
-

CRASH (VIII) 2/12/75 CRASH (VIII)

NAME
crash − what to do when the system crashes

DESCRIPTION
This section gives at least a few clues about how to proceed if the system crashes. It can’t pre-
tend to be complete.

How to bring it back up. If the reason for the crash is not evident (see below for guidance on
‘evident’) you may want to try to dump the system if you feel up to debugging. At the moment a
dump can be taken only on magtape. With a tape mounted and ready, stop the machine, load ad-
dress 44, and start. This should write a copy of all of core on the tape with an EOF mark. Cau-
tion: Any error is taken to mean the end of core has been reached. This means that you must be
sure the ring is in, the tape is ready, and the tape is clean and new. If the dump fails, you can try
again, but some of the registers will be lost. See below for what to do with the tape.

In restarting after a crash, always bring up the system single-user. This is accomplished by fol-
lowing the directions inboot procedures(VIII) as modified for your particular installation; a
single-user system is indicated by having a particular value in the switches (173030 unless
you’ve changedinit) as the system starts executing. When it is running, perform adcheckand
icheck(VIII) on all file systems which could have been in use at the time of the crash. If any se-
rious file system problems are found, they should be repaired. When you are satisfied with the
health of your disks, check and set the date if necessary, then come up multi-user. This is most
easily accomplished by changing the single-user value in the switches to something else, then
logging out by typing an EOT.

To even bootUNIX at all, three files (and the directories leading to them) must be intact. First,
the initialization program/etc/init must be present and executable. If it is not, the CPU will loop
in user mode at location 6. Forinit to work correctly,/dev/tty8and /bin/shmust be present. If
either does not exist, the symptom is best described as thrashing.Init will go into a fork/exec
loop trying to create a Shell with proper standard input and output.

If you cannot get the system to boot, a runnable system must be obtained from a backup medi-
um. The root file system may then be doctored as a mounted file system as described below. If
there are any problems with the root file system, it is probably prudent to go to a backup system
to avoid working on a mounted file system.

Repairing disks. The first rule to keep in mind is that an addled disk should be treated gently; it
shouldn’t be mounted unless necessary, and if it is very valuable yet in quite bad shape, perhaps
it should be dumped before trying surgery on it. This is an area where experience and informed
courage count for much.

The problems reported byichecktypically fall into two kinds. There can be problems with the
free list: duplicates in the free list, or free blocks also in files. These can be cured easily with an
icheck−s. If the same block appears in more than one file or if a file contains bad blocks, the
files should be deleted, and the free list reconstructed. The best way to delete such a file is to use
clri (VIII), then remove its directory entries. If any of the affected files is really precious, you
can try to copy it to another device first.

Dcheckmay report files which have more directory entries than links. Such situations are poten-
tially dangerous;clri discusses a special case of the problem. All the directory entries for the file
should be removed. If on the other hand there are more links than directory entries, there is no
danger of spreading infection, but merely some disk space that is lost for use. It is sufficient to
copy the file (if it has any entries and is useful) then useclri on its inode and remove any direc-
tory entries that do exist.

Finally, there may be inodes reported bydcheckthat have 0 links and 0 entries. These occur on
the root device when the system is stopped with pipes open, and on other file systems when the
system stops with files that have been deleted while still open. Aclri will free the inode, and an
icheck -swill recover any missing blocks.

- 1 -

-

CRASH (VIII) 2/12/75 CRASH (VIII)

Why did it crash? UNIX types a message on the console typewriter when it voluntarily crashes.
Here is the current list of such messages, with enough information to provide a hope at least of
the remedy. The message has the form ‘panic: ...’, possibly accompanied by other information.
Left unstated in all cases is the possibility that hardware or software error produced the message
in some unexpected way.

blkdev
The getblk routine was called with a nonexistent major device as argument. Definitely
hardware or software error.

devtab
Null device table entry for the major device used as argument togetblk. Definitely hard-
ware or software error.

iinit
An I/O error reading the super-block for the root file system during initialization.

out of inodes
A mounted file system has no more i-nodes when creating a file. Sorry, the device isn’t
available; theicheckshould tell you.

no fs
A device has disappeared from the mounted-device table. Definitely hardware or software
error.

no imt
Like ‘no fs’, but produced elsewhere.

no inodes
The in-core inode table is full. Try increasing NINODE in param.h. Shouldn’t be a panic,
just a user error.

no clock
During initialization, neither the line nor programmable clock was found to exist.

swap error
An unrecoverable I/O error during a swap. Really shouldn’t be a panic, but it is hard to
fix.

unlink � iget
The directory containing a file being deleted can’t be found. Hardware or software.

out of swap space
A program needs to be swapped out, and there is no more swap space. It has to be in-
creased. This really shouldn’t be a panic, but there is no easy fix.

out of text
A pure procedure program is being executed, and the table for such things is full. This
shouldn’t be a panic.

trap
An unexpected trap has occurred within the system. This is accompanied by three num-
bers: a ‘ka6’, which is the contents of the segmentation register for the area in which the
system’s stack is kept; ‘aps’, which is the location where the hardware stored the program
status word during the trap; and a ‘trap type’ which encodes which trap occurred. The trap
types are:

0 bus error
1 illegal instruction
2 BPT/trace
3 IOT
4 power fail
5 EMT
6 recursive system call (TRAP instruction)
7 11/70 cache parity, or programmed interrupt

- 2 -

-

CRASH (VIII) 2/12/75 CRASH (VIII)

10 floating point trap
11 segmentation violation

In some of these cases it is possible for octal 20 to be added into the trap type; this indicates that
the processor was in user mode when the trap occurred. If you wish to examine the stack after
such a trap, either dump the system, or use the console switches to examine core; the required
address mapping is described below.

Interpreting dumps. All file system problems should be taken care of before attempting to look
at dumps. The dump should be read into the file/usr/sys/core; cp(I) will do. At this point, you
should executeps−alxk andwho to print the process table and the users who were on at the time
of the crash. You should dump (od (I)) the first 30 bytes of/usr/sys/core.Starting at location 4,
the registers R0, R1, R2, R3, R4, R5, SP and KDSA6 (KISA6 for 11/40s) are stored. If the
dump had to be restarted, R0 will not be correct. Next, take the value of KA6 (location 22(8) in
the dump) multiplied by 100(8) and dump 1000(8) bytes starting from there. This is the per-
process data associated with the process running at the time of the crash. Relabel the addresses
140000 to 141776. R5 is C’s frame or display pointer. Stored at (R5) is the old R5 pointing to
the previous stack frame. At (R5)+2 is the saved PC of the calling procedure. Trace this calling
chain until you obtain an R5 value of 141756, which is where the user’s R5 is stored. If the
chain is broken, you have to look for a plausible R5, PC pair and continue from there. Each PC
should be looked up in the system’s name list usingdb (I) and its ‘:’ command, to get a reverse
calling order. In most cases this procedure will give an idea of what is wrong. A more complete
discussion of system debugging is impossible here.

SEE ALSO
clri, icheck, dcheck, boot procedures (VIII)

BUGS

- 3 -

