
Awk — A Pattern Scanning and Processing Language

(Second Edition)

Alfred V. Aho

Brian W. Kernighan

Peter J. Weinberger

Bell Laboratories

Murray Hill, New Jersey 07974

ABSTRACT

Awk is a programming language whose basic operation is to search a set of files

for patterns, and to perform specified actions upon lines or fields of lines which contain

instances of those patterns. Awk makes certain data selection and transformation

operations easy to express; for example, the awk program

length > 72

prints all input lines whose length exceeds 72 characters; the program

NF % 2 == 0

prints all lines with an even number of fields; and the program

{ $1 = log($1); print }

replaces the first field of each line by its logarithm.

Awk patterns may include arbitrary boolean combinations of regular expressions

and of relational operators on strings, numbers, fields, variables, and array elements.

Actions may include the same pattern-matching constructions as in patterns, as well as

arithmetic and string expressions and assignments, if-else, while, for statements, and

multiple output streams.

This report contains a user’s guide, a discussion of the design and implementa-

tion of awk , and some timing statistics.

September 1, 1978

Awk — A Pattern Scanning and Processing Language

(Second Edition)

Alfred V. Aho

Brian W. Kernighan

Peter J. Weinberger

Bell Laboratories

Murray Hill, New Jersey 07974

1. Introduction
Awk is a programming language designed to

make many common information retrieval and text

manipulation tasks easy to state and to perform.

The basic operation of awk is to scan a set of

input lines in order, searching for lines which match

any of a set of patterns which the user has specified.

For each pattern, an action can be specified; this

action will be performed on each line that matches

the pattern.

Readers familiar with the UNIX† program

grep 1 will recognize the approach, although in awk

the patterns may be more general than in grep , and

the actions allowed are more involved than merely

printing the matching line. For example, the awk

program

{print $3, $2}

prints the third and second columns of a table in that

order. The program

$2 ∼ /A |B |C/

prints all input lines with an A, B, or C in the second

field. The program

$1 != prev { print; prev = $1 }

prints all lines in which the first field is different from

the previous first field.

1.1. Usage

The command

awk program [files]

executes the awk commands in the string program
on the set of named files, or on the standard input if

there are no files. The statements can also be placed

in a file pfile, and executed by the command

awk – f pfile [files]

_ ____________________

†UNIX is a Trademark of Bell Laboratories.

1.2. Program Structure

An awk program is a sequence of statements

of the form:

pattern { action }
pattern { action }
...

Each line of input is matched against each of the pat-

terns in turn. For each pattern that matches, the asso-

ciated action is executed. When all the patterns have

been tested, the next line is fetched and the matching

starts over.

Either the pattern or the action may be left out,

but not both. If there is no action for a pattern, the

matching line is simply copied to the output. (Thus a

line which matches several patterns can be printed

several times.) If there is no pattern for an action,

then the action is performed for every input line. A

line which matches no pattern is ignored.

Since patterns and actions are both optional,

actions must be enclosed in braces to distinguish them

from patterns.

1.3. Records and Fields

Awk input is divided into ‘‘records’’ ter-

minated by a record separator. The default record

separator is a newline, so by default awk processes

its input a line at a time. The number of the current

record is available in a variable named NR.

Each input record is considered to be divided

into ‘‘fields.’’ Fields are normally separated by white

space — blanks or tabs — but the input field separa-

tor may be changed, as described below. Fields are

referred to as $1, $2, and so forth, where $1 is the

first field, and $0 is the whole input record itself.

Fields may be assigned to. The number of fields in

the current record is available in a variable named

NF.

The variables FS and RS refer to the input

field and record separators; they may be changed at

- 2 -

any time to any single character. The optional

command-line argument – Fc may also be used to set

FS to the character c .

If the record separator is empty, an empty

input line is taken as the record separator, and blanks,

tabs and newlines are treated as field separators.

The variable FILENAME contains the name of

the current input file.

1.4. Printing

An action may have no pattern, in which case

the action is executed for all lines. The simplest

action is to print some or all of a record; this is

accomplished by the awk command print. The awk

program

{ print }

prints each record, thus copying the input to the out-

put intact. More useful is to print a field or fields

from each record. For instance,

print $2, $1

prints the first two fields in reverse order. Items

separated by a comma in the print statement will be

separated by the current output field separator when

output. Items not separated by commas will be con-

catenated, so

print $1 $2

runs the first and second fields together.

The predefined variables NF and NR can be

used; for example

{ print NR, NF, $0 }

prints each record preceded by the record number and

the number of fields.

Output may be diverted to multiple files; the

program

{ print $1 >"foo1"; print $2 >"foo2" }

writes the first field, $1, on the file foo1, and the

second field on file foo2. The >> notation can also

be used:

print $1 >>"foo"

appends the output to the file foo. (In each case, the

output files are created if necessary.) The file name

can be a variable or a field as well as a constant; for

example,

print $1 >$2

uses the contents of field 2 as a file name.

Naturally there is a limit on the number of out-

put files; currently it is 10.

Similarly, output can be piped into another

process (on UNIX only); for instance,

print | "mail bwk"

mails the output to bwk.

The variables OFS and ORS may be used to

change the current output field separator and output

record separator. The output record separator is

appended to the output of the print statement.

Awk also provides the printf statement for out-

put formatting:

printf format expr, expr, ...

formats the expressions in the list according to the

specification in format and prints them. For example,

printf "%8.2f %10ld\n", $1, $2

prints $1 as a floating point number 8 digits wide,

with two after the decimal point, and $2 as a 10-digit

long decimal number, followed by a newline. No

output separators are produced automatically; you

must add them yourself, as in this example. The ver-

sion of printf is identical to that used with C.2

2. Patterns

A pattern in front of an action acts as a selec-

tor that determines whether the action is to be exe-

cuted. A variety of expressions may be used as pat-

terns: regular expressions, arithmetic relational

expressions, string-valued expressions, and arbitrary

boolean combinations of these.

2.1. BEGIN and END

The special pattern BEGIN matches the begin-

ning of the input, before the first record is read. The

pattern END matches the end of the input, after the

last record has been processed. BEGIN and END
thus provide a way to gain control before and after

processing, for initialization and wrapup.

As an example, the field separator can be set to

a colon by

BEGIN { FS = ":" }
... rest of program ...

Or the input lines may be counted by

END { print NR }

If BEGIN is present, it must be the first pattern; END
must be the last if used.

2.2. Regular Expressions

The simplest regular expression is a literal

string of characters enclosed in slashes, like

/smith/

This is actually a complete awk program which will

print all lines which contain any occurrence of the

name ‘‘smith’’. If a line contains ‘‘smith’’ as part of

a larger word, it will also be printed, as in

- 3 -

blacksmithing

Awk regular expressions include the regular

expression forms found in the UNIX text editor ed 1

and grep (without back-referencing). In addition,

awk allows parentheses for grouping, | for alterna-

tives, + for ‘‘one or more’’, and ? for ‘‘zero or one’’,

all as in lex . Character classes may be abbreviated:

[a– zA– Z0– 9] is the set of all letters and digits. As

an example, the awk program

/[Aa]ho |[Ww]einberger |[Kk]ernighan/

will print all lines which contain any of the names

‘‘Aho,’’ ‘‘Weinberger’’ or ‘‘Kernighan,’’ whether

capitalized or not.

Regular expressions (with the extensions listed

above) must be enclosed in slashes, just as in ed and

sed . Within a regular expression, blanks and the reg-

ular expression metacharacters are significant. To

turn of the magic meaning of one of the regular

expression characters, precede it with a backslash.

An example is the pattern

/ \/ .∗\//

which matches any string of characters enclosed in

slashes.

One can also specify that any field or variable

matches a regular expression (or does not match it)

with the operators ∼ and !∼. The program

$1 ∼ /[jJ]ohn/

prints all lines where the first field matches ‘‘john’’ or

‘‘John.’’ Notice that this will also match ‘‘Johnson’’,

‘‘St. Johnsbury’’, and so on. To restrict it to exactly

[jJ]ohn, use

$1 ∼ /ˆ[jJ]ohn$/

The caret ˆ refers to the beginning of a line or field;

the dollar sign $ refers to the end.

2.3. Relational Expressions

An awk pattern can be a relational expression

involving the usual relational operators <, <=, ==, !=,

>=, and >. An example is

$2 > $1 + 100

which selects lines where the second field is at least

100 greater than the first field. Similarly,

NF % 2 == 0

prints lines with an even number of fields.

In relational tests, if neither operand is

numeric, a string comparison is made; otherwise it is

numeric. Thus,

$1 >= "s"

selects lines that begin with an s, t, u, etc. In the

absence of any other information, fields are treated as

strings, so the program

$1 > $2

will perform a string comparison.

2.4. Combinations of Patterns

A pattern can be any boolean combination of

patterns, using the operators | | (or), && (and), and !
(not). For example,

$1 >= "s" && $1 < "t" && $1 != "smith"

selects lines where the first field begins with ‘‘s’’, but

is not ‘‘smith’’. && and | | guarantee that their

operands will be evaluated from left to right; evalua-

tion stops as soon as the truth or falsehood is deter-

mined.

2.5. Pattern Ranges

The ‘‘pattern’’ that selects an action may also

consist of two patterns separated by a comma, as in

pat1, pat2 { ... }

In this case, the action is performed for each line

between an occurrence of pat1 and the next

occurrence of pat2 (inclusive). For example,

/start/, /stop/

prints all lines between start and stop, while

NR == 100, NR == 200 { ... }

does the action for lines 100 through 200 of the input.

3. Actions

An awk action is a sequence of action state-

ments terminated by newlines or semicolons. These

action statements can be used to do a variety of book-

keeping and string manipulating tasks.

3.1. Built-in Functions

Awk provides a ‘‘length’’ function to compute

the length of a string of characters. This program

prints each record, preceded by its length:

{print length, $0}

length by itself is a ‘‘pseudo-variable’’ which yields

the length of the current record; length(argument) is

a function which yields the length of its argument, as

in the equivalent

{print length($0), $0}

The argument may be any expression.

Awk also provides the arithmetic functions

sqrt, log, exp, and int, for square root, base e loga-

rithm, exponential, and integer part of their respective

arguments.

The name of one of these built-in functions,

without argument or parentheses, stands for the value

- 4 -

of the function on the whole record. The program

length < 10 || length > 20

prints lines whose length is less than 10 or greater

than 20.

The function substr(s, m, n) produces the sub-

string of s that begins at position m (origin 1) and is

at most n characters long. If n is omitted, the sub-

string goes to the end of s. The function

index(s1, s2) returns the position where the string s2
occurs in s1, or zero if it does not.

The function sprintf(f, e1, e2, ...) produces the

value of the expressions e1, e2, etc., in the printf for-

mat specified by f. Thus, for example,

x = sprintf("%8.2f %10ld", $1, $2)

sets x to the string produced by formatting the values

of $1 and $2.

3.2. Variables, Expressions, and Assignments

Awk variables take on numeric (floating point)

or string values according to context. For example, in

x = 1

x is clearly a number, while in

x = "smith"

it is clearly a string. Strings are converted to

numbers and vice versa whenever context demands it.

For instance,

x = "3" + "4"

assigns 7 to x. Strings which cannot be interpreted as

numbers in a numerical context will generally have

numeric value zero, but it is unwise to count on this

behavior.

By default, variables (other than built-ins) are

initialized to the null string, which has numerical

value zero; this eliminates the need for most BEGIN
sections. For example, the sums of the first two fields

can be computed by

{ s1 += $1; s2 += $2 }
END { print s1, s2 }

Arithmetic is done internally in floating point.

The arithmetic operators are +, – , ∗, /, and % (mod).

The C increment ++ and decrement – – operators are

also available, and so are the assignment operators

+=, – =, ∗=, /=, and %=. These operators may all be

used in expressions.

3.3. Field Variables

Fields in awk share essentially all of the pro-

perties of variables — they may be used in arithmetic

or string operations, and may be assigned to. Thus

one can replace the first field with a sequence number

like this:

{ $1 = NR; print }

or accumulate two fields into a third, like this:

{ $1 = $2 + $3; print $0 }

or assign a string to a field:

{ if ($3 > 1000)
$3 = "too big"

print
}

which replaces the third field by ‘‘too big’’ when it

is, and in any case prints the record.

Field references may be numerical expressions,

as in

{ print $i, $(i+1), $(i+n) }

Whether a field is deemed numeric or string depends

on context; in ambiguous cases like

if ($1 == $2) ...

fields are treated as strings.

Each input line is split into fields automatically

as necessary. It is also possible to split any variable

or string into fields:

n = split(s, array, sep)

splits the the string s into array[1], ..., array[n]. The

number of elements found is returned. If the sep
argument is provided, it is used as the field separator;

otherwise FS is used as the separator.

3.4. String Concatenation

Strings may be concatenated. For example

length($1 $2 $3)

returns the length of the first three fields. Or in a

print statement,

print $1 " is " $2

prints the two fields separated by ‘‘ is ’’. Variables

and numeric expressions may also appear in concate-

nations.

3.5. Arrays

Array elements are not declared; they spring

into existence by being mentioned. Subscripts may

have any non-null value, including non-numeric

strings. As an example of a conventional numeric

subscript, the statement

x[NR] = $0

assigns the current input record to the NR-th element

of the array x. In fact, it is possible in principle

(though perhaps slow) to process the entire input in a

random order with the awk program

- 5 -

{ x[NR] = $0 }
END { ... program ... }

The first action merely records each input line in the

array x.

Array elements may be named by non-numeric

values, which gives awk a capability rather like the

associative memory of Snobol tables. Suppose the

input contains fields with values like apple, orange,

etc. Then the program

/apple/ { x["apple"]++ }
/orange/ { x["orange"]++ }
END { print x["apple"], x["orange"] }

increments counts for the named array elements, and

prints them at the end of the input.

3.6. Flow-of-Control Statements

Awk provides the basic flow-of-control state-

ments if-else, while, for, and statement grouping with

braces, as in C. We showed the if statement in sec-

tion 3.3 without describing it. The condition in

parentheses is evaluated; if it is true, the statement

following the if is done. The else part is optional.

The while statement is exactly like that of C.

For example, to print all input fields one per line,

i = 1
while (i <= NF) {

print $i
++i

}

The for statement is also exactly that of C:

for (i = 1; i <= NF; i++)
print $i

does the same job as the while statement above.

There is an alternate form of the for statement

which is suited for accessing the elements of an asso-

ciative array:

for (i in array)
statement

does statement with i set in turn to each element of

array. The elements are accessed in an apparently

random order. Chaos will ensue if i is altered, or if

any new elements are accessed during the loop.

The expression in the condition part of an if,
while or for can include relational operators like <,

<=, >, >=, == (‘‘is equal to’’), and != (‘‘not equal

to’’); regular expression matches with the match

operators ∼ and !∼; the logical operators | |, &&, and

!; and of course parentheses for grouping.

The break statement causes an immediate exit

from an enclosing while or for; the continue state-

ment causes the next iteration to begin.

The statement next causes awk to skip

immediately to the next record and begin scanning the

patterns from the top. The statement exit causes the

program to behave as if the end of the input had

occurred.

Comments may be placed in awk programs:

they begin with the character # and end with the end

of the line, as in

print x, y # this is a comment

4. Design

The UNIX system already provides several pro-

grams that operate by passing input through a selec-

tion mechanism. Grep , the first and simplest, merely

prints all lines which match a single specified pattern.

Egrep provides more general patterns, i.e., regular

expressions in full generality; fgrep searches for a set

of keywords with a particularly fast algorithm. Sed 1

provides most of the editing facilities of the editor

ed , applied to a stream of input. None of these pro-

grams provides numeric capabilities, logical relations,

or variables.

Lex 3 provides general regular expression

recognition capabilities, and, by serving as a C pro-

gram generator, is essentially open-ended in its capa-

bilities. The use of lex , however, requires a

knowledge of C programming, and a lex program

must be compiled and loaded before use, which

discourages its use for one-shot applications.

Awk is an attempt to fill in another part of the

matrix of possibilities. It provides general regular

expression capabilities and an implicit input/output

loop. But it also provides convenient numeric pro-

cessing, variables, more general selection, and control

flow in the actions. It does not require compilation or

a knowledge of C. Finally, awk provides a con-

venient way to access fields within lines; it is unique

in this respect.

Awk also tries to integrate strings and numbers

completely, by treating all quantities as both string

and numeric, deciding which representation is

appropriate as late as possible. In most cases the user

can simply ignore the differences.

Most of the effort in developing awk went into

deciding what awk should or should not do (for

instance, it doesn’t do string substitution) and what

the syntax should be (no explicit operator for concate-

nation) rather than on writing or debugging the code.

We have tried to make the syntax powerful but easy

to use and well adapted to scanning files. For exam-

ple, the absence of declarations and implicit initializa-

tions, while probably a bad idea for a general-purpose

programming language, is desirable in a language that

is meant to be used for tiny programs that may even

be composed on the command line.

- 6 -

In practice, awk usage seems to fall into two

broad categories. One is what might be called

‘‘report generation’’ — processing an input to extract

counts, sums, sub-totals, etc. This also includes the

writing of trivial data validation programs, such as

verifying that a field contains only numeric informa-

tion or that certain delimiters are properly balanced.

The combination of textual and numeric processing is

invaluable here.

A second area of use is as a data transformer,

converting data from the form produced by one pro-

gram into that expected by another. The simplest

examples merely select fields, perhaps with rearrange-

ments.

5. Implementation

The actual implementation of awk uses the

language development tools available on the UNIX

operating system. The grammar is specified with

yacc ;4 the lexical analysis is done by lex ; the regular

expression recognizers are deterministic finite auto-

mata constructed directly from the expressions. An

awk program is translated into a parse tree which is

then directly executed by a simple interpreter.

Awk was designed for ease of use rather than

processing speed; the delayed evaluation of variable

types and the necessity to break input into fields

makes high speed difficult to achieve in any case.

Nonetheless, the program has not proven to be

unworkably slow.

Table I below shows the execution (user + sys-

tem) time on a PDP-11/70 of the UNIX programs wc ,

grep , egrep , fgrep , sed , lex , and awk on the follow-

ing simple tasks:

1. count the number of lines.

2. print all lines containing ‘‘doug’’.

3. print all lines containing ‘‘doug’’, ‘‘ken’’ or

‘‘dmr’’.

4. print the third field of each line.

5. print the third and second fields of each line, in

that order.

6. append all lines containing ‘‘doug’’, ‘‘ken’’,

and ‘‘dmr’’ to files ‘‘jdoug’’, ‘‘jken’’, and

‘‘jdmr’’, respectively.

7. print each line prefixed by ‘‘line-number : ’’.

8. sum the fourth column of a table.

The program wc merely counts words, lines and char-

acters in its input; we have already mentioned the

others. In all cases the input was a file containing

10,000 lines as created by the command ls – l ; each

line has the form

– rw– rw– rw– 1 ava 123 Oct 15 17:05 xxx

The total length of this input is 452,960 characters.

Times for lex do not include compile or load.

As might be expected, awk is not as fast as the

specialized tools wc , sed , or the programs in the

grep family, but is faster than the more general tool

lex . In all cases, the tasks were about as easy to

express as awk programs as programs in these other

languages; tasks involving fields were considerably

easier to express as awk programs. Some of the test

programs are shown in awk , sed and lex .

References

1. K. Thompson and D. M. Ritchie, UNIX

Programmer’s Manual, Bell Laboratories (May

1975). Sixth Edition

2. B. W. Kernighan and D. M. Ritchie, The C

Programming Language, Prentice-Hall, Engle-

wood Cliffs, New Jersey (1978).

3. M. E. Lesk, ‘‘Lex — A Lexical Analyzer Gen-

erator,’’ Comp. Sci. Tech. Rep. No. 39, Bell

Laboratories, Murray Hill, New Jersey (1975).

4. S. C. Johnson, ‘‘Yacc — Yet Another

Compiler-Compiler,’’ Comp. Sci. Tech. Rep.

No. 32, Bell Laboratories, Murray Hill, New

Jersey (July 1975).

- 7 -

Task

Program 1 2 3 4 5 6 7 8_ ___
wc 8.6

grep 11.7 13.1

egrep 6.2 11.5 11.6

fgrep 7.7 13.8 16.1

sed 10.2 11.6 15.8 29.0 30.5 16.1

lex 65.1 150.1 144.2 67.7 70.3 104.0 81.7 92.8

awk 15.0 25.6 29.9 33.3 38.9 46.4 71.4 31.1_ ___ 

























































































Table I. Execution Times of Programs. (Times are in sec.)

The programs for some of these jobs are

shown below. The lex programs are generally too

long to show.

AWK:

1. END {print NR}

2. /doug/

3. /ken|doug|dmr/

4. {print $3}

5. {print $3, $2}

6. /ken/ {print >"jken"}
/doug/ {print >"jdoug"}
/dmr/{print >"jdmr"}

7. {print NR ": " $0}

8. {sum = sum + $4}
END {print sum}

SED:

1. $=

2. /doug/p

3. /doug/p
/doug/d
/ken/p
/ken/d
/dmr/p
/dmr/d

4. /[ˆ]∗ []∗[ˆ]∗ []∗\([ˆ]∗\) .∗/s//\1/p

5. /[ˆ]∗ []∗\([ˆ]∗\) []∗\([ˆ]∗\) .∗/s//\2 \1/p

6. /ken/w jken
/doug/w jdoug
/dmr/w jdmr

LEX:

1. %{
int i;
%}
%%
\n i++;
. ;
%%
yywrap() {

printf("%d\n", i);
}

2. %%
ˆ.∗doug.∗$ printf("%s\n", yytext);
. ;
\n ;

	Awk

