
-

CAT (IV) 10/27/73 CAT (IV)

NAME
cat − phototypesetter interface

DESCRIPTION
Cat provides the interface to a Graphic Systems C/A/T phototypesetter. Bytes written on the file
specify font, size, and other control information as well as the characters to be flashed. The cod-
ing will not be described here.

Only one process may have this file open at a time. It is write-only.

FILES
/dev/cat

SEE ALSO
troff (I), Graphic Systems specification (available on request)

BUGS

- 1 -

-

DH (IV) 5/27/74 DH (IV)

NAME
dh − DH-11 communications multiplexer

DESCRIPTION
Each line attached to the DH-11 communications multiplexer behaves as described in tty (IV).
Input and output for each line may independently be set to run at any of 16 speeds; see stty (II)
for the encoding.

FILES
/dev/tty[f-u]

SEE ALSO
tty (IV), stty (II)

BUGS

- 1 -

-

DN (IV) 3/20/74 DN (IV)

NAME
dn − DN-11 ACU interface

DESCRIPTION
Thedn? files are write-only. The permissible codes are:

0-9 dial 0-9
: dial *
; dial #
− 4 second delay for second dial tone
= end-of-number

The entire telephone number must be presented in a singlewrite system call.

It is recommended that an end-of-number code be given even though not all ACU’s actually re-
quire it.

FILES
/dev/dn0connected to 801 with dp0
/dev/dn1not currently connected
/dev/dn2not currently connected

SEE ALSO
dp (IV)

BUGS

- 1 -

-

DP (IV) 8/24/73 DP (IV)

NAME
dp − DP-11 201 data-phone interface

DESCRIPTION
The dp0 file is a 201 data-phone interface.Readandwrite calls to dp0 are limited to a maxi-
mum of 512 bytes. Each write call is sent as a single record. Seven bits from each byte are writ-
ten along with an eighth odd parity bit. The sync must be user supplied. Each read call returns
characters received from a single record. Seven bits are returned unaltered; the eighth bit is set if
the byte was not received in odd parity. A 10 second time out is set and a zero-byte record is re-
turned if nothing is received in that time.

FILES
/dev/dp0

SEE ALSO
dn (IV), gerts (III)

BUGS

- 1 -

-

HP (IV) 2/9/75 HP (IV)

NAME
hp − RH-11/RP04 moving-head disk

DESCRIPTION
The fileshp0 ... hp7refer to sections of RP disk drive 0. The fileshp8 ... hp15refer to drive 1
etc. This is done since the size of a full RP drive is 170,544 blocks and internally the system is
only capable of addressing 65536 blocks. Also since the disk is so large, this allows it to be bro-
ken up into more manageable pieces.

The origin and size of the pseudo-disks on each drive are as follows:

disk start length
0 0 9614
1 18392 65535
2 48018 65535
3 149644 20900
4 0 40600
5 41800 40600
6 83600 40600
7 125400 40600

It is unwise for all of these files to be present in one installation, since there is overlap in ad-
dresses and protection becomes a sticky matter.

Thehp files access the disk via the system’s normal buffering mechanism and may be read and
written without regard to physical disk records. There is also a ‘‘raw’’ interface which provides
for direct transmission between the disk and the user’s read or write buffer. A single read or
write call results in exactly one I/O operation and therefore raw I/O is considerably more effi-
cient when many words are transmitted. The names of the raw RP files begin withrhp and end
with a number which selects the same disk section as the correspondinghp file.

In raw I/O the buffer must begin on a word boundary, and counts should be a multiple of 512
bytes (a disk block). Likewiseseekcalls should specify a multiple of 512 bytes.

FILES
/dev/hp?, /dev/rhp?

BUGS

- 1 -

-

HS (IV) 2/9/75 HS (IV)

NAME
hs − RH11/RS03-RS04 fixed-head disk file

DESCRIPTION
The fileshs0 ... hs7refer to RJS03 disk drives 0 through 7. The fileshs8 ... hs15refer to RJS04
disk drives 0 through 7. The RJS03 drives are each 1024 blocks long and the RJS04 drives are
2048 blocks long.

Thehs files access the disk via the system’s normal buffering mechanism and may be read and
written without regard to physical disk records. There is also a ‘‘raw’’ inteface which provides
for direct transmission between the disk and the user’s read or write buffer. A single read or
write call results in exactly one I/O operation and therefore raw I/O is considerably more effi-
cient when many words are transmitted. The names of the raw HS files begin withrhs. The
same minor device considerations hold for the raw interface as for the normal interface.

In raw I/O the buffer must begin on a word boundary, and counts should be a multiple of 512
bytes (a disk block). Likewiseseekcalls should specify a multiple of 512 bytes.

FILES
/dev/hs?, /dev/rhs?

BUGS

- 1 -

-

HT (IV) 2/9/75 HT (IV)

NAME
ht − RH-11/TU-16 magtape interface

DESCRIPTION
The files mt0, ..., mt7refer to the DEC RH/TM/TU16 magtape. When opened for reading or
writing, the tape is rewound. When closed, it is rewound; if it was open for writing, a double
end-of-file is written first.

A standard tape consists of a series of 512 byte records terminated by a double end-of-file. To
the extent possible, the system makes it possible, if inefficient, to treat the tape like any other
file. Seeks have their usual meaning and it is possible to read or write a byte at a time. Writing
in very small units is inadvisable, however, because it tends to create monstrous record gaps.

Themt files discussed above are useful when it is desired to access the tape in a way compatible
with ordinary files. When foreign tapes are to be dealt with, and especially when long records
are to be read or written, the ‘‘raw’’ interface is appropriate. The associated files are named
rmt0, ..., rmt7. Eachreador write call reads or writes the next record on the tape. In the write
case the record has the same length as the buffer given. During a read, the record size is passed
back as the number of bytes read, provided it is no greater than the buffer size; if the record is
long, an error is indicated. In raw tape I/O, the buffer must begin on a word boundary and the
count must be even. Seeks are ignored. An error is returned when a tape mark is read, but an-
other read will fetch the first record of the new tape file.

FILES
/dev/mt?, /dev/rmt?

SEE ALSO
tp (I)

BUGS
Raw I/O doesnt work yet. The magtape system is supposed to be able to take 64 drives. Such
addressing has never been tried. These bugs will be fixed when we get more experience with
this device.

If any non-data error is encountered, it refuses to do anything more until closed. In raw I/O,
there should be a way to perform forward and backward record and file spacing and to write an
EOF mark.

- 1 -

-

KL (IV) 5/27/74 KL (IV)

NAME
kl − KL-11 or DL-11 asynchronous interface

DESCRIPTION
The discussion of typewriter I/O given in tty (IV) applies to these devices.

Since they run at a constant speed, attempts to change the speed via stty (II) are ignored.

The on-line console typewriter is interfaced using a KL-11 or DL-11. By appropriate switch set-
tings during a reboot, UNIX will come up as a single-user system with I/O on the console type-
writer.

FILES
/dev/tty8console

SEE ALSO
tty (IV), init (VIII)

BUGS
Modem control for the DL-11E is not implemented.

- 1 -

-

LP (IV) 5/27/74 LP (IV)

NAME
lp − line printer

DESCRIPTION
Lp provides the interface to any of the standard DEC line printers. When it is opened or closed,
a suitable number of page ejects is generated. Bytes written are printed.

An internal parameter within the driver determines whether or not the device is treated as having
a 96- or 64-character set. In half-ASCII mode, lower case letters are turned into upper case and
certain characters are escaped according to the following table:

{ −(
} −)
` −́
 −!
˜ −̂

The driver correctly interprets carriage returns, backspaces, tabs, and form feeds. A sequence of
newlines which extends over the end of a page is turned into a form feed. All lines are indented
8 characters. Lines longer than 80 characters are truncated. These numbers are parameters in the
driver; another parameter allows indenting all printout if it is unpleasantly near the left margin.

FILES
/dev/lp

SEE ALSO
lpr (I)

BUGS
Half-ASCII mode, the indent and the maximum line length should be settable by a call analo-
gous to stty (II).

- 1 -

-

MEM (IV) 5/27/74 MEM (IV)

NAME
mem, kmem, null− core memory

DESCRIPTION
Mem is a special file that is an image of the core memory of the computer. It may be used, for
example, to examine, and even to patch the system using the debugger.

A memory address is an 18-bit quantity which is used directly as a UNIBUS address. Refer-
ences to non-existent locations cause errors to be returned.

Examining and patching device registers is likely to lead to unexpected results when read-only or
write-only bits are present.

The file kmemis the same asmemexcept that kernel virtual memory rather than physical mem-
ory is accessed. In particular, the I/O area ofkmemis located beginning at 160000 (octal) rather
than at 760000. The 1K region beginning at 140000 (octal) is the system’s data for the current
process.

The filenull returns end-of-file onreadand ignoreswrite.

FILES
/dev/mem, /dev/kmem, /dev/null

- 1 -

-

PC (IV) 10/15/73 PC (IV)

NAME
pc − PC-11 paper tape reader/punch

DESCRIPTION
Ppt refers to the PC-11 paper tape reader or punch, depending on whether it is read or written.

Whenppt is opened for writing, a 100-character leader is punched. Thereafter each byte written
is punched on the tape. No editing of the characters is performed. When the file is closed, a
100-character trailer is punched.

Whenppt is opened for reading, the process waits until tape is placed in the reader and the reader
is on-line. Then requests to read cause the characters read to be passed back to the program,
again without any editing. This means that several null leader characters will usually appear at
the beginning of the file. Likewise several nulls are likely to appear at the end. End-of-file is
generated when the tape runs out.

Seek calls for this file are meaningless.

FILES
/dev/ppt

BUGS
If both the reader and the punch are open simultaneously, the trailer is sometimes not punched.
Sometimes the reader goes into a dead state in which it cannot be opened.

- 1 -

-

RF (IV) 10/15/73 RF (IV)

NAME
rf − RF11/RS11 fixed-head disk file

DESCRIPTION
This file refers to the concatenation of all RS-11 disks.

Each disk contains 1024 256-word blocks. The length of the combined RF file is 1024×(mi-
nor+1) blocks. That is minor device zero is taken to be 1024 blocks long; minor device one is
2048, etc.

Therf0 file accesses the disk via the system’s normal buffering mechanism and may be read and
written without regard to physical disk records. There is also a ‘‘raw’’ interface which provides
for direct transmission between the disk and the user’s read or write buffer. A single read or
write call results in exactly one I/O operation and therefore raw I/O is considerably more effi-
cient when many words are transmitted. The name of the raw RF file isrrf0. The same minor
device considerations hold for the raw interface as for the normal interface.

In raw I/O the buffer must begin on a word boundary, and counts should be a multiple of 512
bytes (a disk block). Likewiseseekcalls should specify a multiple of 512 bytes.

FILES
/dev/rf0, /dev/rrf0

BUGS
The 512-byte restrictions on the raw device are not physically necessary, but are still imposed.

- 1 -

-

RK (IV) 10/15/73 RK (IV)

NAME
rk − RK-11/RK03 (or RK05) disk

DESCRIPTION
Rk? refers to an entire RK03 disk as a single sequentially-addressed file. Its 256-word blocks
are numbered 0 to 4871.

Drive numbers (minor devices) of eight and larger are treated specially. Drive 8+x is the x+1
way interleaving of devices rk0 to rkx. Thus blocks on rk10 are distributed alternately among
rk0, rk1, and rk2.

The rk files discussed above access the disk via the system’s normal buffering mechanism and
may be read and written without regard to physical disk records. There is also a ‘‘raw’’ interface
which provides for direct transmission between the disk and the user’s read or write buffer. A
single read or write call results in exactly one I/O operation and therefore raw I/O is considerably
more efficient when many words are transmitted. The names of the raw RK files begin withrrk
and end with a number which selects the same disk as the correspondingrk file.

In raw I/O the buffer must begin on a word boundary, and counts should be a multiple of 512
bytes (a disk block). Likewiseseekcalls should specify a multiple of 512 bytes.

FILES
/dev/rk?, /dev/rrk?

BUGS
Care should be taken in using the interleaved files. First, the same drive should not be accessed
simultaneously using the ordinary name and as part of an interleaved file, because the same
physical blocks have in effect two different names; this fools the system’s buffering strategy.
Second, the combined files cannot be used for swapping or raw I/O.

- 1 -

-

RP (IV) 2/21/74 RP (IV)

NAME
rp − RP-11/RP03 moving-head disk

DESCRIPTION
The filesrp0 ... rp7refer to sections of RP disk drive 0. The filesrp8 ... rp15refer to drive 1 etc.
This is done since the size of a full RP drive is 81200 blocks and internally the system is only ca-
pable of addressing 65536 blocks. Also since the disk is so large, this allows it to be broken up
into more manageable pieces.

The origin and size of the pseudo-disks on each drive are as follows:

disk start length
0 0 40600
1 40600 40600
2 0 9200
3 72000 9200
4 0 65535
5 15600 65535
6-7 unassigned

It is unwise for all of these files to be present in one installation, since there is overlap in ad-
dresses and protection becomes a sticky matter. Here is a suggestion for two useful configura-
tions: If the root of the file system is on some other device and the RP used as a mounted device,
thenrp0 andrp1, which divide the disk into two equal size portions, is a good idea. Other things
being equal, it is advantageous to have two equal-sized portions since one can always be copied
onto the other, which is occasionally useful.

If the RP is the only disk and has to contain the root and the swap area, the root can be put on
rp2 and a mountable file system onrp5. Then the swap space can be put in the unused blocks
9200 to 15600 ofrp0 (or, equivalently,rp4). This arrangement puts the root file system, the
swap area, and the i-list of the mounted file system relatively near each other and thus tends to
minimize head movement.

The rp files access the disk via the system’s normal buffering mechanism and may be read and
written without regard to physical disk records. There is also a ‘‘raw’’ interface which provides
for direct transmission between the disk and the user’s read or write buffer. A single read or
write call results in exactly one I/O operation and therefore raw I/O is considerably more effi-
cient when many words are transmitted. The names of the raw RP files begin withrrp and end
with a number which selects the same disk section as the correspondingrp file.

In raw I/O the buffer must begin on a word boundary, and counts should be a multiple of 512
bytes (a disk block). Likewiseseekcalls should specify a multiple of 512 bytes.

FILES
/dev/rp?, /dev/rrp?

BUGS

- 1 -

-

TC (IV) 10/15/73 TC (IV)

NAME
tc − TC-11/TU56 DECtape

DESCRIPTION
The filestap0 ... tap7refer to the TC-11/TU56 DECtape drives 0 to 7.

The 256-word blocks on a standard DECtape are numbered 0 to 577.

FILES
/dev/tap?

SEE ALSO
tp (I)

BUGS

- 1 -

-

TM (IV) 2/21/74 TM (IV)

NAME
tm − TM-11/TU-10 magtape interface

DESCRIPTION
The filesmt0, ..., mt7refer to the DEC TU10/TM11 magtape. When opened for reading or writ-
ing, the tape is rewound. When closed, it is rewound; if it was open for writing, an end-of-file is
written first.

A standard tape consists of a series of 512 byte records terminated by an end-of-file. To the ex-
tent possible, the system makes it possible, if inefficient, to treat the tape like any other file.
Seeks have their usual meaning and it is possible to read or write a byte at a time. Writing in
very small units is inadvisable, however, because it tends to create monstrous record gaps.

Themt files discussed above are useful when it is desired to access the tape in a way compatible
with ordinary files. When foreign tapes are to be dealt with, and especially when long records
are to be read or written, the ‘‘raw’’ interface is appropriate. The associated files are named
rmt0, ..., rmt7. Eachreador write call reads or writes the next record on the tape. In the write
case the record has the same length as the buffer given. During a read, the record size is passed
back as the number of bytes read, provided it is no greater than the buffer size; if the record is
long, an error is indicated. In raw tape I/O, the buffer must begin on a word boundary and the
count must be even. Seeks are ignored. An error is returned when a tape mark is read, but an-
other read will fetch the first record of the new tape file.

FILES
/dev/mt?, /dev/rmt?

SEE ALSO
tp (I)

BUGS
If any non-data error is encountered, it refuses to do anything more until closed. In raw I/O,
there should be a way to perform forward and backward record and file spacing and to write an
EOF mark.

- 1 -

-

TTY (IV) 5/27/74 TTY (IV)

NAME
tty − general typewriter interface

DESCRIPTION
This section describes both a particular special file, and the general nature of the typewriter inter-
face.

The file /dev/tty is, in each process, a synonym for the control typewriter associated with that
process. It is useful for programs or Shell sequences which wish to be sure of writing messages
on the typewriter no matter how output has been redirected. It can also be used for programs
which demand a file name for output, when typed output is desired and it is tiresome to find out
which typewriter is currently in use.

As for typewriters in general: all of the low-speed asynchronous communications ports use the
same general interface, no matter what hardware is involved. The remainder of this section dis-
cusses the common features of the interface; the KL, DC, and DH writeups (IV) describe pecu-
liarities of the individual devices.

When a typewriter file is opened, it causes the process to wait until a connection is established.
In practice user’s programs seldom open these files; they are opened byinit and become a user’s
input and output file. The very first typewriter file open in a process becomes thecontrol type-
writer for that process. The control typewriter plays a special role in handling quit or interrupt
signals, as discussed below. The control typewriter is inherited by a child process during afork.

A terminal associated with one of these files ordinarily operates in full-duplex mode. Characters
may be typed at any time, even while output is occurring, and are only lost when the system’s
character input buffers become completely choked, which is rare, or when the user has accumu-
lated the maximum allowed number of input characters which have not yet been read by some
program. Currently this limit is 256 characters. When the input limit is reached all the saved
characters are thrown away without notice.

These special files have a number of modes which can be changed by use of thesttysystem call
(II). When first opened, the interface mode is 300 baud; either parity accepted; 10 bits/character
(one stop bit); and newline action character. Modes that can be changed bystty include the inter-
face speed (if the hardware permits); acceptance of even parity, odd parity, or both; a raw mode
in which all characters may be read one at a time; a carriage return (CR) mode in which CR is
mapped into newline on input and either CR or line feed (LF) cause echoing of the sequence
LF-CR; mapping of upper case letters into lower case; suppression of echoing; a variety of de-
lays after function characters; and the printing of tabs as spaces. Seegetty(VIII) for the way that
terminal speed and type are detected.

Normally, typewriter input is processed in units of lines. This means that a program attempting
to read will be suspended until an entire line has been typed. Also, no matter how many charac-
ters are requested in the read call, at most one line will be returned. It is not however necessary
to read a whole line at once; any number of characters may be requested in a read, even one,
without losing information.

During input, erase and kill processing is normally done. By default, the character ‘#’ erases the
last character typed, except that it will not erase beyond the beginning of a line or an EOT. By
default, the character ‘@’ kills the entire line up to the point where it was typed, but not beyond
an EOT. Both these characters operate on a keystroke basis independently of any backspacing or
tabbing that may have been done. Either ‘@’ or ‘#’ may be entered literally by preceding it by
‘\’; the erase or kill character remains, but the ‘\’ disappears. These two characters may be
changed to others.

When desired, all upper-case letters are mapped into the corresponding lower-case letter. The
upper-case letter may be generated by preceding it by ‘\’. In addition, the following escape se-
quences are generated on output and accepted on input:

for use
` \´
 \!

- 1 -

-

TTY (IV) 5/27/74 TTY (IV)

˜ \ˆ
{ \(
} \)

In raw mode, the program reading is awakened on each character. No erase or kill processing is
done; and the EOT, quit and interrupt characters are not treated specially. The input parity bit is
passed back to the reader, but parity is still generated for output characters.

The ASCII EOT (control-D) character may be used to generate an end of file from a typewriter.
When an EOT is received, all the characters waiting to be read are immediately passed to the
program, without waiting for a new-line, and the EOT is discarded. Thus if there are no charac-
ters waiting, which is to say the EOT occurred at the beginning of a line, zero characters will be
passed back, and this is the standard end-of-file indication. The EOT is passed back unchanged
in raw mode.

When the carrier signal from the dataset drops (usually because the user has hung up his termi-
nal) a hangupsignal is sent to all processes with the typewriter as control typewriter. Unless
other arrangements have been made, this signal causes the processes to terminate. If the hangup
signal is ignored, any read returns with an end-of-file indication. Thus programs which read a
typewriter and test for end-of-file on their input can terminate appropriately when hung up on.

Two characters have a special meaning when typed. The ASCII DEL character (sometimes
called ‘rubout’) is not passed to a program but generates aninterrupt signal which is sent to all
processes with the associated control typewriter. Normally each such process is forced to termi-
nate, but arrangements may be made either to ignore the signal or to receive a trap to an agreed-
upon location. Seesignal(II).

The ASCII character FS generates thequit signal. Its treatment is identical to the interrupt signal
except that unless a receiving process has made other arrangements it will not only be terminated
but a core image file will be generated. If you find it hard to type this character, try control-\ or
control-shift-L.

When one or more characters are written, they are actually transmitted to the terminal as soon as
previously-written characters have finished typing. Input characters are echoed by putting them
in the output queue as they arrive. When a process produces characters more rapidly than they
can be typed, it will be suspended when its output queue exceeds some limit. When the queue
has drained down to some threshold the program is resumed. Even parity is always generated on
output. The EOT character is not transmitted (except in raw mode) to prevent terminals which
respond to it from hanging up.

FILES
/dev/tty

SEE ALSO
dc (IV), kl (IV), dh (IV), getty (VIII), stty (I, II), gtty (I, II), signal (II)

BUGS
Half-duplex terminals are not supported. On raw-mode output, parity should be transmitted as
specified in the characters written.

- 2 -

