
UNIX Programming — Second Edition

Brian W. Kernighan

Dennis M. Ritchie

Bell Laboratories

Murray Hill, New Jersey 07974

ABSTRACT

This paper is an introduction to programming on the UNIX† system. The emphasis

is on how to write programs that interface to the operating system, either directly or

through the standard I/O library. The topics discussed include

• handling command arguments

• rudimentary I/O; the standard input and output

• the standard I/O library; file system access

• low-level I/O: open, read, write, close, seek

• processes: exec, fork, pipes

• signals — interrupts, etc.

There is also an appendix which describes the standard I/O library in detail.

December 3, 1998

_ ______________
†UNIX is a Trademark of Bell Laboratories.

UNIX Programming — Second Edition

Brian W. Kernighan

Dennis M. Ritchie

Bell Laboratories

Murray Hill, New Jersey 07974

1 . I IN NT TR RO OD DU UC CT TI IO ON N

This paper describes how to write programs that interface with the UNIX operating system in a

non-trivial way. This includes programs that use files by name, that use pipes, that invoke other com-

mands as they run, or that attempt to catch interrupts and other signals during execution.

The document collects material which is scattered throughout several sections of The UNIX

Programmer’s Manual [1] for Version 7 UNIX. There is no attempt to be complete; only generally use-

ful material is dealt with. It is assumed that you will be programming in C, so you must be able to read

the language roughly up to the level of The C Programming Language [2]. Some of the material in sec-

tions 2 through 4 is based on topics covered more carefully there. You should also be familiar with

UNIX itself at least to the level of UNIX for Beginners [3].

2 . B BA AS SI IC CS S

2 . 1 . P Pr ro og gr ra am m A Ar rg gu um me en nt ts s

When a C program is run as a command, the arguments on the command line are made available to

the function m a i n as an argument count a r g c and an array a r g v of pointers to character strings

that contain the arguments. By convention, a r g v [0] is the command name itself, so a r g c is

always greater than 0.

The following program illustrates the mechanism: it simply echoes its arguments back to the termi-

nal. (This is essentially the e c h o command.)

mai n(a rgc , arg v) /* ech o arg ume nts */

int arg c;

cha r *arg v[] ;

{

int i;

for (i = 1; i < arg c; i++)

pri ntf ("% s%c ", arg v[i], (i< arg c-1) ? ’ ’ : ’\n’) ;

}

ar gv is a pointer to an array whose individual elements are pointers to arrays of characters; each is ter-

minated by \0, so they can be treated as strings. The program starts by printing ar gv [1] and loops

until it has printed them all.

The argument count and the arguments are parameters to ma in. If you want to keep them around

so other routines can get at them, you must copy them to external variables.

2. 2. T Th he e ‘ ‘‘ ‘S St ta an nd da ar rd d I In np pu ut t’ ’’ ’ a an nd d ‘ ‘‘ ‘S St ta an nd da ar rd d O Ou ut tp pu ut t’ ’’ ’

The simplest input mechanism is to read the ‘‘standard input,’’ which is generally the user’s termi-

nal. The function ge tc ha r returns the next input character each time it is called. A file may be sub-

stituted for the terminal by using the < convention: if pr og uses ge tc ha r, then the command line

- 2 -

pro g <fi le

causes pr og to read fi le instead of the terminal. pr og itself need know nothing about where its

input is coming from. This is also true if the input comes from another program via the pipe mechan-

ism:

oth erp rog | pro g

provides the standard input for pr og from the standard output of ot he rp ro g.

ge tc ha r returns the value EO F when it encounters the end of file (or an error) on whatever you

are reading. The value of EO F is normally defined to be -1, but it is unwise to take any advantage of

that knowledge. As will become clear shortly, this value is automatically defined for you when you

compile a program, and need not be of any concern.

Similarly, pu tc ha r(c) puts the character c on the ‘‘standard output,’’ which is also by default

the terminal. The output can be captured on a file by using >: if pr og uses pu tc ha r,

pro g >ou tfi le

writes the standard output on ou tf il e instead of the terminal. ou tf il e is created if it doesn’t exist;

if it already exists, its previous contents are overwritten. And a pipe can be used:

pro g | oth erp rog

puts the standard output of pr og into the standard input of ot he rp ro g.

The function pr in tf, which formats output in various ways, uses the same mechanism as

pu tc ha r does, so calls to pr in tf and pu tc ha r may be intermixed in any order; the output will

appear in the order of the calls.

Similarly, the function sc an f provides for formatted input conversion; it will read the standard

input and break it up into strings, numbers, etc., as desired. sc an f uses the same mechanism as

ge tc ha r, so calls to them may also be intermixed.

Many programs read only one input and write one output; for such programs I/O with ge tc ha r,

pu tc ha r, sc an f, and pr in tf may be entirely adequate, and it is almost always enough to get

started. This is particularly true if the UNIX pipe facility is used to connect the output of one program

to the input of the next. For example, the following program strips out all ascii control characters from

its input (except for newline and tab).

#in clu de <st dio .h>

mai n() /* ccs tri p: str ip non -gr aph ic cha rac ter s */

{

int c;

whi le ((c = get cha r()) != EOF)

if ((c >= ’ ’ && c < 017 7) | | c == ’\t’ | | c == ’\n’)

put cha r(c);

exi t(0);

}

The line

#in clu de <st dio .h>

should appear at the beginning of each source file. It causes the C compiler to read a file

(/usr/include/stdio.h) of standard routines and symbols that includes the definition of EO F.

If it is necessary to treat multiple files, you can use ca t to collect the files for you:

cat fil e1 fil e2 ... | ccs tri p >ou tpu t

and thus avoid learning how to access files from a program. By the way, the call to ex it at the end is

not necessary to make the program work properly, but it assures that any caller of the program will see

a normal termination status (conventionally 0) from the program when it completes. Section 6 discusses

- 3 -

status returns in more detail.

3. T TH HE E S ST TA AN ND DA AR RD D I I/ /O O L LI IB BR RA AR RY Y

The ‘‘Standard I/O Library’’ is a collection of routines intended to provide efficient and portable I/O

services for most C programs. The standard I/O library is available on each system that supports C, so

programs that confine their system interactions to its facilities can be transported from one system to

another essentially without change.

In this section, we will discuss the basics of the standard I/O library. The appendix contains a more

complete description of its capabilities.

3. 1. F Fi il le e A Ac cc ce es ss s

The programs written so far have all read the standard input and written the standard output, which

we have assumed are magically pre-defined. The next step is to write a program that accesses a file that

is not already connected to the program. One simple example is wc , which counts the lines, words and

characters in a set of files. For instance, the command

wc x.c y.c

prints the number of lines, words and characters in x. c and y. c and the totals.

The question is how to arrange for the named files to be read — that is, how to connect the file sys-

tem names to the I/O statements which actually read the data.

The rules are simple. Before it can be read or written a file has to be opened by the standard

library function fo pe n. fo pe n takes an external name (like x. c or y. c), does some housekeeping

and negotiation with the operating system, and returns an internal name which must be used in subse-

quent reads or writes of the file.

This internal name is actually a pointer, called a file pointer , to a structure which contains informa-

tion about the file, such as the location of a buffer, the current character position in the buffer, whether

the file is being read or written, and the like. Users don’t need to know the details, because part of the

standard I/O definitions obtained by including st di o. h is a structure definition called FI LE. The

only declaration needed for a file pointer is exemplified by

FIL E *fp, *fop en();

This says that fp is a pointer to a FI LE, and fo pe n returns a pointer to a FI LE. (FI LE is a type

name, like in t, not a structure tag.

The actual call to fo pe n in a program is

fp = fop en(nam e, mod e);

The first argument of fo pe n is the name of the file, as a character string. The second argument is the

mode, also as a character string, which indicates how you intend to use the file. The only allowable

modes are read ("r "), write ("w "), or append ("a ").

If a file that you open for writing or appending does not exist, it is created (if possible). Opening

an existing file for writing causes the old contents to be discarded. Trying to read a file that does not

exist is an error, and there may be other causes of error as well (like trying to read a file when you don’t

have permission). If there is any error, fo pe n will return the null pointer value NU LL (which is

defined as zero in st di o. h).

The next thing needed is a way to read or write the file once it is open. There are several possibili-

ties, of which ge tc and pu tc are the simplest. ge tc returns the next character from a file; it needs

the file pointer to tell it what file. Thus

c = get c(f p)

places in c the next character from the file referred to by fp; it returns EO F when it reaches end of file.

pu tc is the inverse of ge tc:

- 4 -

put c(c , fp)

puts the character c on the file fp and returns c. ge tc and pu tc return EO F on error.

When a program is started, three files are opened automatically, and file pointers are provided for

them. These files are the standard input, the standard output, and the standard error output; the

corresponding file pointers are called st di n, st do ut, and st de rr. Normally these are all con-

nected to the terminal, but may be redirected to files or pipes as described in Section 2.2. st di n,

st do ut and st de rr are pre-defined in the I/O library as the standard input, output and error files;

they may be used anywhere an object of type FI LE * can be. They are constants, however, not vari-

ables, so don’t try to assign to them.

With some of the preliminaries out of the way, we can now write wc . The basic design is one that

has been found convenient for many programs: if there are command-line arguments, they are processed

in order. If there are no arguments, the standard input is processed. This way the program can be used

stand-alone or as part of a larger process.

#in clu de <st dio .h>

mai n(a rgc , arg v) /* wc: cou nt lin es, wor ds, cha rs */

int arg c;

cha r *arg v[] ;

{

int c, i, inw ord ;

FIL E *fp, *fop en();

lon g lin ect , wor dct , cha rct ;

lon g tli nec t = 0, two rdc t = 0, tch arc t = 0;

i = 1;

fp = std in;

do {

if (ar gc > 1 && (fp =fo pen (ar gv[i], "r")) == NUL L) {

fpr int f(s tde rr, "wc : can ’t ope n %s\n", arg v[i]);

con tin ue;

}

lin ect = wor dct = cha rct = inw ord = 0;

whi le ((c = get c(f p)) != EOF) {

cha rct ++;

if (c == ’\n’)

lin ect ++;

if (c == ’ ’ | | c == ’\t’ | | c == ’\n’)

inw ord = 0;

els e if (in wor d == 0) {

inw ord = 1;

wor dct ++;

}

}

pri ntf ("% 7ld %7l d %7l d", lin ect , wor dct , cha rct);

pri ntf (ar gc > 1 ? " %s\n" : "\n", arg v[i]);

fcl ose (fp);

tli nec t += lin ect ;

two rdc t += wor dct ;

tch arc t += cha rct ;

} whi le (++ i < arg c);

if (ar gc > 2)

pri ntf ("% 7ld %7l d %7l d tot al\n", tli nec t, two rdc t, tch arc t);

exi t(0);

}

The function fp ri nt f is identical to pr in tf, save that the first argument is a file pointer that

- 5 -

specifies the file to be written.

The function fc lo se is the inverse of fo pe n; it breaks the connection between the file pointer

and the external name that was established by fo pe n, freeing the file pointer for another file. Since

there is a limit on the number of files that a program may have open simultaneously, it’s a good idea to

free things when they are no longer needed. There is also another reason to call fc lo se on an output

file — it flushes the buffer in which pu tc is collecting output. (fc lo se is called automatically for

each open file when a program terminates normally.)

3. 2. E Er rr ro or r H Ha an nd dl li in ng g — — S St td de er rr r a an nd d E Ex xi it t

st de rr is assigned to a program in the same way that st di n and st do ut are. Output written

on st de rr appears on the user’s terminal even if the standard output is redirected. wc writes its diag-

nostics on st de rr instead of st do ut so that if one of the files can’t be accessed for some reason, the

message finds its way to the user’s terminal instead of disappearing down a pipeline or into an output

file.

The program actually signals errors in another way, using the function ex it to terminate program

execution. The argument of ex it is available to whatever process called it (see Section 6), so the suc-

cess or failure of the program can be tested by another program that uses this one as a sub-process. By

convention, a return value of 0 signals that all is well; non-zero values signal abnormal situations.

ex it itself calls fc lo se for each open output file, to flush out any buffered output, then calls a

routine named —e xi t. The function —e xi t causes immediate termination without any buffer flushing;

it may be called directly if desired.

3. 3. M Mi is sc ce el ll la an ne eo ou us s I I/ /O O F Fu un nc ct ti io on ns s

The standard I/O library provides several other I/O functions besides those we have illustrated

above.

Normally output with pu tc, etc., is buffered (except to st de rr); to force it out immediately, use

ff lu sh (f p).

fs ca nf is identical to sc an f, except that its first argument is a file pointer (as with fp ri nt f)

that specifies the file from which the input comes; it returns EO F at end of file.

The functions ss ca nf and sp ri nt f are identical to fs ca nf and fp ri nt f, except that the

first argument names a character string instead of a file pointer. The conversion is done from the string

for ss ca nf and into it for sp ri nt f.

fg et s(bu f, si ze , fp) copies the next line from fp, up to and including a newline, into

bu f; at most si ze -1 characters are copied; it returns NU LL at end of file. fp ut s(bu f, fp)

writes the string in bu f onto file fp.

The function un ge tc (c , fp) ‘‘pushes back’’ the character c onto the input stream fp; a subse-

quent call to ge tc, fs ca nf, etc., will encounter c. Only one character of pushback per file is permit-

ted.

4. L LO OW W- -L LE EV VE EL L I I/ /O O

This section describes the bottom level of I/O on the UNIX system. The lowest level of I/O in

UNIX provides no buffering or any other services; it is in fact a direct entry into the operating system.

You are entirely on your own, but on the other hand, you have the most control over what happens.

And since the calls and usage are quite simple, this isn’t as bad as it sounds.

4. 1. F Fi il le e D De es sc cr ri ip pt to or rs s

In the UNIX operating system, all input and output is done by reading or writing files, because all

peripheral devices, even the user’s terminal, are files in the file system. This means that a single, homo-

geneous interface handles all communication between a program and peripheral devices.

In the most general case, before reading or writing a file, it is necessary to inform the system of

your intent to do so, a process called ‘‘opening’’ the file. If you are going to write on a file, it may also

- 6 -

be necessary to create it. The system checks your right to do so (Does the file exist? Do you have per-

mission to access it?), and if all is well, returns a small positive integer called a file descriptor. When-

ever I/O is to be done on the file, the file descriptor is used instead of the name to identify the file.

(This is roughly analogous to the use of READ(5,...) and WRITE(6,...) in Fortran.) All information about

an open file is maintained by the system; the user program refers to the file only by the file descriptor.

The file pointers discussed in section 3 are similar in spirit to file descriptors, but file descriptors are

more fundamental. A file pointer is a pointer to a structure that contains, among other things, the file

descriptor for the file in question.

Since input and output involving the user’s terminal are so common, special arrangements exist to

make this convenient. When the command interpreter (the ‘‘shell’’) runs a program, it opens three files,

with file descriptors 0, 1, and 2, called the standard input, the standard output, and the standard error

output. All of these are normally connected to the terminal, so if a program reads file descriptor 0 and

writes file descriptors 1 and 2, it can do terminal I/O without worrying about opening the files.

If I/O is redirected to and from files with < and >, as in

pro g <in fil e >ou tfi le

the shell changes the default assignments for file descriptors 0 and 1 from the terminal to the named

files. Similar observations hold if the input or output is associated with a pipe. Normally file descriptor

2 remains attached to the terminal, so error messages can go there. In all cases, the file assignments are

changed by the shell, not by the program. The program does not need to know where its input comes

from nor where its output goes, so long as it uses file 0 for input and 1 and 2 for output.

4. 2. R Re ea ad d a an nd d W Wr ri it te e

All input and output is done by two functions called re ad and wr it e. For both, the first argu-

ment is a file descriptor. The second argument is a buffer in your program where the data is to come

from or go to. The third argument is the number of bytes to be transferred. The calls are

n—r ead = rea d(f d, buf , n);

n—w rit ten = wri te(fd, buf , n);

Each call returns a byte count which is the number of bytes actually transferred. On reading, the

number of bytes returned may be less than the number asked for, because fewer than n bytes remained

to be read. (When the file is a terminal, re ad normally reads only up to the next newline, which is

generally less than what was requested.) A return value of zero bytes implies end of file, and -1 indi-

cates an error of some sort. For writing, the returned value is the number of bytes actually written; it is

generally an error if this isn’t equal to the number supposed to be written.

The number of bytes to be read or written is quite arbitrary. The two most common values are 1,

which means one character at a time (‘‘unbuffered’’), and 512, which corresponds to a physical block-

size on many peripheral devices. This latter size will be most efficient, but even character at a time I/O

is not inordinately expensive.

Putting these facts together, we can write a simple program to copy its input to its output. This

program will copy anything to anything, since the input and output can be redirected to any file or dev-

ice.

- 7 -

#de fin e BUF SIZ E 512 /* bes t siz e for PDP -11 UNI X */

mai n() /* cop y inp ut to out put */

{

cha r buf [BU FSI ZE] ;

int n;

whi le ((n = rea d(0 , buf , BUF SIZ E)) > 0)

wri te(1, buf , n);

exi t(0);

}

If the file size is not a multiple of BU FS IZ E, some re ad will return a smaller number of bytes to be

written by wr it e; the next call to re ad after that will return zero.

It is instructive to see how re ad and wr it e can be used to construct higher level routines like

ge tc ha r, pu tc ha r, etc. For example, here is a version of ge tc ha r which does unbuffered input.

#de fin e CMA SK 037 7 /* for mak ing cha r’s > 0 */

get cha r() /* unb uff ere d sin gle cha rac ter inp ut */

{

cha r c;

ret urn ((r ead (0, &c, 1) > 0) ? c & CMA SK : EOF);

}

c must be declared ch ar, because re ad accepts a character pointer. The character being returned

must be masked with 03 77 to ensure that it is positive; otherwise sign extension may make it negative.

(The constant 03 77 is appropriate for the PDP-11 but not necessarily for other machines.)

The second version of ge tc ha r does input in big chunks, and hands out the characters one at a

time.

#de fin e CMA SK 037 7 /* for mak ing cha r’s > 0 */

#de fin e BUF SIZ E 512

get cha r() /* buf fer ed ver sio n */

{

sta tic cha r buf [BU FSI ZE] ;

sta tic cha r *buf p = buf ;

sta tic int n = 0;

if (n == 0) { /* buf fer is emp ty */

n = rea d(0 , buf , BUF SIZ E);

buf p = buf ;

}

ret urn ((- -n >= 0) ? *buf p++ & CMA SK : EOF);

}

4. 3. O Op pe en n, , C Cr re ea at t, , C Cl lo os se e, , U Un nl li in nk k

Other than the default standard input, output and error files, you must explicitly open files in order

to read or write them. There are two system entry points for this, op en and cr ea t [sic].

op en is rather like the fo pe n discussed in the previous section, except that instead of returning a

file pointer, it returns a file descriptor, which is just an in t.

int fd;

fd = ope n(n ame , rwm ode);

- 8 -

As with fo pe n, the na me argument is a character string corresponding to the external file name. The

access mode argument is different, however: rw mo de is 0 for read, 1 for write, and 2 for read and

write access. op en returns -1 if any error occurs; otherwise it returns a valid file descriptor.

It is an error to try to op en a file that does not exist. The entry point cr ea t is provided to create

new files, or to re-write old ones.

fd = cre at(nam e, pmo de) ;

returns a file descriptor if it was able to create the file called na me, and -1 if not. If the file already

exists, cr ea t will truncate it to zero length; it is not an error to cr ea t a file that already exists.

If the file is brand new, cr ea t creates it with the protection mode specified by the pm od e argu-

ment. In the UNIX file system, there are nine bits of protection information associated with a file, con-

trolling read, write and execute permission for the owner of the file, for the owner’s group, and for all

others. Thus a three-digit octal number is most convenient for specifying the permissions. For example,

0755 specifies read, write and execute permission for the owner, and read and execute permission for the

group and everyone else.

To illustrate, here is a simplified version of the UNIX utility cp , a program which copies one file to

another. (The main simplification is that our version copies only one file, and does not permit the

second argument to be a directory.)

#de fin e NUL L 0

#de fin e BUF SIZ E 512

#de fin e PMO DE 064 4 /* RW for own er, R for gro up, oth ers */

mai n(a rgc , arg v) /* cp: cop y f1 to f2 */

int arg c;

cha r *arg v[] ;

{

int f1, f2, n;

cha r buf [BU FSI ZE] ;

if (ar gc != 3)

err or("Us age : cp fro m to" , NUL L);

if ((f 1 = ope n(a rgv [1] , 0)) == -1)

err or("cp : can ’t ope n %s" , arg v[1]);

if ((f 2 = cre at(arg v[2], PMO DE)) == -1)

err or("cp : can ’t cre ate %s" , arg v[2]);

whi le ((n = rea d(f 1, buf , BUF SIZ E)) > 0)

if (wr ite (f2 , buf , n) != n)

err or("cp : wri te err or" , NUL L);

exi t(0);

}

err or(s1, s2) /* pri nt err or mes sag e and die */

cha r *s1, *s2;

{

pri ntf (s1 , s2) ;

pri ntf ("\n") ;

exi t(1);

}

As we said earlier, there is a limit (typically 15-25) on the number of files which a program may

have open simultaneously. Accordingly, any program which intends to process many files must be

prepared to re-use file descriptors. The routine cl os e breaks the connection between a file descriptor

and an open file, and frees the file descriptor for use with some other file. Termination of a program via

ex it or return from the main program closes all open files.

- 9 -

The function un li nk (f il en am e) removes the file fi le na me from the file system.

4. 4. R Ra an nd do om m A Ac cc ce es ss s — — S Se ee ek k a an nd d L Ls se ee ek k

File I/O is normally sequential: each re ad or wr it e takes place at a position in the file right

after the previous one. When necessary, however, a file can be read or written in any arbitrary order.

The system call ls ee k provides a way to move around in a file without actually reading or writing:

lse ek(fd, off set , ori gin);

forces the current position in the file whose descriptor is fd to move to position of fs et, which is

taken relative to the location specified by or ig in. Subsequent reading or writing will begin at that

position. of fs et is a lo ng; fd and or ig in are in t’s. or ig in can be 0, 1, or 2 to specify that

of fs et is to be measured from the beginning, from the current position, or from the end of the file

respectively. For example, to append to a file, seek to the end before writing:

lse ek(fd, 0L, 2);

To get back to the beginning (‘‘rewind’’),

lse ek(fd, 0L, 0);

Notice the 0L argument; it could also be written as (l on g) 0.

With ls ee k, it is possible to treat files more or less like large arrays, at the price of slower access.

For example, the following simple function reads any number of bytes from any arbitrary place in a file.

get (fd , pos , buf , n) /* rea d n byt es fro m pos iti on pos */

int fd, n;

lon g pos ;

cha r *buf ;

{

lse ek(fd, pos , 0); /* get to pos */

ret urn (re ad(fd, buf , n)) ;

}

In pre-version 7 UNIX, the basic entry point to the I/O system is called se ek. se ek is identical to

ls ee k, except that its of fs et argument is an in t rather than a lo ng. Accordingly, since PDP-11

integers have only 16 bits, the of fs et specified for se ek is limited to 65,535; for this reason,

or ig in values of 3, 4, 5 cause se ek to multiply the given offset by 512 (the number of bytes in one

physical block) and then interpret or ig in as if it were 0, 1, or 2 respectively. Thus to get to an arbi-

trary place in a large file requires two seeks, first one which selects the block, then one which has

or ig in equal to 1 and moves to the desired byte within the block.

4. 5. E Er rr ro or r P Pr ro oc ce es ss si in ng g

The routines discussed in this section, and in fact all the routines which are direct entries into the

system can incur errors. Usually they indicate an error by returning a value of – 1. Sometimes it is nice

to know what sort of error occurred; for this purpose all these routines, when appropriate, leave an error

number in the external cell er rn o. The meanings of the various error numbers are listed in the intro-

duction to Section II of the UNIX Programmer’s Manual, so your program can, for example, determine

if an attempt to open a file failed because it did not exist or because the user lacked permission to read

it. Perhaps more commonly, you may want to print out the reason for failure. The routine pe rr or

will print a message associated with the value of er rn o; more generally, sy s— er rn o is an array of

character strings which can be indexed by er rn o and printed by your program.

5. P PR RO OC CE ES SS SE ES S

It is often easier to use a program written by someone else than to invent one’s own. This section

describes how to execute a program from within another.

- 10 -

5. 1. T Th he e ‘ ‘‘ ‘S Sy ys st te em m’ ’’ ’ F Fu un nc ct ti io on n

The easiest way to execute a program from another is to use the standard library routine sy st em.

sy st em takes one argument, a command string exactly as typed at the terminal (except for the newline

at the end) and executes it. For instance, to time-stamp the output of a program,

mai n()

{

sys tem ("d ate ");

/* res t of pro ces sin g */

}

If the command string has to be built from pieces, the in-memory formatting capabilities of sp ri nt f

may be useful.

Remember than ge tc and pu tc normally buffer their input; terminal I/O will not be properly syn-

chronized unless this buffering is defeated. For output, use ff lu sh; for input, see se tb uf in the

appendix.

5. 2. L Lo ow w- -L Le ev ve el l P Pr ro oc ce es ss s C Cr re ea at ti io on n — — E Ex xe ec cl l a an nd d E Ex xe ec cv v

If you’re not using the standard library, or if you need finer control over what happens, you will

have to construct calls to other programs using the more primitive routines that the standard library’s

sy st em routine is based on.

The most basic operation is to execute another program without returning , by using the routine

ex ec l. To print the date as the last action of a running program, use

exe cl("/bin/dat e", "da te" , NUL L);

The first argument to ex ec l is the file name of the command; you have to know where it is found in

the file system. The second argument is conventionally the program name (that is, the last component

of the file name), but this is seldom used except as a place-holder. If the command takes arguments,

they are strung out after this; the end of the list is marked by a NU LL argument.

The ex ec l call overlays the existing program with the new one, runs that, then exits. There is no

return to the original program.

More realistically, a program might fall into two or more phases that communicate only through

temporary files. Here it is natural to make the second pass simply an ex ec l call from the first.

The one exception to the rule that the original program never gets control back occurs when there is

an error, for example if the file can’t be found or is not executable. If you don’t know where da te is

located, say

exe cl("/bin/dat e", "da te" , NUL L);

exe cl("/usr/bin/dat e", "da te" , NUL L);

fpr int f(s tde rr, "So meo ne sto le ’da te’\n") ;

A variant of ex ec l called ex ec v is useful when you don’t know in advance how many argu-

ments there are going to be. The call is

exe cv(fil ena me, arg p);

where ar gp is an array of pointers to the arguments; the last pointer in the array must be NU LL so

ex ec v can tell where the list ends. As with ex ec l, fi le na me is the file in which the program is

found, and ar gp [0] is the name of the program. (This arrangement is identical to the ar gv array for

program arguments.)

Neither of these routines provides the niceties of normal command execution. There is no

automatic search of multiple directories — you have to know precisely where the command is located.

Nor do you get the expansion of metacharacters like <, >, *, ?, and [] in the argument list. If you

want these, use ex ec l to invoke the shell sh, which then does all the work. Construct a string

co mm an dl in e that contains the complete command as it would have been typed at the terminal, then

say

- 11 -

exe cl("/bin/sh" , "sh ", "-c ", com man dli ne, NUL L);

The shell is assumed to be at a fixed place, /bi n/sh. Its argument -c says to treat the next argument

as a whole command line, so it does just what you want. The only problem is in constructing the right

information in co mm an dl in e.

5. 3. C Co on nt tr ro ol l o of f P Pr ro oc ce es ss se es s — — F Fo or rk k a an nd d W Wa ai it t

So far what we’ve talked about isn’t really all that useful by itself. Now we will show how to

regain control after running a program with ex ec l or ex ec v. Since these routines simply overlay the

new program on the old one, to save the old one requires that it first be split into two copies; one of

these can be overlaid, while the other waits for the new, overlaying program to finish. The splitting is

done by a routine called fo rk:

pro c—i d = for k() ;

splits the program into two copies, both of which continue to run. The only difference between the two

is the value of pr oc —i d, the ‘‘process id.’’ In one of these processes (the ‘‘child’’), pr oc —i d is

zero. In the other (the ‘‘parent’’), pr oc —i d is non-zero; it is the process number of the child. Thus

the basic way to call, and return from, another program is

if (fo rk() == 0)

exe cl("/bin/sh" , "sh ", "-c ", cmd , NUL L);/* in chi ld */

And in fact, except for handling errors, this is sufficient. The fo rk makes two copies of the program.

In the child, the value returned by fo rk is zero, so it calls ex ec l which does the co mm an d and then

dies. In the parent, fo rk returns non-zero so it skips the ex ec l. (If there is any error, fo rk returns

-1).

More often, the parent wants to wait for the child to terminate before continuing itself. This can be

done with the function wa it:

int sta tus ;

if (fo rk() == 0)

exe cl(...);

wai t(& sta tus);

This still doesn’t handle any abnormal conditions, such as a failure of the ex ec l or fo rk, or the pos-

sibility that there might be more than one child running simultaneously. (The wa it returns the process

id of the terminated child, if you want to check it against the value returned by fo rk.) Finally, this

fragment doesn’t deal with any funny behavior on the part of the child (which is reported in st at us).

Still, these three lines are the heart of the standard library’s sy st em routine, which we’ll show in a

moment.

The st at us returned by wa it encodes in its low-order eight bits the system’s idea of the child’s

termination status; it is 0 for normal termination and non-zero to indicate various kinds of problems.

The next higher eight bits are taken from the argument of the call to ex it which caused a normal ter-

mination of the child process. It is good coding practice for all programs to return meaningful status.

When a program is called by the shell, the three file descriptors 0, 1, and 2 are set up pointing at

the right files, and all other possible file descriptors are available for use. When this program calls

another one, correct etiquette suggests making sure the same conditions hold. Neither fo rk nor the

ex ec calls affects open files in any way. If the parent is buffering output that must come out before

output from the child, the parent must flush its buffers before the ex ec l. Conversely, if a caller

buffers an input stream, the called program will lose any information that has been read by the caller.

- 12 -

5. 4. P Pi ip pe es s

A pipe is an I/O channel intended for use between two cooperating processes: one process writes

into the pipe, while the other reads. The system looks after buffering the data and synchronizing the

two processes. Most pipes are created by the shell, as in

ls | pr

which connects the standard output of ls to the standard input of pr. Sometimes, however, it is most

convenient for a process to set up its own plumbing; in this section, we will illustrate how the pipe con-

nection is established and used.

The system call pi pe creates a pipe. Since a pipe is used for both reading and writing, two file

descriptors are returned; the actual usage is like this:

int fd[2];

sta t = pip e(f d);

if (st at == -1)

/* the re was an err or ... */

fd is an array of two file descriptors, where fd [0] is the read side of the pipe and fd [1] is for writ-

ing. These may be used in re ad, wr it e and cl os e calls just like any other file descriptors.

If a process reads a pipe which is empty, it will wait until data arrives; if a process writes into a

pipe which is too full, it will wait until the pipe empties somewhat. If the write side of the pipe is

closed, a subsequent re ad will encounter end of file.

To illustrate the use of pipes in a realistic setting, let us write a function called

po pe n(cm d, mo de), which creates a process cm d (just as sy st em does), and returns a file descrip-

tor that will either read or write that process, according to mo de. That is, the call

fou t = pop en("pr ", WRI TE) ;

creates a process that executes the pr command; subsequent wr it e calls using the file descriptor

fo ut will send their data to that process through the pipe.

po pe n first creates the the pipe with a pi pe system call; it then fo rks to create two copies of

itself. The child decides whether it is supposed to read or write, closes the other side of the pipe, then

calls the shell (via ex ec l) to run the desired process. The parent likewise closes the end of the pipe it

does not use. These closes are necessary to make end-of-file tests work properly. For example, if a

child that intends to read fails to close the write end of the pipe, it will never see the end of the pipe

file, just because there is one writer potentially active.

- 13 -

#in clu de <st dio .h>

#de fin e REA D 0

#de fin e WRI TE 1

#de fin e tst (a, b) (mo de == REA D ? (b) : (a))

sta tic int pop en— pid ;

pop en(cmd , mod e)

cha r *cmd ;

int mod e;

{

int p[2];

if (pi pe(p) < 0)

ret urn (NU LL) ;

if ((p ope n—p id = for k()) == 0) {

clo se(tst (p[WRI TE] , p[R EAD])) ;

clo se(tst (0, 1)) ;

dup (ts t(p [RE AD] , p[W RIT E]));

clo se(tst (p[REA D], p[W RIT E]));

exe cl("/bin/sh" , "sh ", "-c ", cmd , 0);

—ex it(1); /* dis ast er has occ urr ed if we get her e */

}

if (po pen —pi d == -1)

ret urn (NU LL) ;

clo se(tst (p[REA D], p[W RIT E]));

ret urn (ts t(p [WR ITE], p[R EAD])) ;

}

The sequence of cl os es in the child is a bit tricky. Suppose that the task is to create a child process

that will read data from the parent. Then the first cl os e closes the write side of the pipe, leaving the

read side open. The lines

clo se(tst (0, 1)) ;

dup (ts t(p [RE AD] , p[W RIT E]));

are the conventional way to associate the pipe descriptor with the standard input of the child. The

cl os e closes file descriptor 0, that is, the standard input. du p is a system call that returns a duplicate

of an already open file descriptor. File descriptors are assigned in increasing order and the first available

one is returned, so the effect of the du p is to copy the file descriptor for the pipe (read side) to file

descriptor 0; thus the read side of the pipe becomes the standard input. (Yes, this is a bit tricky, but it’s

a standard idiom.) Finally, the old read side of the pipe is closed.

A similar sequence of operations takes place when the child process is supposed to write from the

parent instead of reading. You may find it a useful exercise to step through that case.

The job is not quite done, for we still need a function pc lo se to close the pipe created by

po pe n. The main reason for using a separate function rather than cl os e is that it is desirable to wait

for the termination of the child process. First, the return value from pc lo se indicates whether the pro-

cess succeeded. Equally important when a process creates several children is that only a bounded

number of unwaited-for children can exist, even if some of them have terminated; performing the wa it

lays the child to rest. Thus:

- 14 -

#in clu de <si gna l.h >

pcl ose (fd) /* clo se pip e fd */

int fd;

{

reg ist er r, (*hst at) (), (*ist at) (), (*qst at) ();

int sta tus ;

ext ern int pop en— pid ;

clo se(fd) ;

ist at = sig nal (SI GIN T, SIG —IG N);

qst at = sig nal (SI GQU IT, SIG —IG N);

hst at = sig nal (SI GHU P, SIG —IG N);

whi le ((r = wai t(& sta tus)) != pop en— pid && r != -1) ;

if (r == -1)

sta tus = -1;

sig nal (SI GIN T, ist at) ;

sig nal (SI GQU IT, qst at) ;

sig nal (SI GHU P, hst at) ;

ret urn (st atu s);

}

The calls to si gn al make sure that no interrupts, etc., interfere with the waiting process; this is the

topic of the next section.

The routine as written has the limitation that only one pipe may be open at once, because of the sin-

gle shared variable po pe n— pi d; it really should be an array indexed by file descriptor. A po pe n

function, with slightly different arguments and return value is available as part of the standard I/O

library discussed below. As currently written, it shares the same limitation.

6. S SI IG GN NA AL LS S — — I IN NT TE ER RR RU UP PT TS S A AN ND D A AL LL L T TH HA AT T

This section is concerned with how to deal gracefully with signals from the outside world (like

interrupts), and with program faults. Since there’s nothing very useful that can be done from within C

about program faults, which arise mainly from illegal memory references or from execution of peculiar

instructions, we’ll discuss only the outside-world signals: interrupt , which is sent when the DEL charac-

ter is typed; quit , generated by the FS character; hangup , caused by hanging up the phone; and ter-

minate , generated by the kill command. When one of these events occurs, the signal is sent to all

processes which were started from the corresponding terminal; unless other arrangements have been

made, the signal terminates the process. In the quit case, a core image file is written for debugging pur-

poses.

The routine which alters the default action is called si gn al. It has two arguments: the first

specifies the signal, and the second specifies how to treat it. The first argument is just a number code,

but the second is the address is either a function, or a somewhat strange code that requests that the sig-

nal either be ignored, or that it be given the default action. The include file si gn al .h gives names

for the various arguments, and should always be included when signals are used. Thus

#in clu de <si gna l.h >

...

sig nal (SI GIN T, SIG —IG N);

causes interrupts to be ignored, while

sig nal (SI GIN T, SIG —DF L);

restores the default action of process termination. In all cases, si gn al returns the previous value of

the signal. The second argument to si gn al may instead be the name of a function (which has to be

declared explicitly if the compiler hasn’t seen it already). In this case, the named routine will be called

when the signal occurs. Most commonly this facility is used to allow the program to clean up

unfinished business before terminating, for example to delete a temporary file:

- 15 -

#in clu de <si gna l.h >

mai n()

{

int oni ntr ();

if (si gna l(S IGI NT, SIG —IG N) != SIG —IG N)

sig nal (SI GIN T, oni ntr);

/* Pro ces s ... */

exi t(0);

}

oni ntr ()

{

unl ink (te mpf ile);

exi t(1);

}

Why the test and the double call to si gn al? Recall that signals like interrupt are sent to all

processes started from a particular terminal. Accordingly, when a program is to be run non-interactively

(started by &), the shell turns off interrupts for it so it won’t be stopped by interrupts intended for fore-

ground processes. If this program began by announcing that all interrupts were to be sent to the

on in tr routine regardless, that would undo the shell’s effort to protect it when run in the background.

The solution, shown above, is to test the state of interrupt handling, and to continue to ignore inter-

rupts if they are already being ignored. The code as written depends on the fact that si gn al returns

the previous state of a particular signal. If signals were already being ignored, the process should con-

tinue to ignore them; otherwise, they should be caught.

A more sophisticated program may wish to intercept an interrupt and interpret it as a request to stop

what it is doing and return to its own command-processing loop. Think of a text editor: interrupting a

long printout should not cause it to terminate and lose the work already done. The outline of the code

for this case is probably best written like this:

#in clu de <si gna l.h >

#in clu de <se tjm p.h >

jmp —bu f sjb uf;

mai n()

{

int (*ist at) (), oni ntr ();

ist at = sig nal (SI GIN T, SIG —IG N); /* sav e ori gin al sta tus */

set jmp (sj buf); /* sav e cur ren t sta ck pos iti on */

if (is tat != SIG —IG N)

sig nal (SI GIN T, oni ntr);

/* mai n pro ces sin g loo p */

}

oni ntr ()

{

pri ntf ("\nIn ter rup t\n") ;

lon gjm p(s jbu f); /* ret urn to sav ed sta te */

}

The include file se tj mp .h declares the type jm p— bu f an object in which the state can be saved.

sj bu f is such an object; it is an array of some sort. The se tj mp routine then saves the state of

- 16 -

things. When an interrupt occurs, a call is forced to the on in tr routine, which can print a message,

set flags, or whatever. lo ng jm p takes as argument an object stored into by se tj mp, and restores

control to the location after the call to se tj mp, so control (and the stack level) will pop back to the

place in the main routine where the signal is set up and the main loop entered. Notice, by the way, that

the signal gets set again after an interrupt occurs. This is necessary; most signals are automatically reset

to their default action when they occur.

Some programs that want to detect signals simply can’t be stopped at an arbitrary point, for exam-

ple in the middle of updating a linked list. If the routine called on occurrence of a signal sets a flag and

then returns instead of calling ex it or lo ng jm p, execution will continue at the exact point it was

interrupted. The interrupt flag can then be tested later.

There is one difficulty associated with this approach. Suppose the program is reading the terminal

when the interrupt is sent. The specified routine is duly called; it sets its flag and returns. If it were

really true, as we said above, that ‘‘execution resumes at the exact point it was interrupted,’’ the pro-

gram would continue reading the terminal until the user typed another line. This behavior might well be

confusing, since the user might not know that the program is reading; he presumably would prefer to

have the signal take effect instantly. The method chosen to resolve this difficulty is to terminate the ter-

minal read when execution resumes after the signal, returning an error code which indicates what hap-

pened.

Thus programs which catch and resume execution after signals should be prepared for ‘‘errors’’

which are caused by interrupted system calls. (The ones to watch out for are reads from a terminal,

wa it, and pa us e.) A program whose on in tr program just sets in tf la g, resets the interrupt sig-

nal, and returns, should usually include code like the following when it reads the standard input:

if (ge tch ar() == EOF)

if (in tfl ag)

/* EOF cau sed by int err upt */

els e

/* tru e end -of -fi le */

A final subtlety to keep in mind becomes important when signal-catching is combined with execu-

tion of other programs. Suppose a program catches interrupts, and also includes a method (like ‘‘!’’ in

the editor) whereby other programs can be executed. Then the code should look something like this:

if (fo rk() == 0)

exe cl(...);

sig nal (SI GIN T, SIG —IG N); /* ign ore int err upt s */

wai t(& sta tus); /* unt il the chi ld is don e */

sig nal (SI GIN T, oni ntr); /* res tor e int err upt s */

Why is this? Again, it’s not obvious but not really difficult. Suppose the program you call catches its

own interrupts. If you interrupt the subprogram, it will get the signal and return to its main loop, and

probably read your terminal. But the calling program will also pop out of its wait for the subprogram

and read your terminal. Having two processes reading your terminal is very unfortunate, since the sys-

tem figuratively flips a coin to decide who should get each line of input. A simple way out is to have

the parent program ignore interrupts until the child is done. This reasoning is reflected in the standard

I/O library function sy st em:

- 17 -

#in clu de <si gna l.h >

sys tem (s) /* run com man d str ing s */

cha r *s;

{

int sta tus , pid , w;

reg ist er int (*ist at) (), (*qst at) ();

if ((p id = for k()) == 0) {

exe cl("/bin/sh" , "sh ", "-c ", s, 0);

—ex it(127);

}

ist at = sig nal (SI GIN T, SIG —IG N);

qst at = sig nal (SI GQU IT, SIG —IG N);

whi le ((w = wai t(& sta tus)) != pid && w != -1)

;

if (w == -1)

sta tus = -1;

sig nal (SI GIN T, ist at) ;

sig nal (SI GQU IT, qst at) ;

ret urn (st atu s);

}

As an aside on declarations, the function si gn al obviously has a rather strange second argument.

It is in fact a pointer to a function delivering an integer, and this is also the type of the signal routine

itself. The two values SI G— IG N and SI G— DF L have the right type, but are chosen so they coincide

with no possible actual functions. For the enthusiast, here is how they are defined for the PDP-11; the

definitions should be sufficiently ugly and nonportable to encourage use of the include file.

#de fin e SIG —DF L (in t (*)())0

#de fin e SIG —IG N (in t (*)())1

R Re ef fe er re en nc ce es s

[1] K. L. Thompson and D. M. Ritchie, The UNIX Programmer’s Manual, Bell Laboratories, 1978.

[2] B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Inc., 1978.

[3] B. W. Kernighan, ‘‘UNIX for Beginners — Second Edition.’’ Bell Laboratories, 1978.

- 18 -

Appendix — The Standard I/O Library

D. M. Ritchie

Bell Laboratories

Murray Hill, New Jersey 07974

The standard I/O library was designed with the following goals in mind.

1. It must be as efficient as possible, both in time and in space, so that there will be no hesitation in

using it no matter how critical the application.

2. It must be simple to use, and also free of the magic numbers and mysterious calls whose use mars

the understandability and portability of many programs using older packages.

3. The interface provided should be applicable on all machines, whether or not the programs which

implement it are directly portable to other systems, or to machines other than the PDP-11 running a

version of UNIX.

1 1. . G Ge en ne er ra al l U Us sa ag ge e

Each program using the library must have the line

#in clu de <st dio .h>

which defines certain macros and variables. The routines are in the normal C library, so no special

library argument is needed for loading. All names in the include file intended only for internal use

begin with an underscore — to reduce the possibility of collision with a user name. The names intended

to be visible outside the package are

st di n The name of the standard input file

st do ut The name of the standard output file

st de rr The name of the standard error file

EO F is actually – 1, and is the value returned by the read routines on end-of-file or error.

NU LL is a notation for the null pointer, returned by pointer-valued functions to indicate an error

FI LE expands to st ru ct —i ob and is a useful shorthand when declaring pointers to streams.

BU FS IZ is a number (viz. 512) of the size suitable for an I/O buffer supplied by the user. See

se tb uf, below.

ge tc , ge tc ha r, pu tc , pu tc ha r, fe of , fe rr or , fi le no

are defined as macros. Their actions are described below; they are mentioned here to point

out that it is not possible to redeclare them and that they are not actually functions; thus, for

example, they may not have breakpoints set on them.

The routines in this package offer the convenience of automatic buffer allocation and output flushing

where appropriate. The names st di n, st do ut, and st de rr are in effect constants and may not be

assigned to.

2 2. . C Ca al ll ls s

FI LE *fo pe n(fi le na me , ty pe) ch ar *fi le na me , *ty pe ;

opens the file and, if needed, allocates a buffer for it. fi le na me is a character string specifying

the name. ty pe is a character string (not a single character). It may be "r ", "w ", or "a " to

indicate intent to read, write, or append. The value returned is a file pointer. If it is NU LL the

attempt to open failed.

FI LE *fr eo pe n(fi le na me , ty pe , io pt r) ch ar *fi le na me , *ty pe ; FI LE *io pt r;

The stream named by io pt r is closed, if necessary, and then reopened as if by fo pe n. If the

attempt to open fails, NU LL is returned, otherwise io pt r, which will now refer to the new file.

Often the reopened stream is st di n or st do ut.

- 19 -

in t ge tc (i op tr) FI LE *io pt r;

returns the next character from the stream named by io pt r, which is a pointer to a file such as

returned by fo pe n, or the name st di n. The integer EO F is returned on end-of-file or when an

error occurs. The null character \0 is a legal character.

in t fg et c(io pt r) FI LE *io pt r;

acts like ge tc but is a genuine function, not a macro, so it can be pointed to, passed as an argu-

ment, etc.

pu tc (c , io pt r) FI LE *io pt r;

pu tc writes the character c on the output stream named by io pt r, which is a value returned

from fo pe n or perhaps st do ut or st de rr. The character is returned as value, but EO F is

returned on error.

fp ut c(c, io pt r) FI LE *io pt r;

acts like pu tc but is a genuine function, not a macro.

fc lo se (i op tr) FI LE *io pt r;

The file corresponding to io pt r is closed after any buffers are emptied. A buffer allocated by the

I/O system is freed. fc lo se is automatic on normal termination of the program.

ff lu sh (i op tr) FI LE *io pt r;

Any buffered information on the (output) stream named by io pt r is written out. Output files are

normally buffered if and only if they are not directed to the terminal; however, st de rr always

starts off unbuffered and remains so unless se tb uf is used, or unless it is reopened.

ex it (e rr co de);

terminates the process and returns its argument as status to the parent. This is a special version of

the routine which calls ff lu sh for each output file. To terminate without flushing, use —e xi t.

fe of (i op tr) FI LE *io pt r;

returns non-zero when end-of-file has occurred on the specified input stream.

fe rr or (i op tr) FI LE *io pt r;

returns non-zero when an error has occurred while reading or writing the named stream. The error

indication lasts until the file has been closed.

ge tc ha r();

is identical to ge tc (s td in).

pu tc ha r(c) ;

is identical to pu tc (c , st do ut).

ch ar *fg et s(s, n, io pt r) ch ar *s; FI LE *io pt r;

reads up to n- 1 characters from the stream io pt r into the character pointer s. The read ter-

minates with a newline character. The newline character is placed in the buffer followed by a null

character. fg et s returns the first argument, or NU LL if error or end-of-file occurred.

fp ut s(s, io pt r) ch ar *s; FI LE *io pt r;

writes the null-terminated string (character array) s on the stream io pt r. No newline is appended.

No value is returned.

un ge tc (c , io pt r) FI LE *io pt r;

The argument character c is pushed back on the input stream named by io pt r. Only one charac-

ter may be pushed back.

pr in tf (f or ma t, a1 , .. .) ch ar *fo rm at ;

fp ri nt f(io pt r, fo rm at , a1 , .. .) FI LE *io pt r; ch ar *fo rm at ;

sp ri nt f(s, fo rm at , a1 , .. .) ch ar *s, *fo rm at ;

pr in tf writes on the standard output. fp ri nt f writes on the named output stream. sp ri nt f

puts characters in the character array (string) named by s. The specifications are as described in

section pr in tf(3) of the UNIX Programmer’s Manual.

- 20 -

sc an f(fo rm at , a1 , .. .) ch ar *fo rm at ;

fs ca nf (i op tr , fo rm at , a1 , .. .) FI LE *io pt r; ch ar *fo rm at ;

ss ca nf (s , fo rm at , a1 , .. .) ch ar *s, *fo rm at ;

sc an f reads from the standard input. fs ca nf reads from the named input stream. ss ca nf

reads from the character string supplied as s. sc an f reads characters, interprets them according to

a format, and stores the results in its arguments. Each routine expects as arguments a control string

fo rm at, and a set of arguments, each of which must be a pointer, indicating where the converted

input should be stored.

sc an f returns as its value the number of successfully matched and assigned input items. This can

be used to decide how many input items were found. On end of file, EO F is returned; note that this

is different from 0, which means that the next input character does not match what was called for in

the control string.

fr ea d(pt r, si ze of (*pt r) , ni te ms , io pt r) FI LE *io pt r;

reads ni te ms of data beginning at pt r from file io pt r. No advance notification that binary I/O

is being done is required; when, for portability reasons, it becomes required, it will be done by

adding an additional character to the mode-string on the fo pe n call.

fw ri te (p tr , si ze of (*pt r) , ni te ms , io pt r) FI LE *io pt r;

Like fr ea d, but in the other direction.

re wi nd (i op tr) FI LE *io pt r;

rewinds the stream named by io pt r. It is not very useful except on input, since a rewound output

file is still open only for output.

sy st em (s tr in g) ch ar *st ri ng ;

The st ri ng is executed by the shell as if typed at the terminal.

ge tw (i op tr) FI LE *io pt r;

returns the next word from the input stream named by io pt r. EO F is returned on end-of-file or

error, but since this a perfectly good integer fe of and fe rr or should be used. A ‘‘word’’ is 16

bits on the PDP-11.

pu tw (w , io pt r) FI LE *io pt r;

writes the integer w on the named output stream.

se tb uf (i op tr , bu f) FI LE *io pt r; ch ar *bu f;

se tb uf may be used after a stream has been opened but before I/O has started. If bu f is NU LL,

the stream will be unbuffered. Otherwise the buffer supplied will be used. It must be a character

array of sufficient size:

cha r buf [BU FSI Z];

fi le no (i op tr) FI LE *io pt r;

returns the integer file descriptor associated with the file.

fs ee k(io pt r, of fs et , pt rn am e) FI LE *io pt r; lo ng of fs et ;

The location of the next byte in the stream named by io pt r is adjusted. of fs et is a long

integer. If pt rn am e is 0, the offset is measured from the beginning of the file; if pt rn am e is 1,

the offset is measured from the current read or write pointer; if pt rn am e is 2, the offset is meas-

ured from the end of the file. The routine accounts properly for any buffering. (When this routine

is used on non-UNIX systems, the offset must be a value returned from ft el l and the ptrname

must be 0).

lo ng ft el l(io pt r) FI LE *io pt r;

The byte offset, measured from the beginning of the file, associated with the named stream is

returned. Any buffering is properly accounted for. (On non-UNIX systems the value of this call is

useful only for handing to fs ee k, so as to position the file to the same place it was when ft el l

was called.)

- 21 -

ge tp w(ui d, bu f) ch ar *bu f;

The password file is searched for the given integer user ID. If an appropriate line is found, it is

copied into the character array bu f, and 0 is returned. If no line is found corresponding to the user

ID then 1 is returned.

ch ar *ma ll oc (n um);

allocates nu m bytes. The pointer returned is sufficiently well aligned to be usable for any purpose.

NU LL is returned if no space is available.

ch ar *ca ll oc (n um , si ze);

allocates space for nu m items each of size si ze. The space is guaranteed to be set to 0 and the

pointer is sufficiently well aligned to be usable for any purpose. NU LL is returned if no space is

available .

cf re e(pt r) ch ar *pt r;

Space is returned to the pool used by ca ll oc. Disorder can be expected if the pointer was not

obtained from ca ll oc.

The following are macros whose definitions may be obtained by including <c ty pe .h >.

is al ph a(c) returns non-zero if the argument is alphabetic.

is up pe r(c) returns non-zero if the argument is upper-case alphabetic.

is lo we r(c) returns non-zero if the argument is lower-case alphabetic.

is di gi t(c) returns non-zero if the argument is a digit.

is sp ac e(c) returns non-zero if the argument is a spacing character: tab, newline, carriage return,

vertical tab, form feed, space.

is pu nc t(c) returns non-zero if the argument is any punctuation character, i.e., not a space, letter,

digit or control character.

is al nu m(c) returns non-zero if the argument is a letter or a digit.

is pr in t(c) returns non-zero if the argument is printable — a letter, digit, or punctuation character.

is cn tr l(c) returns non-zero if the argument is a control character.

is as ci i(c) returns non-zero if the argument is an ascii character, i.e., less than octal 0200.

to up pe r(c) returns the upper-case character corresponding to the lower-case letter c.

to lo we r(c) returns the lower-case character corresponding to the upper-case letter c.

	UNIX Programming

