write (owner)
000100 execute (owner)
000070 read, write, execute (group)
000007 read, write, execute (others)

SEE ALSO
ls (I), fstat (II), fs (V)

DIAGNOSTICS
Error bit (c-bit) is set if the file cannot be found. From C, a −1 return indicates an error.

- 1 -

-

STIME (II) 8/5/73 STIME (II)

NAME
stime − set time

SYNOPSIS
(stime = 25.)
(time in r0-r1)
sys stime

stime(tbuf)
int tbuf[2];

DESCRIPTION
Stimesets the system’s idea of the time and date. Time is measured in seconds from 0000 GMT
Jan 1 1970. Only the super-user may use this call.

SEE ALSO
date (I), time (II), ctime (III)

DIAGNOSTICS
Error bit (c-bit) set if user is not the super-user.

- 1 -

-

STTY (II) 12/15/74 STTY (II)

NAME
stty − set mode of typewriter

SYNOPSIS
(stty = 31.)
(file descriptor in r0)
sys stty; arg
...
arg: .byte ispeed, ospeed; .byte erase, kill; mode

stty(fildes, arg)
struct {

char ispeed, ospeed;
char erase, kill;
int mode;

} *arg;

DESCRIPTION
Sttysets mode bits and character speeds for the typewriter whose file descriptor is passed in r0
(resp. is the first argument to the call). First, the system delays until the typewriter is quiescent.
The input and output speeds are set from the first two bytes of the argument structure as indi-
cated by the following table, which corresponds to the speeds supported by the DH-11 interface.
If DC-11, DL-11 or KL-11 interfaces are used, impossible speed changes are ignored.

0 (hang up dataphone)
1 50 baud
2 75 baud
3 110 baud
4 134.5 baud
5 150 baud
6 200 baud
7 300 baud
8 600 baud
9 1200 baud
10 1800 baud
11 2400 baud
12 4800 baud
13 9600 baud
14 External A
15 External B

In the current configuration, only 110, 150 and 300 baud are really supported on dial-up lines, in
that the code conversion and line control required for IBM 2741’s (134.5 baud) must be imple-
mented by the user’s program, and the half-duplex line discipline required for the 202 dataset
(1200 baud) is not supplied.

The next two characters of the argument structure specify the erase and kill characters respec-
tively. (Defaults are # and @.)

Themodecontains several bits which determine the system’s treatment of the typewriter:

100000 Select one of two algorithms for backspace delays
040000 Select one of two algorithms for form-feed and vertical-tab delays
030000 Select one of four algorithms for carriage-return delays
006000 Select one of four algorithms for tab delays
001400 Select one of four algorithms for new-line delays
000200 even parity allowed on input (e. g. for M37s)
000100 odd parity allowed on input
000040 raw mode: wake up on all characters
000020 map CR into LF; echo LF or CR as CR-LF

- 1 -

-

STTY (II) 12/15/74 STTY (II)

000010 echo (full duplex)
000004 map upper case to lower on input (e. g. M33)
000002 echo and print tabs as spaces
000001 hang up (remove ‘data terminal ready,’ lead CD) after last close

The delay bits specify how long transmission stops to allow for mechanical or other movement
when certain characters are sent to the terminal. In all cases a value of 0 indicates no delay.

Backspace delays are currently ignored but will be used for Terminet 300’s.

If a form-feed/vertical tab delay is specified, it lasts for about 2 seconds.

Carriage-return delay type 1 lasts about .08 seconds and is suitable for the Terminet 300. Delay
type 2 lasts about .16 seconds and is suitable for the VT05 and the TI 700. Delay type 3 is unim-
plemented and is 0.

New-line delay type 1 is dependent on the current column and is tuned for Teletype model 37’s.
Type 2 is useful for the VT05 and is about .10 seconds. Type 3 is unimplemented and is 0.

Tab delay type 1 is dependent on the amount of movement and is tuned to the Teletype model
37. Other types are unimplemented and are 0.

Characters with the wrong parity, as determined by bits 200 and 100, are ignored.

In raw mode, every character is passed immediately to the program without waiting until a full
line has been typed. No erase or kill processing is done; the end-of-file character (EOT), the in-
terrupt character (DEL) and the quit character (FS) are not treated specially.

Mode 020 causes input carriage returns to be turned into new-lines; input of either CR or LF
causes LF-CR both to be echoed (used for GE TermiNet 300’s and other terminals without the
newline function).

The hangup mode 01 causes the line to be disconnected when the last process with the line open
closes it or terminates. It is useful when a port is to be used for some special purpose; for exam-
ple, if it is associated with an ACU used to place outgoing calls.

This system call is also used with certain special files other than typewriters, but since none of
them are part of the standard system the specifications will not be given.

SEE ALSO
stty (I), gtty (II)

DIAGNOSTICS
The error bit (c-bit) is set if the file descriptor does not refer to a typewriter. From C, a negative
value indicates an error.

- 2 -

-

SYNC (II) 8/5/73 SYNC (II)

NAME
sync − update super-block

SYNOPSIS
(sync = 36.; not in assembler)
sys sync

DESCRIPTION
Synccauses all information in core memory that should be on disk to be written out. This in-
cludes modified super blocks, modified i-nodes, and delayed block I/O.

It should be used by programs which examine a file system, for exampleicheck, df,etc. It is
mandatory before a boot.

SEE ALSO
sync (VIII), update (VIII)

DIAGNOSTICS
−

- 1 -

-

TIME (II) 8/5/73 TIME (II)

NAME
time − get date and time

SYNOPSIS
(time = 13.)
sys time

time(tvec)
int tvec[2];

DESCRIPTION
Time returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in seconds. Fromas, the
high order word is in the r0 register and the low order is in r1. From C, the user-supplied vector
is filled in.

SEE ALSO
date (I), stime (II), ctime (III)

DIAGNOSTICS
−

- 1 -

-

TIMES (II) 8/5/73 TIMES (II)

NAME
times − get process times

SYNOPSIS
(times = 43.; not in assembler)
sys times; buffer

times(buffer)
struct tbuffer *buffer;

DESCRIPTION
Timesreturns time-accounting information for the current process and for the terminated child
processes of the current process. All times are in 1/60 seconds.

After the call, the buffer will appear as follows:

struct tbuffer {
int proc_user_time;
int proc_system_time;
int child_user_time[2];
int child_system_time[2];

};

The children times are the sum of the children’s process times and their children’s times.

SEE ALSO
time (I)

DIAGNOSTICS
−

BUGS
The process times should be 32 bits as well.

- 1 -

-

UMOUNT (II) 8/5/73 UMOUNT (II)

NAME
umount − dismount file system

SYNOPSIS
(umount = 22.)
sys umount; special

DESCRIPTION
Umountannounces to the system that special filespecialis no longer to contain a removable file
system. The file associated with the special file reverts to its ordinary interpretation; seemount
(II).

SEE ALSO
umount (VIII), mount (II)

DIAGNOSTICS
Error bit (c-bit) set if no file system was mounted on the special file or if there are still active
files on the mounted file system.

- 1 -

-

UNLINK (II) 8/5/73 UNLINK (II)

NAME
unlink − remove directory entry

SYNOPSIS
(unlink = 10.)
sys unlink; name

unlink(name)
char *name;

DESCRIPTION
Namepoints to a null-terminated string.Unlink removes the entry for the file pointed to by
namefrom its directory. If this entry was the last link to the file, the contents of the file are freed
and the file is destroyed. If, however, the file was open in any process, the actual destruction is
delayed until it is closed, even though the directory entry has disappeared.

SEE ALSO
rm (I), rmdir (I), link (II)

DIAGNOSTICS
The error bit (c-bit) is set to indicate that the file does not exist or that its directory cannot be
written. Write permission is not required on the file itself. It is also illegal to unlink a directory
(except for the super-user). From C, a −1 return indicates an error.

- 1 -

-

WAIT (II) 2/9/75 WAIT (II)

NAME
wait − wait for process to terminate

SYNOPSIS
(wait = 7.)
sys wait
(process ID in r0)
(status in r1)

wait(status)
int *status;

DESCRIPTION
Wait causes its caller to delay until one of its child processes terminates. If any child has died
since the lastwait, return is immediate; if there are no children, return is immediate with the er-
ror bit set (resp. with a value of−1 returned). The normal return yields the process ID of the ter-
minated child (in r0). In the case of several children severalwait calls are needed to learn of all
the deaths.

If no error is indicated on return, the r1 high byte (resp. the high byte stored intostatus) contains
the low byte of the child process r0 (resp. the argument ofexit) when it terminated. The r1
(resp. status) low byte contains the termination status of the process. See signal (II) for a list of
termination statuses (signals); 0 status indicates normal termination. A special status (0177) is
returned for a stopped process which has not terminated and can be restarted. See ptrace (II). If
the 0200 bit of the termination status is set, a core image of the process was produced by the sys-
tem.

If the parent process terminates without waiting on its children, the initialization process (pro-
cess ID = 1) inherits the children.

SEE ALSO
exit (II), fork (II), signal (II)

DIAGNOSTICS
The error bit (c-bit) is set if there are no children not previously waited for. From C, a returned
value of −1 indicates an error.

- 1 -

-

WRITE (II) 8/5/73 WRITE (II)

NAME
write − write on a file

SYNOPSIS
(write = 4.)
(file descriptor in r0)
sys write; buffer; nbytes

write(fildes, buffer, nbytes)
char *buffer;

DESCRIPTION
A file descriptor is a word returned from a successfulopen, creat, dup,or pipecall.

Buffer is the address ofnbytescontiguous bytes which are written on the output file. The num-
ber of characters actually written is returned (in r0). It should be regarded as an error if this is
not the same as requested.

Writes which are multiples of 512 characters long and begin on a 512-byte boundary in the file
are more efficient than any others.

SEE ALSO
creat (II), open (II), pipe (II)

DIAGNOSTICS
The error bit (c-bit) is set on an error: bad descriptor, buffer address, or count; physical I/O er-
rors. From C, a returned value of −1 indicates an error.

- 1 -

