
-

ABORT (III) 4/10/75 ABORT (III)

NAME
abort − generate an IOT fault

SYNOPSIS
abort()

DESCRIPTION
Abort executes the IOT instruction. This is usually considered a program fault by the system and
results in termination with a core dump. It is used to generate a core image for debugging.

SEE ALSO
db (I), cdb (I), signal (II)

DIAGNOSTICS
usually ‘‘IOT trap -- core dumped’’ from the Shell.

BUGS

- 1 -

-

ABS (III) 2/9/75 ABS (III)

NAME
abs, fabs − absolute value

SYNOPSIS
abs(i)
int i;

double fabs(x)
double x;

DESCRIPTION
Absreturns the absolute value of its integer operand;fabsis thedoubleversion.

- 1 -

-

ALLOC (III) 3/1/74 ALLOC (III)

NAME
alloc, free − core allocator

SYNOPSIS
char *alloc(size)

free(ptr)
char *ptr;

DESCRIPTION
Alloc andfreeprovide a simple general-purpose core management package.Alloc is given a size
in bytes; it returns a pointer to an area at least that size which is even and hence can hold an ob-
ject of any type. The argument tofree is a pointer to an area previously allocated byalloc; this
space is made available for further allocation.

Needless to say, grave disorder will result if the space assigned byalloc is overrun or if some
random number is handed tofree.

The routine uses a first-fit algorithm which coalesces blocks being freed with other blocks al-
ready free. It callssbrk (seebreak (II)) to get more core from the system when there is no suit-
able space already free.

DIAGNOSTICS
Returns −1 if there is no available core.

BUGS
Allocated memory contains garbage instead of being cleared.

- 1 -

-

ATAN (III) 4/30/73 ATAN (III)

NAME
atan, atan2 − arc tangent function

SYNOPSIS
jsr pc,atan[2]

double atan(x)
double x;

double atan2(x, y)
double x, y;

DESCRIPTION
Theatanentry returns the arc tangent of fr0 in fr0; from C, the arc tangent ofx is returned. The
range is −π/2 to π/2. Theatan2entry returns the arc tangent of fr0/fr1 in fr0; from C, the arc tan-
gent ofx/y is returned. The range is −πto π.

DIAGNOSTIC
There is no error return.

BUGS

- 1 -

-

ATOF (III) 4/30/73 ATOF (III)

NAME
atof − convert ASCII to floating

SYNOPSIS
double atof(nptr)
char *nptr;

DESCRIPTION
Atof converts a string to a floating number.Nptr should point to a string containing the number;
the first unrecognized character ends the number.

The only numbers recognized are: an optional minus sign followed by a string of digits option-
ally containing one decimal point, then followed optionally by the lettere followed by a signed
integer.

DIAGNOSTICS
There are none; overflow results in a very large number and garbage characters terminate the
scan.

BUGS
The routine should accept initial+, initial blanks, andE for e. Overflow should be signalled.

- 1 -

-

ATOI (III) 2/8/75 ATOI (III)

NAME
atoi − convert ASCII to integer

SYNOPSIS
atoi(nptr)
char *nptr;

DESCRIPTION
Atoi converts the string pointed to bynptr to an integer. The string can contain leading blanks or
tabs, an optional ‘�’, and then an unbroken string of digits. Conversion stops at the first non-
digit.

SEE ALSO
atof (III)

BUGS
There is no provision for overflow.

- 1 -

-

CRYPT (III) 4/30/73 CRYPT (III)

NAME
crypt − password encoding

SYNOPSIS
mov $key,r0
jsr pc,crypt

char *crypt(key)
char *key;

DESCRIPTION
On entry, r0 points to a string of characters terminated by an ASCII NUL. The routine performs
an operation on the key which is difficult to invert (i.e. encrypts it) and leaves the resulting eight
bytes of ASCII alphanumerics in a global cell called ‘‘word’’.

From C, thekeyargument is a string and the value returned is a pointer to the eight-character re-
sult.

This routine is used to encrypt all passwords.

SEE ALSO
passwd(I), passwd(V), login(I)

BUGS
Short or otherwise simple passwords can be decrypted easily by exhaustive search. Six charac-
ters of gibberish is reasonably safe.

- 1 -

-

CTIME (III) 10/15/73 CTIME (III)

NAME
ctime, localtime, gmtime− convert date and time to ASCII

SYNOPSIS
char *ctime(tvec)
int tvec[2];

[from Fortran]
double precision ctime
... = ctime(dummy)

int *localtime(tvec)
int tvec[2];

int *gmtime(tvec)
int tvec[2];

DESCRIPTION
Ctimeconverts a time in the vectortvecsuch as returned by time (II) into ASCII and returns a
pointer to a character string in the form

Sun Sep 16 01:03:52 1973\n\0

All the fields have constant width.

The localtimeandgmtimeentries return pointers to integer vectors containing the broken-down
time. Localtimecorrects for the time zone and possible daylight savings time;gmtimeconverts
directly to GMT, which is the time UNIX uses. The value is a pointer to an array whose compo-
nents are

0 seconds
1 minutes
2 hours
3 day of the month (1-31)
4 month (0-11)
5 year − 1900
6 day of the week (Sunday = 0)
7 day of the year (0-365)
8 Daylight Saving Time flag if non-zero

The external variabletimezonecontains the difference, in seconds, between GMT and local stan-
dard time (in EST, is 5*60*60); the external variabledaylight is non-zero iff the standard U.S.A.
Daylight Savings Time conversion should be applied. The program knows about the peculiari-
ties of this conversion in 1974 and 1975; if necessary, a table for these years can be extended.

A routine namedctime is also available from Fortran. Actually it more resembles thetime (II)
system entry in that it returns the number of seconds since the epoch 0000 GMT Jan. 1, 1970 (as
a floating-point number).

SEE ALSO
time(II)

BUGS

- 1 -

-

ECVT (III) 4/30/73 ECVT (III)

NAME
ecvt, fcvt − output conversion

SYNOPSIS
jsr pc,ecvt

jsr pc,fcvt

char *ecvt(value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *fcvt(value, ndigit, decpt, sign)
...

DESCRIPTION
Ecvt is called with a floating point number in fr0.

On exit, the number has been converted into a string of ascii digits in a buffer pointed to by r0.
The number of digits produced is controlled by a global variable_ndigits.

Moreover, the position of the decimal point is contained in r2: r2=0 means the d.p. is at the left
hand end of the string of digits; r2>0 means the d.p. is within or to the right of the string.

The sign of the number is indicated by r1 (0 for +; 1 for −).

The low order digit has suffered decimal rounding (i. e. may have been carried into).

From C, thevalue is converted and a pointer to a null-terminated string ofndigit digits is re-
turned. The position of the decimal point is stored indirectly throughdecpt(negative means to
the left of the returned digits). If the sign of the result is negative, the word pointed to bysign is
non-zero, otherwise it is zero.

Fcvt is identical toecvt, except that the correct digit been rounded for F-style output of the num-
ber of digits specified by_ndigits.

SEE ALSO
printf (III)

BUGS

- 1 -

-

END (III) 4/28/75 END (III)

NAME
end, etext, edata − last locations in program

SYNOPSIS
extern end;
extern etext;
extern edata;

DESCRIPTION
These names refer neither to routines nor to locations with interesting contents. Instead, their ad-
dresses coincide with the first address above the program text region(etext),above the initialized
data region(edata),or uninitialized data region(end). The last is the same as the program break.
Values are given to these symbols by the link editorld (I) when, and only when, they are referred
to but not defined in the set of programs loaded.

The usage of these symbols is rather specialized, but one plausible possibility is

extern end;
...
... = brk(&end+...);

(seebreak(II)). The problem with this is that it ignores any other subroutines which may want
to extend core for their purposes; these includesbrk (seebreak(II)), alloc (III), and also secret
subroutines invoked by the profile (�p) option ofcc. Of course it was for the benefit of such sys-
tems that the symbols were invented, and user programs, unless they are in firm control of their
environment, are wise not to refer to the absolute symbols directly.

One technique sometimes useful is to callsbrk(0),which returns the value of the current program
break, instead of referring to&end,which yields the program break at the instant execution start-
ed.

These symbols are accessible from assembly language if it is remembered that they should be
prefixed by ‘_’

SEE ALSO
break (II), alloc (III)

BUGS

- 1 -

-

EXP (III) 4/30/73 EXP (III)

NAME
exp − exponential function

SYNOPSIS
jsr pc,exp

double exp(x)
double x;

DESCRIPTION
The exponential of fr0 is returned in fr0. From C, the exponential ofx is returned.

DIAGNOSTICS
If the result is not representable, the c-bit is set and the largest positive number is returned.
From C, no diagnostic is available.

Zero is returned if the result would underflow.

BUGS

- 1 -

-

FLOOR (III) 5/15/74 FLOOR (III)

NAME
floor, ceil − floor and ceiling functions

SYNOPSIS
double floor(x)
double x;

double ceil(x)
double x;

DESCRIPTION
The floor function returns the largest integer (as a double precision number) not greater thanx.

The ceil function returns the smallest integer not less thanx.

BUGS

- 1 -

-

FMOD (III) 2/13/75 FMOD (III)

NAME
fmod − floating modulo function

SYNOPSIS
double fmod(x, y)
double x, y;

DESCRIPTION
Fmodreturns the numberf such thatx = iy + f, i is an integer, and 0 f f < y.

BUGS

- 1 -

-

FPTRAP (III) 11/18/73 FPTRAP (III)

NAME
fptrap − floating point interpreter

SYNOPSIS
sys signal; 4; fptrap

DESCRIPTION
Fptrap is a simulator of the 11/45 FP11-B floating point unit. It works by intercepting illegal in-
struction traps and decoding and executing the floating point operation codes.

FILES
In systems with real floating point, there is a fake routine in /lib/liba.a with this name; when sim-
ulation is desired, the real version should be put in liba.a

DIAGNOSTICS
A break point trap is given when a real illegal instruction trap occurs.

SEE ALSO
signal (II), cc (I) (‘�f’ option)

BUGS
Rounding mode is not interpreted. It’s slow.

- 1 -

-

GETARG (III) 11/24/73 GETARG (III)

NAME
getarg, iargc − get command arguments from Fortran

SYNOPSIS
call getarg (i, iarray [, isize])

... = iargc(dummy)

DESCRIPTION
Thegetargentry fills in iarray (which is considered to beinteger)with the Hollerith string rep-
resenting thei th argument to the command in which it it is called. If noisizeargument is speci-
fied, at least one blank is placed after the argument, and the last word affected is blank padded.
The user should make sure that the array is big enough.

If the isizeargument is given, the argument will be followed by blanks to fill upisizewords, but
even if the argument is long no more than that many words will be filled in.

The blank-padded array is suitable for use as an argument to setfil (III).

The iargc entry returns the number of arguments to the command, counting the first (file-name)
argument.

SEE ALSO
exec (II), setfil (III)

BUGS

- 1 -

-

GETC (III) 4/30/72 GETC (III)

NAME
getc, getw, fopen− buffered input

SYNOPSIS
mov $filename,r0
jsr r5,fopen; iobuf

fopen(filename, iobuf)
char *filename;
struct buf *iobuf;

jsr r5,getc; iobuf
(character in r0)

getc(iobuf)
struct buf *iobuf;

jsr r5,getw; iobuf
(word in r0)

getw(iobuf)
struct buf *iobuf;

DESCRIPTION
These routines provide a buffered input facility.Iobuf is the address of a 518(10) byte buffer
area whose contents are maintained by these routines. Its structure is

struct buf {
int fildes; /* File descriptor */
int nleft; /* Chars left in buffer */
char *nextp; /* Ptr to next character */
char buff[512]; /* The buffer */

};

Fopenmay be called initially to open the file. On return, the error bit (c-bit) is set if the open
failed. If fopenis never called,get will read from the standard input file. From C, the value is
negative if the open failed.

Getcreturns the next byte from the file in r0. The error bit is set on end of file or a read error.
From C, the character is returned as an integer, without sign extension; it is−1 on end-of-file or
error.

Getwreturns the next word in r0.Getcandgetwmay be used alternately; there are no odd/even
problems.Getw is may be called from C;−1 is returned on end-of-file or error, but of course is
also a legitimate value.

Iobufmust be provided by the user; it must be on a word boundary.

To reuse the same buffer for another file, it is sufficient to close the original file and callfopen
again.

SEE ALSO
open (II), read (II), getchar (III), putc (III)

DIAGNOSTICS
c-bit set on EOF or error; from C, negative return indicates error or EOF. Moreover,errno is set
by this routine just as it is for a system call (see introduction (II)).

BUGS

- 1 -

-

GETCHAR (III) 4/7/73 GETCHAR (III)

NAME
getchar − read character

SYNOPSIS
getchar()

DESCRIPTION
Getcharprovides the simplest means of reading characters from the standard input for C pro-
grams. It returns successive characters until end-of-file, when it returns ‘‘\0’’.

Associated with this routine is an external variable calledfin, which is a structure containing a
buffer such as described undergetc(III).

Generally speaking,getcharshould be used only for the simplest applications;getc is better
when there are multiple input files.

SEE ALSO
getc (III)

DIAGNOSTICS
Null character returned on EOF or error.

BUGS
−1 should be returned on EOF; null is a legitimate character.

- 1 -

-

GETPW (III) 4/7/73 GETPW (III)

NAME
getpw − get name from UID

SYNOPSIS
getpw(uid, buf)
char *buf;

DESCRIPTION
Getpwsearches the password file for the (numerical)uid, and fills in buf with the corresponding
line; it returns non-zero ifuid could not be found. The line is null-terminated.

FILES
/etc/passwd

SEE ALSO
passwd (V)

DIAGNOSTICS
non-zero return on error.

BUGS

- 1 -

-

HMUL (III) 4/7/73 HMUL (III)

NAME
hmul − high-order product

SYNOPSIS
hmul(x, y)

DESCRIPTION
Hmul returns the high-order 16 bits of the product ofx andy. (The binary multiplication opera-
tor generates the low-order 16 bits of a product.)

BUGS

- 1 -

-

IERROR (III) 10/29/73 IERROR (III)

NAME
ierror − catch Fortran errors

SYNOPSIS
if (ierror (errno) .ne. 0) goto label

DESCRIPTION
Ierror provides a way of detecting errors during the running of a Fortran program. Its argument
is a run-time error number such as enumerated infc (I).

When ierror is called, it returns a 0 value; thus thegoto statement in the synopsis is not exe-
cuted. However, the routine stores inside itself the call point and invocation level. If and when
the indicated error occurs, areturn is simulated fromierror with a non-zero value; thus thegoto
(or other statement) is executed. It is a ghastly error to callierror from a subroutine which has
already returned when the error occurs.

This routine is essentially tailored to catching end-of-file situations. Typically it is called just
before the start of the loop which reads the input file, and thegoto jumps to a graceful termina-
tion of the program.

There is a limit of 5 on the number of different error numbers which can be caught.

SEE ALSO
fc (I)

BUGS
There is no way to ignore errors.

- 1 -

-

LDIV (III) 5/7/73 LDIV (III)

NAME
ldiv, lrem − long division

SYNOPSIS
ldiv(hidividend, lodividend, divisor)

lrem(hidividend, lodividend, divisor)

DESCRIPTION
The concatenation of the signed 16-bithidividendand the unsigned 16-bitlodividendis divided
by divisor. The 16-bit signed quotient is returned byldiv and the 16-bit signed remainder is re-
turned bylrem. Divide check and erroneous results will occur unless the magnitude of the divi-
sor is greater than that of the high-order dividend.

An integer division of an unsigned dividend by a signed divisor may be accomplished by

quo = ldiv(0, dividend, divisor);

and similarly for the remainder operation.

Often both the quotient and the remainder are wanted. Thereforeldiv leaves a remainder in the
external cellldivr.

BUGS
No divide check check.

- 1 -

-

LOCV (III) 3/9/74 LOCV (III)

NAME
locv − long output conversion

SYNOPSIS
char *locv(hi, lo)
int hi, lo;

DESCRIPTION
Locv converts a signed double-precision integer, whose parts are passed as arguments, to the
equivalent ASCII character string and returns a pointer to that string.

BUGS
Sincelocv returns a pointer to a static buffer containing the converted result, it cannot be used
twice in the same expression; the second result overwrites the first.

- 1 -

-

LOG (III) 4/30/72 LOG (III)

NAME
log − natural logarithm

SYNOPSIS
jsr pc,log

double log(x)
double x;

DESCRIPTION
The natural logarithm of fr0 is returned in fr0. From C, the natural logarithm ofx is returned.

DIAGNOSTICS
The error bit (c-bit) is set if the input argument is less than or equal to zero and the result is a
negative number very large in magnitude. From C, there is no error indication.

BUGS

- 1 -

-

MONITOR (III) 2/11/74 MONITOR (III)

NAME
monitor − prepare execution profile

SYNOPSIS
monitor(lowpc, highpc, buffer, bufsize)
int lowpc(), highpc(), buffer[], bufsize;

DESCRIPTION
Monitor is an interface to the system’s profile entry (II).Lowpcandhighpcare the names of two
functions;buffer is the address of a (user supplied) array ofbufsizeintegers. Monitor arranges
for the system to sample the user’s program counter periodically and record the execution his-
togram in the buffer. The lowest address sampled is that oflowpcand the highest is just below
highpc. For the results to be significant, especially where there are small, heavily used routines,
it is suggested that the buffer be no more than a few times smaller than the range of locations
sampled.

To profile the entire program, it is sufficient to use

extern etext;
...
monitor(2, &etext, buf, bufsize);

Etextis a loader-defined symbol which lies just above all the program text.

To stop execution monitoring and write the results on the filemon.out,use

monitor(0);

Then, when the program exits, prof (I) can be used to examine the results.

It is seldom necessary to call this routine directly; the−p option ofcc is simpler if one is satis-
fied with its default profile range and resolution.

FILES
mon.out

SEE ALSO
prof (I), profil (II), cc (I)

- 1 -

-

NARGS (III) 5/10/73 NARGS (III)

NAME
nargs − argument count

SYNOPSIS
nargs()

DESCRIPTION
Nargs returns the number of actual parameters supplied by the caller of the routine which calls
nargs.

The argument count is accurate only when none of the actual parameters isfloat or double. Such
parameters count as four arguments instead of one.

BUGS
As indicated. Also, this routine does not work (and cannot be made to work) in programs with
separated I and D space. Altogether it is best to avoid using this routine and depend, for exam-
ple, on passing an explicit argument count.

- 1 -

-

NLIST (III) 6/12/72 NLIST (III)

NAME
nlist − get entries from name list

SYNOPSIS
nlist(filename, nl)
char *filename;
struct {

char name[8];
int type;
int value;

} nl[];

DESCRIPTION
Nlist examines the name list in the given executable output file and selectively extracts a list of
values. The name list consists of a list of 8-character names (null padded) each followed by two
words. The list is terminated with a null name. Each name is looked up in the name list of the
file. If the name is found, the type and value of the name are placed in the two words following
the name. If the name is not found, the type entry is set to −1.

This subroutine is useful for examining the system name list kept in the file/unix. In this way
programs can obtain system addresses that are up to date.

SEE ALSO
a.out (V)

DIAGNOSTICS
All type entries are set to −1 if the file cannot be found or if it is not a valid namelist.

BUGS

- 1 -

-

PERROR (III) 11/5/73 PERROR (III)

NAME
perror, sys_errlist, sys_nerr, errno − system error messages

SYNOPSIS
perror(s)
char *s;

int sys_nerr;
char *sys_errlist[];

int errno;

DESCRIPTION
Perror produces a short error message describing the last error encountered during a call to the
system from a C program. First the argument strings is printed, then a colon, then the message
and a new-line. Most usefully, the argument string is the name of the program which incurred
the error. The error number is taken from the external variableerrno, which is set when errors
occur but not cleared when non-erroneous calls are made.

To simplify variant formatting of messages, the vector of message stringssys_errlist is provided;
errno can be used as an index in this table to get the message string without the newline.
Sys_nerr is the largest message number provided for in the table; it should be checked because
new error codes may be added to the system before they are added to the table.

SEE ALSO
Introduction to System Calls

BUGS

- 1 -

-

POW (III) 4/30/73 POW (III)

NAME
pow − floating exponentiation

SYNOPSIS
movf x,fr0
movf y,fr1
jsr pc,pow

double pow(x,y)
double x, y;

DESCRIPTION
Pow returns the value ofxy (in fr0). Pow(0.0, y)is 0 for anyy. Pow(−x, y) returns a result only
if y is an integer.

SEE ALSO
exp (III), log (III)

DIAGNOSTICS
The carry bit is set on return in case of overflow,pow(0.0, 0.0),or pow(−x, y) for non-integraly.
From C there is no diagnostic.

BUGS

- 1 -

-

PRINTF (III) 9/17/73 PRINTF (III)

NAME
printf − formatted print

SYNOPSIS
printf(format, arg1, ...);
char *format;

DESCRIPTION
Printf converts, formats, and prints its arguments after the first under control of the first argu-
ment. The first argument is a character string which contains two types of objects: plain charac-
ters, which are simply copied to the output stream, and conversion specifications, each of which
causes conversion and printing of the next successive argument toprintf.

Each conversion specification is introduced by the character%. Following the%, there may be

− an optional minus sign ‘‘−’’ which specifiesleft adjustmentof the converted argument in
the indicated field;

− an optional digit string specifying afield width; if the converted argument has fewer
characters than the field width it will be blank-padded on the left (or right, if the left-
adjustment indicator has been given) to make up the field width;

− an optional period ‘‘.’’ which serves to separate the field width from the next digit string;

− an optional digit string(precision)which specifies the number of digits to appear after
the decimal point, for e- and f-conversion, or the maximum number of characters to be
printed from a string;

− a character which indicates the type of conversion to be applied.

The conversion characters and their meanings are

d
o
x The integer argument is converted to decimal, octal, or hexadecimal notation respec-

tively.

f The argument is converted to decimal notation in the style ‘‘[−]ddd.ddd’’ where the num-
ber of d’s after the decimal point is equal to the precision specification for the argument.
If the precision is missing, 6 digits are given; if the precision is explicitly 0, no digits and
no decimal point are printed. The argument should befloat or double.

e The argument is converted in the style ‘‘[−]d.ddde±dd’’ where there is one digit before
the decimal point and the number after is equal to the precision specification for the argu-
ment; when the precision is missing, 6 digits are produced. The argument should be a
float or doublequantity.

c The argument character is printed.

s The argument is taken to be a string (character pointer) and characters from the string are
printed until a null character or until the number of characters indicated by the precision
specification is reached; however if the precision is 0 or missing all characters up to a
null are printed.

l The argument is taken to be an unsigned integer which is converted to decimal and print-
ed (the result will be in the range 0 to 65535).

If no recognizable character appears after the%, that character is printed; thus% may be printed
by use of the string%%. In no case does a non-existent or small field width cause truncation of
a field; padding takes place only if the specified field width exceeds the actual width. Characters
generated byprintf are printed by callingputchar.

SEE ALSO
putchar (III)

- 1 -

-

PRINTF (III) 9/17/73 PRINTF (III)

BUGS
Very wide fields (>128 characters) fail.

- 2 -

-

PUTC (III) 6/12/72 PUTC (III)

NAME
putc, putw, fcreat, fflush− buffered output

SYNOPSIS
mov $filename,r0
jsr r5,fcreat; iobuf

fcreat(file, iobuf)
char *file;
struct buf *iobuf;

(get byte in r0)
jsr r5,putc; iobuf

putc(c, iobuf)
int c;
struct buf *iobuf;

(get word in r0)
jsr r5,putw; iobuf

putw(w, iobuf);
int w;
struct buf *iobuf;

jsr r5,flush; iobuf

fflush(iobuf)
struct buf *iobuf;

DESCRIPTION
Fcreatcreates the given file (mode 666) and sets up the bufferiobuf (size 518 bytes);putc and
putwwrite a byte or word respectively onto the file;flush forces the contents of the buffer to be
written, but does not close the file. The structure of the buffer is:
struct buf {

int fildes; /* File descriptor */
int nunused; /* Remaining slots */
char *xfree; /* Ptr to next free slot */
char buff[512]; /* The buffer */

};

Before terminating, a program should callflush to force out the last of the output(fflush from C).

The user must supplyiobuf,which should begin on a word boundary.

To write a new file using the same buffer, it suffices to call[f]flush, close the file, and callfcreat
again.

SEE ALSO
creat (II), write (II), getc (III)

DIAGNOSTICS
Fcreatsets the error bit (c-bit) if the file creation failed (from C, returns−1). Putcandputw re-
turn their character (word) argument. In all callserrno is set appropriately to 0 or to a system er-
ror number. See introduction (II).

BUGS

- 1 -

-

PUTCHAR (III) 5/10/73 PUTCHAR (III)

NAME
putchar, flush − write character

SYNOPSIS
putchar(ch)

flush()

DESCRIPTION
Putcharwrites out its argument and returns it unchanged. Only the low-order byte is written,
and only if it is non-null. Unless other arrangements have been made,putchar writes in un-
buffered fashion on the standard output file.

Associated with this routine is an external variablefout which has the structure of a buffer dis-
cussed under putc (III). If the file descriptor part of this structure (first word) is greater than 2,
output viaputcharis buffered. To achieve buffered output one may say, for example,

fout = dup(1); or
fout = creat(...);

In such a caseflush must be called before the program terminates in order to flush out the buf-
fered output.Flushmay be called at any time.

SEE ALSO
putc (III)

BUGS
Thefout notion is kludgy.

- 1 -

-

QSORT (III) 2/8/75 QSORT (III)

NAME
qsort − quicker sort

SYNOPSIS
qsort(base, nel, width, compar)
char *base;
int (*compar)();

DESCRIPTION
Qsort is an implementation of the quicker-sort algorithm. The first argument is a pointer to the
base of the data; the second is the number of elements; the third is the width of an element in
bytes; the last is the name of the comparison routine. It is called with two arguments which are
pointers to the elements being compared. The routine must return an integer less than, equal to,
or greater than 0 according as the first argument is to be considered less than, equal to, or greater
than the second.

SEE ALSO
sort (I)

BUGS

- 1 -

-

RAND (III) 1/15/73 RAND (III)

NAME
rand, srand − random number generator

SYNOPSIS
(seed in r0)
jsr pc,srand /to initialize

jsr pc,rand /to get a random number

srand(seed)
int seed;

rand()

DESCRIPTION
Randuses a multiplicative congruential random number generator to return successive pseudo-
random numbers (in r0) in the range from 0 to 215−1.

The generator is reinitialized by callingsrandwith 1 as argument (in r0). It can be set to a ran-
dom starting point by callingsrandwith whatever you like as argument, for example the low-
order word of the time.

BUGS
The low-order bits are not very random.

- 1 -

-

RESET (III) 5/10/73 RESET (III)

NAME
reset, setexit − execute non-local goto

SYNOPSIS
setexit()

reset()

DESCRIPTION
These routines are useful for dealing with errors and interrupts encountered in a low-level sub-
routine of a program.

Setexitsaves its stack environment in a static place for later use byreset.

Resetrestores the environment saved by the last call ofsetexit. It then returns in such a way that
execution continues as if the call ofsetexithad just returned. All accessible data have values as
of the timeresetwas called.

The routine that calledsetexitmust still be active whenresetis called.

SEE ALSO
signal (II)

BUGS

- 1 -

-

SETFIL (III) 10/29/73 SETFIL (III)

NAME
setfil − specify Fortran file name

SYNOPSIS
call setfil (unit, hollerith-string)

DESCRIPTION
Setfilprovides a primitive way to associate an integer I/Ounit number with a file named by the
hollerith-string. The end of the file name is indicated by a blank. Subsequent I/O on this unit
number will refer to the file whose name is specified by the string.

Setfil should be called only before any I/O has been done on theunit, or just after doing a
rewind or endfile. It is ineffective for unit numbers 5 and 6.

SEE ALSO
fc (I)

BUGS
The exclusion of units 5 and 6 is unwarranted.

- 1 -

-

SIN (III) 3/15/72 SIN (III)

NAME
sin, cos − trigonometric functions

SYNOPSIS
jsr pc,sin (cos)

double sin(x)
double x;

double cos(x)
double x;

DESCRIPTION
The sine (cosine) of fr0 (resp.x), measured in radians, is returned (in fr0).

The magnitude of the argument should be checked by the caller to make sure the result is mean-
ingful.

BUGS

- 1 -

-

SQRT (III) 3/15/72 SQRT (III)

NAME
sqrt − square root function

SYNOPSIS
jsr pc,sqrt

double sqrt(x)
double x;

DESCRIPTION
The square root of fr0 (resp.x) is returned (in fr0).

DIAGNOSTICS
The c-bit is set on negative arguments and 0 is returned. There is no error return for C programs.

BUGS
No error return from C.

- 1 -

-

TTYN (III) 1/15/73 TTYN (III)

NAME
ttyn − return name of current typewriter

SYNOPSIS
jsr pc,ttyn

ttyn(file)

DESCRIPTION
Ttyn hunts up the last character of the name of the typewriter which is the standard input (from
as) or is specified by the argumentfile descriptor (from C). Ifn is returned, the typewriter name
is then ‘‘/dev/ttyn’’.

x is returned if the indicated file does not correspond to a typewriter.

BUGS

- 1 -

