
-

CR (VII) 1/4/75 CR (VII)

NAME
crfork, crexit, crread, crwrite, crexch, crprior − coroutine scheme

SYNOPSIS
int crfork([stack, nwords])
int stack[];
int nwords;

crexit()

int crread(connector, buffer, nbytes)
int *connector[2];
char *buffer;
int nbytes;

crwrite(connector, buffer, nbytes)
int *connector[2];
char *buffer;
int nbytes;

crexch(conn1, conn2, i)
int *conn1[2], *conn2[2];
int i;

#define logical char *
crprior(p)
logical p;

DESCRIPTION
These functions are named by analogy tofork, exit, read, write (II). They establish and synchro-
nize ‘coroutines’, which behave in many respects like a set of processes working in the same ad-
dress space. The functions live in/usr/lib/cr.a.

Coroutines are placed on queues to indicate their state of readiness. One coroutine is always dis-
tinguished as ‘running’. Coroutines that are runnable but not running are registered on a ‘ready
queue’. The head member of the ready queue is started whenever no other coroutine is specifi-
cally caused to be running.

Each connector heads two queues:Connector[0] is the queue of unsatisfiedcrreads outstanding
on the connector.Connector[1] is the queue ofcrwrites. All queues must start empty,i.e. with
heads set to zero.

Crfork is normally called with no arguments. It places the running coroutine at the head of the
ready queue, creates a new coroutine, and starts the new one running.Crfork returns immedi-
ately in the new coroutine with value 0, and upon restarting of the old coroutine with value 1.

Crexit stops the running coroutine and does not place it in any queue.

Crread copies characters from thebuffer of the crwrite at the head of theconnector’s write
queue to thebuffer of crread. If the write queue is empty, copying is delayed and the running
coroutine is placed on the read queue. The number of characters copied is the minimum of
nbytes and the number of characters remaining in the writebuffer, and is returned as the value of
crread. After copying, the location of the writebuffer and the correspondingnbytes are updated
appropriately. If zero characters remain, the coroutine of thecrwrite is moved to the head of the
ready queue. If the write queue remains nonempty, the head member of the read queue is moved
to the head of the ready queue.

Crwrite queues the running coroutine on theconnector’s write queue, and records the fact that
nbytes (zero or more) characters in the stringbuffer are available tocrreads. If the read queue is
not empty, its head member is started running.

Crexch exchanges the read queues of connectorsconn1 andconn2 if i=0; and it exchanges the
write queues ifi=1. If a nonempty read queue that had been paired with an empty write queue
becomes paired with a nonempty write queue,crexch moves the head member of that read queue

- 1 -

-

CR (VII) 1/4/75 CR (VII)

to the head of the ready queue.

Crprior sets a priority on the running coroutine to control the queuing ofcrreads andcrwrites.
When queued, the running coroutine will take its place before coroutines whose priorities exceed
its own priority and after others. Priorities are compared as logical,i.e. unsigned, quantities.
Initially each coroutine’s priority is set as large as possible, so default queuing is FIFO.

Storage allocation. The old and new coroutine share the same activation record in the function
that invokedcrfork, so only one may return from the invoking function, and then only when the
other has completed execution in that function.

The activation record for each function execution is dynamically allocated rather than stacked; a
factor of 3 in running time overhead can result if function calls are very frequent. The overhead
may be overcome by providing a separate stack for each coroutine and dispensing with dynamic
allocation. The base (lowest) address and size of the new coroutine’s stack are supplied tocrfork
as optional argumentsstack andnwords. Stacked allocation and dynamic allocation cannot be
mixed in one run. For stacked operation, obtain the coroutine functions from/usr/lib/scr.a in-
stead of/usr/lib/cr.a.

FILES
/usr/lib/cr.a
/usr/lib/scr.a

DIAGNOSTICS
‘rsave doesn’t work’− an old C compilation has called ‘rsave’. It must be recompiled to work
with the coroutine scheme.

BUGS
Under /usr/lib/cr.a each function has just 12 words of anonymous stack for hard expressions and
arguments of further calls, regardless of actual need. There is no checking for stack overflow.
Under /usr/lib/scr.a stack overflow checking is not rigorous.

- 2 -

