
A System for Typesetting Mathematics

Brian W. Kernighan and Lorinda L. Cherry

Bell Laboratories

Murray Hill, New Jersey 07974

ABSTRACT

This paper describes the design and implementation of a system for typesetting mathemat-

ics. The language has been designed to be easy to learn and to use by people (for example,

secretaries and mathematical typists) who know neither mathematics nor typesetting. Experience

indicates that the language can be learned in an hour or so, for it has few rules and fewer excep-

tions. For typical expressions, the size and font changes, positioning, line drawing, and the like

necessary to print according to mathematical conventions are all done automatically. For exam-

ple, the input

sum from i=0 to infinity x sub i = pi over 2

produces

i =0
Σ
∞

xi =
2

π_ _

The syntax of the language is specified by a small context-free grammar; a compiler-

compiler is used to make a compiler that translates this language into typesetting commands.

Output may be produced on either a phototypesetter or on a terminal with forward and reverse

half-line motions. The system interfaces directly with text formatting programs, so mixtures of

text and mathematics may be handled simply.

This paper is a revision of a paper originally published in CACM, March, 1975.

1. Introduction

‘‘Mathematics is known in the trade as

difficult, or penalty, copy because it is slower, more

difficult, and more expensive to set in type than any

other kind of copy normally occurring in books and

journals.’’ [1]

One difficulty with mathematical text is the

multiplicity of characters, sizes, and fonts. An

expression such as

x →π⁄2
lim (tan x)sin 2x = 1

requires an intimate mixture of roman, italic and

greek letters, in three sizes, and a special character or

two. (‘‘Requires’’ is perhaps the wrong word, but

mathematics has its own typographical conventions

which are quite different from those of ordinary text.)

Typesetting such an expression by traditional methods

is still an essentially manual operation.

A second difficulty is the two dimensional

character of mathematics, which the superscript and

limits in the preceding example showed in its simplest

form. This is carried further by

a 0+
a 1+

a 2+
a 3+ . . .

b 3_ _______

b 2_ ___________

b 1_ _______________

and still further by

∫
ae mx −be −mx

dx_ __________ =









 m √ab

−1_ _____ coth−1(
√b

√a_ ___emx)

m √ab

1_ _____ tanh−1(
√b

√a_ ___emx)

2m √ab

1_ ______ log
√a e

mx +√b

√a e
mx −√b_ _________

These examples also show line-drawing, built-up

characters like braces and radicals, and a spectrum of

positioning problems. (Section 6 shows what a user

has to type to produce these on our system.)

- 2 -

2. Photocomposition

Photocomposition techniques can be used to

solve some of the problems of typesetting mathemat-

ics. A phototypesetter is a device which exposes a

piece of photographic paper or film, placing charac-

ters wherever they are wanted. The Graphic Systems

phototypesetter[2] on the UNIX operating system[3]

works by shining light through a character stencil.

The character is made the right size by lenses, and

the light beam directed by fiber optics to the desired

place on a piece of photographic paper. The exposed

paper is developed and typically used in some form

of photo-offset reproduction.

On UNIX, the phototypesetter is driven by a

formatting program called TROFF [4]. TROFF was

designed for setting running text. It also provides all

of the facilities that one needs for doing mathematics,

such as arbitrary horizontal and vertical motions,

line-drawing, size changing, but the syntax for

describing these special operations is difficult to learn,

and difficult even for experienced users to type

correctly.

For this reason we decided to use TROFF as an

‘‘assembly language,’’ by designing a language for

describing mathematical expressions, and compiling it

into TROFF.

3. Language Design

The fundamental principle upon which we

based our language design is that the language should

be easy to use by people (for example, secretaries)

who know neither mathematics nor typesetting.

This principle implies several things. First,

‘‘normal’’ mathematical conventions about operator

precedence, parentheses, and the like cannot be used,

for to give special meaning to such characters means

that the user has to understand what he or she is typ-

ing. Thus the language should not assume, for

instance, that parentheses are always balanced, for

they are not in the half-open interval (a ,b]. Nor

should it assume that that √a +b can be replaced by

(a +b)
1⁄2, or that 1⁄(1−x) is better written as

1−x

1_ ___ (or

vice versa).

Second, there should be relatively few rules,

keywords, special symbols and operators, and the

like. This keeps the language easy to learn and

remember. Furthermore, there should be few excep-

tions to the rules that do exist: if something works in

one situation, it should work everywhere. If a vari-

able can have a subscript, then a subscript can have a

subscript, and so on without limit.

Third, ‘‘standard’’ things should happen

automatically. Someone who types ‘‘x=y+z+1’’

should get ‘‘x =y +z +1’’. Subscripts and superscripts

should automatically be printed in an appropriately

smaller size, with no special intervention. Fraction

bars have to be made the right length and positioned

at the right height. And so on. Indeed a mechanism

for overriding default actions has to exist, but its

application is the exception, not the rule.

We assume that the typist has a reasonable pic-

ture (a two-dimensional representation) of the desired

final form, as might be handwritten by the author of a

paper. We also assume that the input is typed on a

computer terminal much like an ordinary typewriter.

This implies an input alphabet of perhaps 100 charac-

ters, none of them special.

A secondary, but still important, goal in our

design was that the system should be easy to imple-

ment, since neither of the authors had any desire to

make a long-term project of it. Since our design was

not firm, it was also necessary that the program be

easy to change at any time.

To make the program easy to build and to

change, and to guarantee regularity (‘‘it should work

everywhere’’), the language is defined by a context-

free grammar, described in Section 5. The compiler

for the language was built using a compiler-compiler.

A priori, the grammar/compiler-compiler

approach seemed the right thing to do. Our subse-

quent experience leads us to believe that any other

course would have been folly. The original language

was designed in a few days. Construction of a work-

ing system sufficient to try significant examples

required perhaps a person-month. Since then, we

have spent a modest amount of additional time over

several years tuning, adding facilities, and occasion-

ally changing the language as users make criticisms

and suggestions.

We also decided quite early that we would let

TROFF do our work for us whenever possible.

TROFF is quite a powerful program, with a macro

facility, text and arithmetic variables, numerical com-

putation and testing, and conditional branching. Thus

we have been able to avoid writing a lot of mundane

but tricky software. For example, we store no text

strings, but simply pass them on to TROFF. Thus we

avoid having to write a storage management package.

Furthermore, we have been able to isolate ourselves

from most details of the particular device and charac-

ter set currently in use. For example, we let TROFF

compute the widths of all strings of characters; we

need know nothing about them.

A third design goal is special to our environ-

ment. Since our program is only useful for typeset-

ting mathematics, it is necessary that it interface

cleanly with the underlying typesetting language for

the benefit of users who want to set intermingled

mathematics and text (the usual case). The standard

mode of operation is that when a document is typed,

mathematical expressions are input as part of the text,

but marked by user settable delimiters. The program

reads this input and treats as comments those things

- 3 -

which are not mathematics, simply passing them

through untouched. At the same time it converts the

mathematical input into the necessary TROFF com-

mands. The resulting ioutput is passed directly to

TROFF where the comments and the mathematical

parts both become text and/or TROFF commands.

4. The Language

We will not try to describe the language pre-

cisely here; interested readers may refer to the appen-

dix for more details. Throughout this section, we will

write expressions exactly as they are handed to the

typesetting program (hereinafter called ‘‘EQN’’),

except that we won’t show the delimiters that the user

types to mark the beginning and end of the expres-

sion. The interface between EQN and TROFF is

described at the end of this section.

As we said, typing x=y+z+1 should produce

x =y +z +1, and indeed it does. Variables are made

italic, operators and digits become roman, and normal

spacings between letters and operators are altered

slightly to give a more pleasing appearance.

Input is free-form. Spaces and new lines in

the input are used by EQN to separate pieces of the

input; they are not used to create space in the output.

Thus

x = y

+ z + 1

also gives x =y +z +1. Free-form input is easier to

type initially; subsequent editing is also easier, for an

expression may be typed as many short lines.

Extra white space can be forced into the output

by several characters of various sizes. A tilde ‘‘ ˜ ’’

gives a space equal to the normal word spacing in

text; a circumflex gives half this much, and a tab

charcter spaces to the next tab stop.

Spaces (or tildes, etc.) also serve to delimit

pieces of the input. For example, to get

f (t)=2π∫ sin(ωt)dt

we write

f(t) = 2 pi int sin (omega t)dt

Here spaces are necessary in the input to indicate that

sin, pi, int, and omega are special, and potentially

worth special treatment. EQN looks up each such

string of characters in a table, and if appropriate gives

it a translation. In this case, pi and omega become

their greek equivalents, int becomes the integral sign

(which must be moved down and enlarged so it looks

‘‘right’’), and sin is made roman, following conven-

tional mathematical practice. Parentheses, digits and

operators are automatically made roman wherever

found.

Fractions are specified with the keyword over:

a+b over c+d+e = 1

produces

c +d +e

a +b_ ______=1

Similarly, subscripts and superscripts are intro-

duced by the keywords sub and sup:

x 2+y 2=z 2

is produced by

x sup 2 + y sup 2 = z sup 2

The spaces after the 2’s are necessary to mark the end

of the superscripts; similarly the keyword sup has to

be marked off by spaces or some equivalent delimiter.

The return to the proper baseline is automatic. Multi-

ple levels of subscripts or superscripts are of course

allowed: ‘‘x sup y sup z’’ is x y z

. The construct

‘‘something sub something sup something’’ is recog-

nized as a special case, so ‘‘x sub i sup 2’’ is xi
2

instead of xi
2.

More complicated expressions can now be

formed with these primitives:

∂x 2

∂2f_ ___=
a 2

x 2
_ __+

b 2

y 2
_ __

is produced by

{partial sup 2 f} over {partial x sup 2} =

x sup 2 over a sup 2 + y sup 2 over b sup 2

Braces {} are used to group objects together; in this

case they indicate unambiguously what goes over

what on the left-hand side of the expression. The

language defines the precedence of sup to be higher

than that of over, so no braces are needed to get the

correct association on the right side. Braces can

always be used when in doubt about precedence.

The braces convention is an example of the

power of using a recursive grammar to define the

language. It is part of the language that if a construct

can appear in some context, then any expression in

braces can also occur in that context.

There is a sqrt operator for making square

roots of the appropriate size: ‘‘sqrt a+b’’ produces
√a +b , and

x = {−b +− sqrt{b sup 2 −4ac}} over 2a

is

x =
2a

−b ±√b2−4ac_ ___________

Since large radicals look poor on our typesetter, sqrt

is not useful for tall expressions.

Limits on summations, integrals and similar

constructions are specified with the keywords from

and to. To get

i =0
Σ
∞

xi →0

- 4 -

we need only type

sum from i=0 to inf x sub i −> 0

Centering and making the Σ big enough and the limits

smaller are all automatic. The from and to parts are

both optional, and the central part (e.g., the Σ) can in

fact be anything:

lim from {x −> pi /2} (tan˜x) = inf

is

x →π⁄2
lim (tan x)=∞

Again, the braces indicate just what goes into the

from part.

There is a facility for making braces, brackets,

parentheses, and vertical bars of the right height,

using the keywords left and right:

left [x+y over 2a right]˜=˜1

makes



 2a

x +y_ ___




= 1

A left need not have a corresponding right, as we

shall see in the next example. Any characters may

follow left and right, but generally only various

parentheses and bars are meaningful.

Big brackets, etc., are often used with another

facility, called piles, which make vertical piles of

objects. For example, to get

sign (x) ≡





−1

0

1

if

if

if

x <0

x =0

x >0

we can type

sign (x) ˜==˜ left {
rpile {1 above 0 above −1}
˜˜lpile {if above if above if}
˜˜lpile {x>0 above x=0 above x<0}

The construction ‘‘left {’’ makes a left brace big

enough to enclose the ‘‘rpile {...}’’, which is a right-

justified pile of ‘‘above ... above ...’’. ‘‘lpile’’ makes

a left-justified pile. There are also centered piles.

Because of the recursive language definition, a pile

can contain any number of elements; any element of a

pile can of course contain piles.

Although EQN makes a valiant attempt to use

the right sizes and fonts, there are times when the

default assumptions are simply not what is wanted.

For instance the italic sign in the previous example

would conventionally be in roman. Slides and tran-

sparencies often require larger characters than normal

text. Thus we also provide size and font changing

commands: ‘‘size 12 bold {A˜x˜=˜y}’’ will produce

A x = y. Size is followed by a number represent-

ing a character size in points. (One point is 1/72

inch; this paper is set in 9 point type.)

If necessary, an input string can be quoted in

"...", which turns off grammatical significance, and

any font or spacing changes that might otherwise be

done on it. Thus we can say

lim˜ roman "sup" ˜x sub n = 0

to ensure that the supremum doesn’t become a super-

script:

lim sup xn =0

Diacritical marks, long a problem in traditional

typesetting, are straightforward:

x
.
_ +x̂ +ỹ +X̂ +Y

..
=z +Z 

is made by typing

x dot under + x hat + y tilde

+ X hat + Y dotdot = z+Z bar

There are also facilities for globally changing

default sizes and fonts, for example for making view-

graphs or for setting chemical equations. The

language allows for matrices, and for lining up equa-

tions at the same horizontal position.

Finally, there is a definition facility, so a user

can say

define name "..."

at any time in the document; henceforth, any

occurrence of the token ‘‘name’’ in an expression will

be expanded into whatever was inside the double

quotes in its definition. This lets users tailor the

language to their own specifications, for it is quite

possible to redefine keywords like sup or over. Sec-

tion 6 shows an example of definitions.

The EQN preprocessor reads intermixed text

and equations, and passes its output to TROFF. Since

TROFF uses lines beginning with a period as control

words (e.g., ‘‘.ce’’ means ‘‘center the next output

line’’), EQN uses the sequence ‘‘.EQ’’ to mark the

beginning of an equation and ‘‘.EN’’ to mark the end.

The ‘‘.EQ’’ and ‘‘.EN’’ are passed through to TROFF

untouched, so they can also be used by a knowledge-

able user to center equations, number them automati-

cally, etc. By default, however, ‘‘.EQ’’ and ‘‘.EN’’

are simply ignored by TROFF, so by default equations

are printed in-line.

‘‘.EQ’’ and ‘‘.EN’’ can be supplemented by

TROFF commands as desired; for example, a centered

display equation can be produced with the input:

.ce

.EQ

x sub i = y sub i ...

.EN

Since it is tedious to type ‘‘.EQ’’ and ‘‘.EN’’

around very short expressions (single letters, for

- 5 -

instance), the user can also define two characters to

serve as the left and right delimiters of expressions.

These characters are recognized anywhere in subse-

quent text. For example if the left and right delim-

iters have both been set to ‘‘#’’, the input:

Let #x sub i#, #y# and #alpha# be positive

produces:

Let xi , y and α be positive

Running a preprocessor is strikingly easy on

UNIX. To typeset text stored in file ‘‘f ’’, one issues

the command:

eqn f  troff

The vertical bar connects the output of one process

(EQN) to the input of another (TROFF).

5. Language Theory

The basic structure of the language is not a

particularly original one. Equations are pictured as a

set of ‘‘boxes,’’ pieced together in various ways. For

example, something with a subscript is just a box fol-

lowed by another box moved downward and shrunk

by an appropriate amount. A fraction is just a box

centered above another box, at the right altitude, with

a line of correct length drawn between them.

The grammar for the language is shown below.

For purposes of exposition, we have collapsed some

productions. In the original grammar, there are about

70 productions, but many of these are simple ones

used only to guarantee that some keyword is recog-

nized early enough in the parsing process. Symbols

in capital letters are terminal symbols; lower case

symbols are non-terminals, i.e., syntactic categories.

The vertical bar  indicates an alternative; the brack-

ets [] indicate optional material. A TEXT is a string

of non-blank characters or any string inside double

quotes; the other terminal symbols represent literal

occurrences of the corresponding keyword.

eqn : box  eqn box

box : text

 { eqn }
 box OVER box

 SQRT box

 box SUB box  box SUP box

 [L  C  R]PILE { list }
 LEFT text eqn [RIGHT text]

 box [FROM box] [TO box]

 SIZE text box

 [ROMAN  BOLD  ITALIC] box

 box [HAT  BAR  DOT  DOTDOT  TILDE]

 DEFINE text text

list : eqn  list ABOVE eqn

text : TEXT

The grammar makes it obvious why there are

few exceptions. For example, the observation that

something can be replaced by a more complicated

something in braces is implicit in the productions:

eqn : box  eqn box

box : text  { eqn }

Anywhere a single character could be used, any legal

construction can be used.

Clearly, our grammar is highly ambiguous.

What, for instance, do we do with the input

a over b over c ?

Is it

{a over b} over c

or is it

a over {b over c} ?

To answer questions like this, the grammar is

supplemented with a small set of rules that describe

the precedence and associativity of operators. In par-

ticular, we specify (more or less arbitrarily) that over

associates to the left, so the first alternative above is

the one chosen. On the other hand, sub and sup bind

to the right, because this is closer to standard

mathematical practice. That is, we assume x ab

is

x (a b), not (x a)b .

The precedence rules resolve the ambiguity in

a construction like

a sup 2 over b

We define sup to have a higher precedence than over,

so this construction is parsed as
b

a 2
_ __ instead of a b

2_ _

.

Naturally, a user can always force a particular

parsing by placing braces around expressions.

The ambiguous grammar approach seems to be

quite useful. The grammar we use is small enough to

be easily understood, for it contains none of the pro-

ductions that would be normally used for resolving

ambiguity. Instead the supplemental information

about precedence and associativity (also small enough

to be understood) provides the compiler-compiler with

the information it needs to make a fast, deterministic

parser for the specific language we want. When the

language is supplemented by the disambiguating

rules, it is in fact LR(1) and thus easy to parse[5].

The output code is generated as the input is

scanned. Any time a production of the grammar is

recognized, (potentially) some TROFF commands are

output. For example, when the lexical analyzer

reports that it has found a TEXT (i.e., a string of con-

tiguous characters), we have recognized the produc-

tion:

text : TEXT

- 6 -

The translation of this is simple. We generate a local

name for the string, then hand the name and the

string to TROFF, and let TROFF perform the storage

management. All we save is the name of the string,

its height, and its baseline.

As another example, the translation associated

with the production

box : box OVER box

is:

Width of output box =

slightly more than largest input width

Height of output box =

slightly more than sum of input heights

Base of output box =

slightly more than height of bottom input box

String describing output box =

move down;

move right enough to center bottom box;

draw bottom box (i.e., copy string for bottom box);

move up; move left enough to center top box;

draw top box (i.e., copy string for top box);

move down and left; draw line full width;

return to proper base line.

Most of the other productions have equally simple

semantic actions. Picturing the output as a set of

properly placed boxes makes the right sequence of

positioning commands quite obvious. The main

difficulty is in finding the right numbers to use for

esthetically pleasing positioning.

With a grammar, it is usually clear how to

extend the language. For instance, one of our users

suggested a TENSOR operator, to make constructions

like

m
l

n
T
k

i

j

Grammatically, this is easy: it is sufficient to add a

production like

box : TENSOR { list }

Semantically, we need only juggle the boxes to the

right places.

6. Experience

There are really three aspects of interest—how

well EQN sets mathematics, how well it satisfies its

goal of being ‘‘easy to use,’’ and how easy it was to

build.

The first question is easily addressed. This

entire paper has been set by the program. Readers

can judge for themselves whether it is good enough

for their purposes. One of our users commented that

although the output is not as good as the best hand-

set material, it is still better than average, and much

better than the worst. In any case, who cares?

Printed books cannot compete with the birds and

flowers of illuminated manuscripts on esthetic

grounds, either, but they have some clear economic

advantages.

Some of the deficiencies in the output could be

cleaned up with more work on our part. For exam-

ple, we sometimes leave too much space between a

roman letter and an italic one. If we were willing to

keep track of the fonts involved, we could do this

better more of the time.

Some other weaknesses are inherent in our out-

put device. It is hard, for instance, to draw a line of

an arbitrary length without getting a perceptible over-

strike at one end.

As to ease of use, at the time of writing, the

system has been used by two distinct groups. One

user population consists of mathematicians, chemists,

physicists, and computer scientists. Their typical

reaction has been something like:

(1) It’s easy to write, although I make the follow-

ing mistakes...

(2) How do I do...?

(3) It botches the following things.... Why don’t

you fix them?

(4) You really need the following features...

The learning time is short. A few minutes

gives the general flavor, and typing a page or two of

a paper generally uncovers most of the misconcep-

tions about how it works.

The second user group is much larger, the

secretaries and mathematical typists who were the ori-

ginal target of the system. They tend to be enthusias-

tic converts. They find the language easy to learn

(most are largely self-taught), and have little trouble

producing the output they want. They are of course

less critical of the esthetics of their output than users

trained in mathematics. After a transition period,

most find using a computer more interesting than a

regular typewriter.

The main difficulty that users have seems to be

remembering that a blank is a delimiter; even experi-

enced users use blanks where they shouldn’t and omit

them when they are needed. A common instance is

typing

f(x sub i)

which produces

f (xi)

instead of

f (xi)

Since the EQN language knows no mathematics, it

cannot deduce that the right parenthesis is not part of

the subscript.

The language is somewhat prolix, but this

- 7 -

doesn’t seem excessive considering how much is

being done, and it is certainly more compact than the

corresponding TROFF commands. For example, here

is the source for the continued fraction expression in

Section 1 of this paper:

a sub 0 + b sub 1 over

{a sub 1 + b sub 2 over

{a sub 2 + b sub 3 over

{a sub 3 + ... }}}

This is the input for the large integral of Section 1;

notice the use of definitions:

define emx "{e sup mx}"

define mab "{m sqrt ab}"

define sa "{sqrt a}"

define sb "{sqrt b}"

int dx over {a emx − be sup −mx} ˜=˜

left { lpile {
1 over {2 mab} ˜log˜

{sa emx − sb} over {sa emx + sb}
above

1 over mab ˜ tanh sup −1 (sa over sb emx)

above

−1 over mab ˜ coth sup −1 (sa over sb emx)

}

As to ease of construction, we have already

mentioned that there are really only a few person-

months invested. Much of this time has gone into

two things—fine-tuning (what is the most esthetically

pleasing space to use between the numerator and

denominator of a fraction?), and changing things

found deficient by our users (shouldn’t a tilde be a

delimiter?).

The program consists of a number of small,

essentially unconnected modules for code generation,

a simple lexical analyzer, a canned parser which we

did not have to write, and some miscellany associated

with input files and the macro facility. The program

is now about 1600 lines of C [6], a high-level

language reminiscent of BCPL. About 20 percent of

these lines are ‘‘print’’ statements, generating the out-

put code.

The semantic routines that generate the actual

TROFF commands can be changed to accommodate

other formatting languages and devices. For example,

in less than 24 hours, one of us changed the entire

semantic package to drive NROFF, a variant of

TROFF, for typesetting mathematics on teletypewriter

devices capable of reverse line motions. Since many

potential users do not have access to a typesetter, but

still have to type mathematics, this provides a way to

get a typed version of the final output which is close

enough for debugging purposes, and sometimes even

for ultimate use.

7. Conclusions

We think we have shown that it is possible to

do acceptably good typesetting of mathematics on a

phototypesetter, with an input language that is easy to

learn and use and that satisfies many users’ demands.

Such a package can be implemented in short order,

given a compiler-compiler and a decent typesetting

program underneath.

Defining a language, and building a compiler

for it with a compiler-compiler seems like the only

sensible way to do business. Our experience with the

use of a grammar and a compiler-compiler has been

uniformly favorable. If we had written everything

into code directly, we would have been locked into

our original design. Furthermore, we would have

never been sure where the exceptions and special

cases were. But because we have a grammar, we can

change our minds readily and still be reasonably sure

that if a construction works in one place it will work

everywhere.

Acknowledgements

We are deeply indebted to J. F. Ossanna, the

author of TROFF, for his willingness to modify

TROFF to make our task easier and for his continuous

assistance during the development of our program.

We are also grateful to A. V. Aho for help with

language theory, to S. C. Johnson for aid with the

compiler-compiler, and to our early users A. V. Aho,

S. I. Feldman, S. C. Johnson, R. W. Hamming, and

M. D. McIlroy for their constructive criticisms.

References

[1] A Manual of Style, 12th Edition. University of

Chicago Press, 1969. p 295.

[2] Model C/A/T Phototypesetter. Graphic Sys-

tems, Inc., Hudson, N. H.

[3] Ritchie, D. M., and Thompson, K. L., ‘‘The

UNIX time-sharing system.’’ Comm. ACM 17,

7 (July 1974), 365-375.

[4] Ossanna, J. F., TROFF User’s Manual. Bell

Laboratories Computing Science Technical

Report 54, 1977.

[5] Aho, A. V., and Johnson, S. C., ‘‘LR Pars-

ing.’’ Comp. Surv. 6, 2 (June 1974), 99-124.

[6] B. W. Kernighan and D. M. Ritchie, The C

Programming Language. Prentice-Hall, Inc.,

1978.

Typesetting Mathematics — User’s Guide (Second Edition)

Brian W. Kernighan and Lorinda L. Cherry

Bell Laboratories

Murray Hill, New Jersey 07974

ABSTRACT

This is the user’s guide for a system for typesetting mathematics, using the phototypesetters on the

UNIX† and GCOS operating systems.

Mathematical expressions are described in a language designed to be easy to use by people who

know neither mathematics nor typesetting. Enough of the language to set in-line expressions like

x →π⁄2
lim (tan x)sin 2x = 1 or display equations like

G (z) = e ln G (z) = exp


k ≥1
Σ k

Sk z k

_ ____




=
k ≥1
Πe

S
k
z k ⁄k

=



1+S 1z +

2!

S 1
2z 2

_ ____+ . . .







1+

2

S 2z
2

_ ____+
22.2!

S 2
2z 4

_ ____+ . . .




. . .

=
m ≥0
Σ





k

1
+2k

2
+ . . . +mk

m
=m

k
1
,k

2
, . . . , k

m
≥0

Σ
1

k
1k 1!

S 1

k
1

_ _____

2
k

2k 2!

S 2

k
2

_ _____ . . .

m
k

m km !

Sm

k
m

_ ______







z m

can be learned in an hour or so.

The language interfaces directly with the phototypesetting language TROFF, so mathematical

expressions can be embedded in the running text of a manuscript, and the entire document produced in

one process. This user’s guide is an example of its output.

The same language may be used with the UNIX formatter NROFF to set mathematical expressions

on DASI and GSI terminals and Model 37 teletypes.

August 15, 1978

_ ______________
†UNIX is a Trademark of Bell Laboratories.

Typesetting Mathematics — User’s Guide (Second Edition)

Brian W. Kernighan and Lorinda L. Cherry

Bell Laboratories

Murray Hill, New Jersey 07974

1. Introduction

EQN is a program for typesetting

mathematics on the Graphics Systems photo-

typesetters on UNIX and GCOS. The EQN

language was designed to be easy to use by peo-

ple who know neither mathematics nor typeset-

ting. Thus EQN knows relatively little about

mathematics. In particular, mathematical sym-

bols like +, −, ×, parentheses, and so on have no

special meanings. EQN is quite happy to set gar-

bage (but it will look good).

EQN works as a preprocessor for the

typesetter formatter, TROFF[1], so the normal

mode of operation is to prepare a document with

both mathematics and ordinary text interspersed,

and let EQN set the mathematics while TROFF

does the body of the text.

On UNIX, EQN will also produce

mathematics on DASI and GSI terminals and on

Model 37 teletypes. The input is identical, but

you have to use the programs NEQN and NROFF

instead of EQN and TROFF. Of course, some

things won’t look as good because terminals

don’t provide the variety of characters, sizes and

fonts that a typesetter does, but the output is

usually adequate for proofreading.

To use EQN on UNIX,

eqn files  troff

GCOS use is discussed in section 26.

2. Displayed Equations

To tell EQN where a mathematical expres-

sion begins and ends, we mark it with lines

beginning .EQ and .EN. Thus if you type the

lines

.EQ

x=y+z

.EN

your output will look like

x =y +z

The .EQ and .EN are copied through untouched;

they are not otherwise processed by EQN. This

means that you have to take care of things like

centering, numbering, and so on yourself. The

most common way is to use the TROFF and

NROFF macro package package ‘−ms’ developed

by M. E. Lesk[3], which allows you to center,

indent, left-justify and number equations.

With the ‘−ms’ package, equations are

centered by default. To left-justify an equation,

use .EQ L instead of .EQ. To indent it, use .EQ I.

Any of these can be followed by an arbitrary

‘equation number’ which will be placed at the

right margin. For example, the input

.EQ I (3.1a)

x = f(y/2) + y/2

.EN

produces the output

x =f (y ⁄2)+y ⁄2 (3.1a)

There is also a shorthand notation so in-

line expressions like πi
2 can be entered without

.EQ and .EN. We will talk about it in section 19.

3. Input spaces

Spaces and newlines within an expression

are thrown away by EQN. (Normal text is left

absolutely alone.) Thus between .EQ and .EN,

x=y+z

and

x = y + z

and

x = y

+ z

and so on all produce the same output

x =y +z

- 2 -

You should use spaces and newlines freely to

make your input equations readable and easy to

edit. In particular, very long lines are a bad

idea, since they are often hard to fix if you make

a mistake.

4. Output spaces

To force extra spaces into the output, use

a tilde ‘‘ ˜ ’’ for each space you want:

x˜=˜y˜+˜z

gives

x = y + z

You can also use a circumflex ‘‘ˆ’’, which gives

a space half the width of a tilde. It is mainly

useful for fine-tuning. Tabs may also be used to

position pieces of an expression, but the tab

stops must be set by TROFF commands.

5. Symbols, Special Names, Greek

EQN knows some mathematical symbols,

some mathematical names, and the Greek alpha-

bet. For example,

x=2 pi int sin (omega t)dt

produces

x =2π∫ sin(ωt)dt

Here the spaces in the input are necessary to tell

EQN that int, pi, sin and omega are separate enti-

ties that should get special treatment. The sin,

digit 2, and parentheses are set in roman type

instead of italic; pi and omega are made Greek;

and int becomes the integral sign.

When in doubt, leave spaces around

separate parts of the input. A very common

error is to type f(pi) without leaving spaces on

both sides of the pi. As a result, EQN does not

recognize pi as a special word, and it appears as

f (pi) instead of f (π).

A complete list of EQN names appears in

section 23. Knowledgeable users can also use

TROFF four-character names for anything EQN

doesn’t know about, like \(bs for the Bell Sys-

tem sign .

6. Spaces, Again

The only way EQN can deduce that some

sequence of letters might be special is if that

sequence is separated from the letters on either

side of it. This can be done by surrounding a

special word by ordinary spaces (or tabs or new-

lines), as we did in the previous section.

You can also make special words stand

out by surrounding them with tildes or

circumflexes:

x˜=˜2˜pi˜int˜sin˜(˜omega˜t˜)˜dt

is much the same as the last example, except

that the tildes not only separate the magic words

like sin, omega, and so on, but also add extra

spaces, one space per tilde:

x = 2 π ∫ sin (ω t) dt

Special words can also be separated by

braces { } and double quotes "...", which have

special meanings that we will see soon.

7. Subscripts and Superscripts

Subscripts and superscripts are obtained

with the words sub and sup.

x sup 2 + y sub k

gives

x 2+yk

EQN takes care of all the size changes and verti-

cal motions needed to make the output look

right. The words sub and sup must be sur-

rounded by spaces; x sub2 will give you xsub 2

instead of x 2. Furthermore, don’t forget to leave

a space (or a tilde, etc.) to mark the end of a

subscript or superscript. A common error is to

say something like

y = (x sup 2)+1

which causes

y =(x 2)+1

instead of the intended

y =(x 2)+1

Subscripted subscripts and superscripted

superscripts also work:

x sub i sub 1

is

xi
1

A subscript and superscript on the same thing

are printed one above the other if the subscript

comes first:

x sub i sup 2

is

- 3 -

xi
2

Other than this special case, sub and sup

group to the right, so x sup y sub z means x
y

z ,

not x y
z .

8. Braces for Grouping

Normally, the end of a subscript or super-

script is marked simply by a blank (or tab or

tilde, etc.) What if the subscript or superscript

is something that has to be typed with blanks in

it? In that case, you can use the braces { and }
to mark the beginning and end of the subscript

or superscript:

e sup {i omega t}

is

e i ωt

Rule: Braces can always be used to force EQN

to treat something as a unit, or just to make your

intent perfectly clear. Thus:

x sub {i sub 1} sup 2

is

xi
1

2

with braces, but

x sub i sub 1 sup 2

is

x
i 1

2

which is rather different.

Braces can occur within braces if neces-

sary:

e sup {i pi sup {rho +1}}

is

e i πρ+1

The general rule is that anywhere you could use

some single thing like x, you can use an arbi-

trarily complicated thing if you enclose it in

braces. EQN will look after all the details of

positioning it and making it the right size.

In all cases, make sure you have the right

number of braces. Leaving one out or adding an

extra will cause EQN to complain bitterly.

Occasionally you will have to print braces.

To do this, enclose them in double quotes, like

"{". Quoting is discussed in more detail in sec-

tion 14.

9. Fractions

To make a fraction, use the word over:

a+b over 2c =1

gives

2c

a +b_ ____=1

The line is made the right length and positioned

automatically. Braces can be used to make clear

what goes over what:

{alpha + beta} over {sin (x)}

is

sin(x)

α+β_ _____

What happens when there is both an over and a

sup in the same expression? In such an

apparently ambiguous case, EQN does the sup

before the over, so

−b sup 2 over pi

is
π

−b 2
_ ___ instead of −b π

2_ _

The rules which decide

which operation is done first in cases like this

are summarized in section 23. When in doubt,

however, use braces to make clear what goes

with what.

10. Square Roots

To draw a square root, use sqrt:

sqrt a+b + 1 over sqrt {ax sup 2 +bx+c}

is

√ a +b +
√ ax

2+bx +c

1___________

Warning — square roots of tall quantities look

lousy, because a root-sign big enough to cover

the quantity is too dark and heavy:

sqrt {a sup 2 over b sub 2}

is

√b 2

a 2
_ __

Big square roots are generally better written as

something to the power 1⁄2:

(a 2⁄b 2)
1⁄2

which is

- 4 -

(a sup 2 /b sub 2) sup half

11. Summation, Integral, Etc.

Summations, integrals, and similar con-

structions are easy:

sum from i=0 to {i= inf} x sup i

produces

i =0
Σ
i =∞

x i

Notice that we used braces to indicate where the

upper part i =∞ begins and ends. No braces

were necessary for the lower part i =0, because it

contained no blanks. The braces will never hurt,

and if the from and to parts contain any blanks,

you must use braces around them.

The from and to parts are both optional,

but if both are used, they have to occur in that

order.

Other useful characters can replace the

sum in our example:

int prod union inter

become, respectively,

∫ Π ∪ ∩
Since the thing before the from can be anything,

even something in braces, from-to can often be

used in unexpected ways:

lim from {n −> inf} x sub n =0

is

n →∞
lim xn =0

12. Size and Font Changes

By default, equations are set in 10-point

type (the same size as this guide), with standard

mathematical conventions to determine what

characters are in roman and what in italic.

Although EQN makes a valiant attempt to use

esthetically pleasing sizes and fonts, it is not

perfect. To change sizes and fonts, use size n

and roman, italic, bold and fat. Like sub and

sup, size and font changes affect only the thing

that follows them, and revert to the normal

situation at the end of it. Thus

bold x y

is

xy

and

size 14 bold x = y +

size 14 {alpha + beta}

gives

x=y +α+β
As always, you can use braces if you want to

affect something more complicated than a single

letter. For example, you can change the size of

an entire equation by

size 12 { ... }

Legal sizes which may follow size are 6,

7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 28,

36. You can also change the size by a given

amount; for example, you can say size +2 to

make the size two points bigger, or size −3 to

make it three points smaller. This has the

advantage that you don’t have to know what the

current size is.

If you are using fonts other than roman,

italic and bold, you can say font X where X is a

one character TROFF name or number for the

font. Since EQN is tuned for roman, italic and

bold, other fonts may not give quite as good an

appearance.

The fat operation takes the current font

and widens it by overstriking: fat grad is ∇ ∇ and

fat {x sub i} is xixi .

If an entire document is to be in a non-

standard size or font, it is a severe nuisance to

have to write out a size and font change for each

equation. Accordingly, you can set a ‘‘global’’

size or font which thereafter affects all equa-

tions. At the beginning of any equation, you

might say, for instance,

.EQ

gsize 16

gfont R

...

.EN

to set the size to 16 and the font to roman

thereafter. In place of R, you can use any of the

TROFF font names. The size after gsize can be a

relative change with + or −.

Generally, gsize and gfont will appear at

the beginning of a document but they can also

appear thoughout a document: the global font

and size can be changed as often as needed. For

- 5 -

example, in a footnote‡ you will typically want

the size of equations to match the size of the

footnote text, which is two points smaller than

the main text. Don’t forget to reset the global

size at the end of the footnote.

13. Diacritical Marks

To get funny marks on top of letters, there

are several words:

x dot x
.

x dotdot x
..

x hat x̂

x tilde x̃

x vec x→

x dyad x← →

x bar x
x under x_

The diacritical mark is placed at the right height.

The bar and under are made the right length for

the entire construct, as in x +y +z  ; other marks

are centered.

14. Quoted Text

Any input entirely within quotes ("...") is

not subject to any of the font changes and spac-

ing adjustments normally done by the equation

setter. This provides a way to do your own

spacing and adjusting if needed:

italic "sin(x)" + sin (x)

is

sin(x) +sin(x)

Quotes are also used to get braces and

other EQN keywords printed:

"{ size alpha }"

is

{ size alpha }

and

roman "{ size alpha }"

is

{ size alpha }

The construction "" is often used as a

place-holder when grammatically EQN needs

‡Like this one, in which we have a few random

expressions like xi and π2. The sizes for these were set

by the command gsize −2.

something, but you don’t actually want anything

in your output. For example, to make 2He, you

can’t just type sup 2 roman He because a sup

has to be a superscript on something. Thus you

must say

"" sup 2 roman He

To get a literal quote use ‘‘\"’’. TROFF

characters like \(bs can appear unquoted, but

more complicated things like horizontal and

vertical motions with \h and \v should always be

quoted. (If you’ve never heard of \h and \v,

ignore this section.)

15. Lining Up Equations

Sometimes it’s necessary to line up a

series of equations at some horizontal position,

often at an equals sign. This is done with two

operations called mark and lineup.

The word mark may appear once at any

place in an equation. It remembers the horizon-

tal position where it appeared. Successive equa-

tions can contain one occurrence of the word

lineup. The place where lineup appears is made

to line up with the place marked by the previous

mark if at all possible. Thus, for example, you

can say

.EQ I

x+y mark = z

.EN

.EQ I

x lineup = 1

.EN

to produce

x +y =z

x =1

For reasons too complicated to talk about, when

you use EQN and ‘−ms’, use either .EQ I or .EQ L.

mark and lineup don’t work with centered equa-

tions. Also bear in mind that mark doesn’t look

ahead;

x mark =1

...

x+y lineup =z

isn’t going to work, because there isn’t room for

the x+y part after the mark remembers where the

x is.

- 6 -

16. Big Brackets, Etc.

To get big brackets [], braces { },

parentheses (), and bars   around things, use

the left and right commands:

left { a over b + 1 right }
˜=˜ left (c over d right)

+ left [e right]

is



 b

a_ _+1




=


 d

c_ _



+


e




The resulting brackets are made big enough to

cover whatever they enclose. Other characters

can be used besides these, but the are not likely

to look very good. One exception is the floor

and ceiling characters:

left floor x over y right floor

<= left ceiling a over b right ceiling

produces



 y

x_ _



≤



 b

a_ _




Several warnings about brackets are in

order. First, braces are typically bigger than

brackets and parentheses, because they are made

up of three, five, seven, etc., pieces, while brack-

ets can be made up of two, three, etc. Second,

big left and right parentheses often look poor,

because the character set is poorly designed.

The right part may be omitted: a ‘‘left

something’’ need not have a corresponding

‘‘right something’’. If the right part is omitted,

put braces around the thing you want the left

bracket to encompass. Otherwise, the resulting

brackets may be too large.

If you want to omit the left part, things are

more complicated, because technically you can’t

have a right without a corresponding left.

Instead you have to say

left "" right)

for example. The left "" means a ‘‘left noth-

ing’’. This satisfies the rules without hurting

your output.

17. Piles

There is a general facility for making vert-

ical piles of things; it comes in several flavors.

For example:

A ˜=˜ left [

pile { a above b above c }
˜˜ pile { x above y above z }

right]

will make

A =


 c
b
a

z
y
x 




The elements of the pile (there can be as many

as you want) are centered one above another, at

the right height for most purposes. The key-

word above is used to separate the pieces; braces

are used around the entire list. The elements of

a pile can be as complicated as needed, even

containing more piles.

Three other forms of pile exist: lpile

makes a pile with the elements left-justified;

rpile makes a right-justified pile; and cpile

makes a centered pile, just like pile. The verti-

cal spacing between the pieces is somewhat

larger for l-, r- and cpiles than it is for ordinary

piles.

roman sign (x)˜=˜

left {
lpile {1 above 0 above −1}
˜˜ lpile

{if˜x>0 above if˜x=0 above if˜x<0}

makes

sign(x) =





−1

0

1

if x <0

if x =0

if x >0

Notice the left brace without a matching right

one.

18. Matrices

It is also possible to make matrices. For

example, to make a neat array like

yi

xi

y 2

x 2

you have to type

matrix {
ccol { x sub i above y sub i }
ccol { x sup 2 above y sup 2 }

}

This produces a matrix with two centered

columns. The elements of the columns are then

listed just as for a pile, each element separated

- 7 -

by the word above. You can also use lcol or

rcol to left or right adjust columns. Each

column can be separately adjusted, and there can

be as many columns as you like.

The reason for using a matrix instead of

two adjacent piles, by the way, is that if the ele-

ments of the piles don’t all have the same

height, they won’t line up properly. A matrix

forces them to line up, because it looks at the

entire structure before deciding what spacing to

use.

A word of warning about matrices — each

column must have the same number of elements

in it. The world will end if you get this wrong.

19. Shorthand for In-line Equations

In a mathematical document, it is neces-

sary to follow mathematical conventions not just

in display equations, but also in the body of the

text, for example by making variable names like

x italic. Although this could be done by sur-

rounding the appropriate parts with .EQ and .EN,

the continual repetition of .EQ and .EN is a nui-

sance. Furthermore, with ‘−ms’, .EQ and .EN

imply a displayed equation.

EQN provides a shorthand for short in-line

expressions. You can define two characters to

mark the left and right ends of an in-line equa-

tion, and then type expressions right in the mid-

dle of text lines. To set both the left and right

characters to dollar signs, for example, add to

the beginning of your document the three lines

.EQ

delim $$

.EN

Having done this, you can then say things like

Let $alpha sub i$ be the primary

variable, and let $beta$ be zero. Then

we can show that $x sub 1$ is $>=0$.

This works as you might expect — spaces, new-

lines, and so on are significant in the text, but

not in the equation part itself. Multiple equa-

tions can occur in a single input line.

Enough room is left before and after a line

that contains in-line expressions that something

like
i =1
Σ
n

xi does not interfere with the lines sur-

rounding it.

To turn off the delimiters,

.EQ

delim off

.EN

Warning: don’t use braces, tildes, circumflexes,

or double quotes as delimiters — chaos will

result.

20. Definitions

EQN provides a facility so you can give a

frequently-used string of characters a name, and

thereafter just type the name instead of the

whole string. For example, if the sequence

x sub i sub 1 + y sub i sub 1

appears repeatedly throughout a paper, you can

save re-typing it each time by defining it like

this:

define xy ′x sub i sub 1 + y sub i sub 1′

This makes xy a shorthand for whatever charac-

ters occur between the single quotes in the

definition. You can use any character instead of

quote to mark the ends of the definition, so long

as it doesn’t appear inside the definition.

Now you can use xy like this:

.EQ

f(x) = xy ...

.EN

and so on. Each occurrence of xy will expand

into what it was defined as. Be careful to leave

spaces or their equivalent around the name when

you actually use it, so EQN will be able to iden-

tify it as special.

There are several things to watch out for.

First, although definitions can use previous

definitions, as in

.EQ

define xi ′ x sub i ′
define xi1 ′ xi sub 1 ′
.EN

don’t define something in terms of itself’ A

favorite error is to say

define X ′ roman X ′

This is a guaranteed disaster, since X is now

defined in terms of itself. If you say

define X ′ roman "X" ′

however, the quotes protect the second X, and

everything works fine.

- 8 -

EQN keywords can be redefined. You can

make / mean over by saying

define / ′ over ′

or redefine over as / with

define over ′ / ′

If you need different things to print on a

terminal and on the typesetter, it is sometimes

worth defining a symbol differently in NEQN and

EQN. This can be done with ndefine and tdefine.

A definition made with ndefine only takes effect

if you are running NEQN; if you use tdefine, the

definition only applies for EQN. Names defined

with plain define apply to both EQN and NEQN.

21. Local Motions

Although EQN tries to get most things at

the right place on the paper, it isn’t perfect, and

occasionally you will need to tune the output to

make it just right. Small extra horizontal spaces

can be obtained with tilde and circumflex. You

can also say back n and fwd n to move small

amounts horizontally. n is how far to move in

1/100’s of an em (an em is about the width of

the letter ‘m’.) Thus back 50 moves back about

half the width of an m. Similarly you can move

things up or down with up n and down n. As

with sub or sup, the local motions affect the

next thing in the input, and this can be some-

thing arbitrarily complicated if it is enclosed in

braces.

22. A Large Example

Here is the complete source for the three

display equations in the abstract of this guide.

.EQ I

G(z)˜mark =˜ e sup { ln ˜ G(z) }
˜=˜ exp left (

sum from k>=1 {S sub k z sup k} over k right)

˜=˜ prod from k>=1 e sup {S sub k z sup k /k}
.EN

.EQ I

lineup = left (1 + S sub 1 z +

{ S sub 1 sup 2 z sup 2 } over 2! + ... right)

left (1+ { S sub 2 z sup 2 } over 2

+ { S sub 2 sup 2 z sup 4 } over { 2 sup 2 cdot 2! }
+ ... right) ...

.EN

.EQ I

lineup = sum from m>=0 left (

sum from

pile { k sub 1 ,k sub 2 ,..., k sub m >=0

above

k sub 1 +2k sub 2 + ... +mk sub m =m}
{ S sub 1 sup {k sub 1} } over {1 sup k sub 1 k sub 1 ! } ˜

{ S sub 2 sup {k sub 2} } over {2 sup k sub 2 k sub 2 ! } ˜

...

{ S sub m sup {k sub m} } over {m sup k sub m k sub m ! }
right) z sup m

.EN

23. Keywords, Precedences, Etc.

If you don’t use braces, EQN will do

operations in the order shown in this list.

dyad vec under bar tilde hat dot dotdot

fwd back down up

fat roman italic bold size

sub sup sqrt over

from to

These operations group to the left:

over sqrt left right

All others group to the right.

Digits, parentheses, brackets, punctuation

marks, and these mathematical words are con-

verted to Roman font when encountered:

sin cos tan sinh cosh tanh arc

max min lim log ln exp

Re Im and if for det

These character sequences are recognized and

translated as shown.

>= ≥
<= ≤
== ≡
!= ≠
+− ±
−> →
<− ←
<< < <

>> > >

inf ∞
partial ∂
half 1⁄2

prime ′
approx ∼∼
nothing

cdot .

times ×
del ∇
grad ∇
... . . .

,..., , . . . ,

sum Σ
int ∫
prod Π

- 9 -

union ∪
inter ∩

To obtain Greek letters, simply spell them

out in whatever case you want:

DELTA ∆ iota ι
GAMMA Γ kappa κ
LAMBDA Λ lambda λ
OMEGA Ω mu µ
PHI Φ nu ν
PI Π omega ω
PSI Ψ omicron ο
SIGMA Σ phi φ
THETA Θ pi π
UPSILON Υ psi ψ
XI Ξ rho ρ
alpha α sigma σ
beta β tau τ
chi χ theta θ
delta δ upsilon υ
epsilon ε xi ξ
eta η zeta ζ
gamma γ

These are all the words known to EQN

(except for characters with names), together with

the section where they are discussed.

above 17, 18 lpile 17

back 21 mark 15

bar 13 matrix 18

bold 12 ndefine 20

ccol 18 over 9

col 18 pile 17

cpile 17 rcol 18

define 20 right 16

delim 19 roman 12

dot 13 rpile 17

dotdot 13 size 12

down 21 sqrt 10

dyad 13 sub 7

fat 12 sup 7

font 12 tdefine 20

from 11 tilde 13

fwd 21 to 11

gfont 12 under 13

gsize 12 up 21

hat 13 vec 13

italic 12 ˜, ˆ 4, 6

lcol 18 { } 8

left 16 "..." 8, 14

lineup 15

24. Troubleshooting

If you make a mistake in an equation, like

leaving out a brace (very common) or having

one too many (very common) or having a sup

with nothing before it (common), EQN will tell

you with the message

syntax error between lines x and y, file z

where x and y are approximately the lines

between which the trouble occurred, and z is the

name of the file in question. The line numbers

are approximate — look nearby as well. There

are also self-explanatory messages that arise if

you leave out a quote or try to run EQN on a

non-existent file.

If you want to check a document before

actually printing it (on UNIX only),

eqn files >/dev/null

will throw away the output but print the mes-

sages.

If you use something like dollar signs as

delimiters, it is easy to leave one out. This

causes very strange troubles. The program

checkeq (on GCOS, use ./checkeq instead) checks

for misplaced or missing dollar signs and similar

troubles.

In-line equations can only be so big

because of an internal buffer in TROFF. If you

get a message ‘‘word overflow’’, you have

exceeded this limit. If you print the equation as

a displayed equation this message will usually

go away. The message ‘‘line overflow’’ indi-

cates you have exceeded an even bigger buffer.

The only cure for this is to break the equation

into two separate ones.

On a related topic, EQN does not break

equations by itself — you must split long equa-

tions up across multiple lines by yourself, mark-

ing each by a separate .EQEN sequence. EQN

does warn about equations that are too long to

fit on one line.

25. Use on UNIX

To print a document that contains

mathematics on the UNIX typesetter,

eqn files  troff

If there are any TROFF options, they go after the

TROFF part of the command. For example,

eqn files  troff −ms

To run the same document on the GCOS

- 10 -

typesetter, use

eqn files  troff −g (other options)  gcat

A compatible version of EQN can be used

on devices like teletypes and DASI and GSI termi-

nals which have half-line forward and reverse

capabilities. To print equations on a Model 37

teletype, for example, use

neqn files  nroff

The language for equations recognized by NEQN

is identical to that of EQN, although of course

the output is more restricted.

To use a GSI or DASI terminal as the out-

put device,

neqn files  nroff −Tx

where x is the terminal type you are using, such

as 300 or 300S.

EQN and NEQN can be used with the TBL

program[2] for setting tables that contain

mathematics. Use TBL before [N]EQN, like this:

tbl files  eqn  troff

tbl files  neqn  nroff

26. Acknowledgments

We are deeply indebted to J. F. Ossanna,

the author of TROFF, for his willingness to

extend TROFF to make our task easier, and for

his continuous assistance during the develop-

ment and evolution of EQN. We are also grate-

ful to A. V. Aho for advice on language design,

to S. C. Johnson for assistance with the YACC

compiler-compiler, and to all the EQN users who

have made helpful suggestions and criticisms.

References

[1] J. F. Ossanna, ‘‘NROFF/TROFF User’s

Manual’’, Bell Laboratories Computing

Science Technical Report #54, 1976.

[2] M. E. Lesk, ‘‘Typing Documents on

UNIX’’, Bell Laboratories, 1976.

[3] M. E. Lesk, ‘‘TBL — A Program for Set-

ting Tables’’, Bell Laboratories Comput-

ing Science Technical Report #49, 1976.

	Eqn
	Eqn User's Guide

