
A Dial-Up Network of UNIXTM Systems

D. A. Nowitz

M. E. Lesk

Bell Laboratories

Murray Hill, New Jersey 07974

ABSTRACT

A network of over eighty UNIX† computer systems has been established using the

telephone system as its primary communication medium. The network was designed

to meet the growing demands for software distribution and exchange. Some advan-

tages of our design are:

- The startup cost is low. A system needs only a dial-up port, but systems with

automatic calling units have much more flexibility.

- No operating system changes are required to install or use the system.

- The communication is basically over dial-up lines, however, hardwired commun-

ication lines can be used to increase speed.

- The command for sending/receiving files is simple to use.

Keywords: networks, communications, software distribution, software mainte-

nance

August 18, 1978

_ ______________
†UNIX is a Trademark of Bell Laboratories.



A Dial-Up Network of UNIXTM Systems

D. A. Nowitz

M. E. Lesk

Bell Laboratories

Murray Hill, New Jersey 07974

1. Purpose

The widespread use of the UNIX† system1 within Bell Laboratories has produced problems of

software distribution and maintenance. A conventional mechanism was set up to distribute the operating

system and associated programs from a central site to the various users. However this mechanism alone

does not meet all software distribution needs. Remote sites generate much software and must transmit it

to other sites. Some UNIX systems are themselves central sites for redistribution of a particular special-

ized utility, such as the Switching Control Center System. Other sites have particular, often long-

distance needs for software exchange; switching research, for example, is carried on in New Jersey, Illi-

nois, Ohio, and Colorado. In addition, general purpose utility programs are written at all UNIX system

sites. The UNIX system is modified and enhanced by many people in many places and it would be very

constricting to deliver new software in a one-way stream without any alternative for the user sites to

respond with changes of their own.

Straightforward software distribution is only part of the problem. A large project may exceed the

capacity of a single computer and several machines may be used by the one group of people. It then

becomes necessary for them to pass messages, data and other information back an forth between com-

puters.

Several groups with similar problems, both inside and outside of Bell Laboratories, have con-

structed networks built of hardwired connections only.23 Our network, however, uses both dial-up and

hardwired connections so that service can be provided to as many sites as possible.

2. Design Goals

Although some of our machines are connected directly, others can only communicate over low-

speed dial-up lines. Since the dial-up lines are often unavailable and file transfers may take considerable

time, we spool all work and transmit in the background. We also had to adapt to a community of sys-

tems which are independently operated and resistant to suggestions that they should all buy particular

hardware or install particular operating system modifications. Therefore, we make minimal demands on

the local sites in the network. Our implementation requires no operating system changes; in fact, the

transfer programs look like any other user entering the system through the normal dial-up login ports,

and obeying all local protection rules.

We distinguish ‘‘active’’ and ‘‘passive’’ systems on the network. Active systems have an

automatic calling unit or a hardwired line to another system, and can initiate a connection. Passive sys-

tems do not have the hardware to initiate a connection. However, an active system can be assigned the

job of calling passive systems and executing work found there; this makes a passive system the func-

tional equivalent of an active system, except for an additional delay while it waits to be polled. Also,

people frequently log into active systems and request copying from one passive system to another. This

requires two telephone calls, but even so, it is faster than mailing tapes.

Where convenient, we use hardwired communication lines. These permit much faster transmission

and multiplexing of the communications link. Dial-up connections are made at either 300 or 1200 baud;
__________________

†UNIX is a Trademark of Bell Laboratories.



- 2 - Nowitz

hardwired connections are asynchronous up to 9600 baud and might run even faster on special-purpose

communications hardware.45 Thus, systems typically join our network first as passive systems and when

they find the service more important, they acquire automatic calling units and become active systems;

eventually, they may install high-speed links to particular machines with which they handle a great deal

of traffic. At no point, however, must users change their programs or procedures.

The basic operation of the network is very simple. Each participating system has a spool direc-

tory, in which work to be done (files to be moved, or commands to be executed remotely) is stored. A

standard program, uucico , performs all transfers. This program starts by identifying a particular com-

munication channel to a remote system with which it will hold a conversation. Uucico then selects a

device and establishes the connection, logs onto the remote machine and starts the uucico program on

the remote machine. Once two of these programs are connected, they first agree on a line protocol, and

then start exchanging work. Each program in turn, beginning with the calling (active system) program,

transmits everything it needs, and then asks the other what it wants done. Eventually neither has any

more work, and both exit.

In this way, all services are available from all sites; passive sites, however, must wait until called.

A variety of protocols may be used; this conforms to the real, non-standard world. As long as the caller

and called programs have a protocol in common, they can communicate. Furthermore, each caller

knows the hours when each destination system should be called. If a destination is unavailable, the data

intended for it remain in the spool directory until the destination machine can be reached.

The implementation of this Bell Laboratories network between independent sites, all of which

store proprietary programs and data, illustratives the pervasive need for security and administrative con-

trols over file access. Each site, in configuring its programs and system files, limits and monitors

transmission. In order to access a file a user needs access permission for the machine that contains the

file and access permission for the file itself. This is achieved by first requiring the user to use his pass-

word to log into his local machine and then his local machine logs into the remote machine whose files

are to be accessed. In addition, records are kept identifying all files that are moved into and out of the

local system, and how the requestor of such accesses identified himself. Some sites may arrange to per-

mit users only to call up and request work to be done; the calling users are then called back before the

work is actually done. It is then possible to verify that the request is legitimate from the standpoint of

the target system, as well as the originating system. Furthermore, because of the call-back, no site can

masquerade as another even if it knows all the necessary passwords.

Each machine can optionally maintain a sequence count for conversations with other machines and

require a verification of the count at the start of each conversation. Thus, even if call back is not in use,

a successful masquerade requires the calling party to present the correct sequence number. A would-be

impersonator must not just steal the correct phone number, user name, and password, but also the

sequence count, and must call in sufficiently promptly to precede the next legitimate request from either

side. Even a successful masquerade will be detected on the next correct conversation.

3. Processing

The user has two commands which set up communications, uucp to set up file copying, and uux

to set up command execution where some of the required resources (system and/or files) are not on the

local machine. Each of these commands will put work and data files into the spool directory for execu-

tion by uucp daemons. Figure 1 shows the major blocks of the file transfer process.

File Copy

The uucico program is used to perform all communications between the two systems. It performs

the following functions:

- Scan the spool directory for work.

- Place a call to a remote system.



- 3 - Nowitz

- Negotiate a line protocol to be used.

- Start program uucico on the remote system.

- Execute all requests from both systems.

- Log work requests and work completions.

Uucico may be started in several ways;

a) by a system daemon,

b) by one of the uucp or uux programs,

c) by a remote system.

Scan For Work

The file names in the spool directory are constructed to allow the daemon programs (uucico,

uuxqt) to determine the files they should look at, the remote machines they should call and the order in

which the files for a particular remote machine should be processed.

Call Remote System

The call is made using information from several files which reside in the uucp program directory.

At the start of the call process, a lock is set on the system being called so that another call will not be

attempted at the same time.

The system name is found in a ‘‘systems’’ file. The information contained for each system is:

[1] system name,

[2] times to call the system (days-of-week and times-of-day),

[3] device or device type to be used for call,

[4] line speed,

[5] phone number,

[6] login information (multiple fields).

The time field is checked against the present time to see if the call should be made. The phone

number may contain abbreviations (e.g. ‘‘nyc’’, ‘‘boston’’) which get translated into dial sequences

using a ‘‘dial-codes’’ file. This permits the same ‘‘phone number’’ to be stored at every site, despite

local variations in telephone services and dialing conventions.

A ‘‘devices’’ file is scanned using fields [3] and [4] from the ‘‘systems’’ file to find an available

device for the connection. The program will try all devices which satisfy [3] and [4] until a connection

is made, or no more devices can be tried. If a non-multiplexable device is successfully opened, a lock

file is created so that another copy of uucico will not try to use it. If the connection is complete, the

login information is used to log into the remote system. Then a command is sent to the remote system

to start the uucico program. The conversation between the two uucico programs begins with a

handshake started by the called, SLAVE , system. The SLAVE sends a message to let the MASTER

know it is ready to receive the system identification and conversation sequence number. The response

from the MASTER is verified by the SLAVE and if acceptable, protocol selection begins.

Line Protocol Selection

The remote system sends a message

Pproto-list

where proto-list is a string of characters, each representing a line protocol. The calling program checks

the proto-list for a letter corresponding to an available line protocol and returns a use-protocol message.

The use-protocol message is



- 4 - Nowitz

Ucode

where code is either a one character protocol letter or a N which means there is no common protocol.

Greg Chesson designed and implemented the standard line protocol used by the uucp transmission

program. Other protocols may be added by individual installations.

Work Processing

During processing, one program is the MASTER and the other is SLAVE . Initially, the calling

program is the MASTER. These roles may switch one or more times during the conversation.

There are four messages used during the work processing, each specified by the first character of

the message. They are

center; c l. S send a file, R receive a file, C copy complete, H hangup.

The MASTER will send R or S messages until all work from the spool directory is complete, at which

point an H message will be sent. The SLAVE will reply with SY, SN, RY, RN, HY, HN, corresponding

to yes or no for each request.

The send and receive replies are based on permission to access the requested file/directory. After

each file is copied into the spool directory of the receiving system, a copy-complete message is sent by

the receiver of the file. The message CY will be sent if the UNIX cp command, used to copy from the

spool directory, is successful. Otherwise, a CN message is sent. The requests and results are logged on

both systems, and, if requested, mail is sent to the user reporting completion (or the user can request

status information from the log program at any time).

The hangup response is determined by the SLAVE program by a work scan of the spool directory.

If work for the remote system exists in the SLAVE’s spool directory, a HN message is sent and the pro-

grams switch roles. If no work exists, an HY response is sent.

A sample conversation is shown in Figure 2.

Conversation Termination

When a HY message is received by the MASTER it is echoed back to the SLAVE and the proto-

cols are turned off. Each program sends a final "OO" message to the other.

4. Present Uses

One application of this software is remote mail. Normally, a UNIX system user writes ‘‘mail dan’’

to send mail to user ‘‘dan’’. By writing ‘‘mail usg!dan’’ the mail is sent to user ‘‘dan’’ on system

‘‘usg’’.

The primary uses of our network to date have been in software maintenance. Relatively few of

the bytes passed between systems are intended for people to read. Instead, new programs (or new ver-

sions of programs) are sent to users, and potential bugs are returned to authors. Aaron Cohen has imple-

mented a ‘‘stockroom’’ which allows remote users to call in and request software. He keeps a ‘‘stock

list’’ of available programs, and new bug fixes and utilities are added regularly. In this way, users can

always obtain the latest version of anything without bothering the authors of the programs. Although

the stock list is maintained on a particular system, the items in the stockroom may be warehoused in

many places; typically each program is distributed from the home site of its author. Where necessary,

uucp does remote-to-remote copies.

We also routinely retrieve test cases from other systems to determine whether errors on remote

systems are caused by local misconfigurations or old versions of software, or whether they are bugs that

must be fixed at the home site. This helps identify errors rapidly. For one set of test programs main-

tained by us, over 70% of the bugs reported from remote sites were due to old software, and were fixed

merely by distributing the current version.

Another application of the network for software maintenance is to compare files on two different

machines. A very useful utility on one machine has been Doug McIlroy’s ‘‘diff’’ program which com-

pares two text files and indicates the differences, line by line, between them.6 Only lines which are not



- 5 - Nowitz

identical are printed. Similarly, the program ‘‘uudiff’’ compares files (or directories) on two machines.

One of these directories may be on a passive system. The ‘‘uudiff’’ program is set up to work similarly

to the inter-system mail, but it is slightly more complicated.

To avoid moving large numbers of usually identical files, uudiff computes file checksums on each

side, and only moves files that are different for detailed comparison. For large files, this process can be

iterated; checksums can be computed for each line, and only those lines that are different actually

moved.

The ‘‘uux’’ command has been useful for providing remote output. There are some machines

which do not have hard-copy devices, but which are connected over 9600 baud communication lines to

machines with printers. The uux command allows the formatting of the printout on the local machine

and printing on the remote machine using standard UNIX command programs.

5. Performance

Throughput, of course, is primarily dependent on transmission speed. The table below shows the

real throughput of characters on communication links of different speeds. These numbers represent

actual data transferred; they do not include bytes used by the line protocol for data validation such as

checksums and messages. At the higher speeds, contention for the processors on both ends prevents the

network from driving the line full speed. The range of speeds represents the difference between light

and heavy loads on the two systems. If desired, operating system modifications can be installed that

permit full use of even very fast links.

center; c c n n. Nominal speed Characters/sec. 300 baud 27 1200 baud 100-110 9600

baud 200-850

In addition to the transfer time, there is some overhead for making the connection and logging in rang-

ing from 15 seconds to 1 minute. Even at 300 baud, however, a typical 5,000 byte source program can

be transferred in four minutes instead of the 2 days that might be required to mail a tape.

Traffic between systems is variable. Between two closely related systems, we observed 20 files

moved and 5 remote commands executed in a typical day. A more normal traffic out of a single system

would be around a dozen files per day.

The total number of sites at present in the main network is 82, which includes most of the Bell

Laboratories full-size machines which run the UNIX operating system. Geographically, the machines

range from Andover, Massachusetts to Denver, Colorado.

Uucp has also been used to set up another network which connects a group of systems in opera-

tional sites with the home site. The two networks touch at one Bell Labs computer.

6. Further Goals

Eventually, we would like to develop a full system of remote software maintenance. Conventional

maintenance (a support group which mails tapes) has many well-known disadvantages.7 There are distri-

bution errors and delays, resulting in old software running at remote sites and old bugs continually reap-

pearing. These difficulties are aggravated when there are 100 different small systems, instead of a few

large ones.

The availability of file transfer on a network of compatible operating systems makes it possible

just to send programs directly to the end user who wants them. This avoids the bottleneck of negotia-

tion and packaging in the central support group. The ‘‘stockroom’’ serves this function for new utilities

and fixes to old utilities. However, it is still likely that distributions will not be sent and installed as

often as needed. Users are justifiably suspicious of the ‘‘latest version’’ that has just arrived; all too

often it features the ‘‘latest bug.’’ What is needed is to address both problems simultaneously:

1. Send distributions whenever programs change.

2. Have sufficient quality control so that users will install them.

To do this, we recommend systematic regression testing both on the distributing and receiving systems.

Acceptance testing on the receiving systems can be automated and permits the local system to ensure



- 6 - Nowitz

that its essential work can continue despite the constant installation of changes sent from elsewhere.

The work of writing the test sequences should be recovered in lower counseling and distribution costs.

Some slow-speed network services are also being implemented. We now have inter-system

‘‘mail’’ and ‘‘diff,’’ plus the many implied commands represented by ‘‘uux.’’ However, we still need

inter-system ‘‘write’’ (real-time inter-user communication) and ‘‘who’’ (list of people logged in on dif-

ferent systems). A slow-speed network of this sort may be very useful for speeding up counseling and

education, even if not fast enough for the distributed data base applications that attract many users to

networks. Effective use of remote execution over slow-speed lines, however, must await the general ins-

tallation of multiplexable channels so that long file transfers do not lock out short inquiries.

7. Lessons

The following is a summary of the lessons we learned in building these programs.

1. By starting your network in a way that requires no hardware or major operating system changes,

you can get going quickly.

2. Support will follow use. Since the network existed and was being used, system maintainers were

easily persuaded to help keep it operating, including purchasing additional hardware to speed

traffic.

3. Make the network commands look like local commands. Our users have a resistance to learning

anything new: all the inter-system commands look very similar to standard UNIX system com-

mands so that little training cost is involved.

4. An initial error was not coordinating enough with existing communications projects: thus, the first

version of this network was restricted to dial-up, since it did not support the various hardware

links between systems. This has been fixed in the current system.

Acknowledgements

We thank G. L. Chesson for his design and implementation of the packet driver and protocol, and

A. S. Cohen, J. Lions, and P. F. Long for their suggestions and assistance.

References

1. D. M. Ritchie and K. Thompson, ‘‘The UNIX Time-Sharing System,’’ Bell Sys. Tech. J. 57(6),

pp.1905-1929 (1978).

2. T. A. Dolotta, R. C. Haight, and J. R. Mashey, ‘‘UNIX Time-Sharing System: The Programmer’s

Workbench,’’ Bell Sys. Tech. J. 57(6), pp.2177-2200 (1978).

3. G. L. Chesson, ‘‘The Network UNIX System,’’ Operating Systems Review 9(5), pp.60-66, Also in

Proc. 5th Symp. on Operating Systems Principles. (1975).

4. A. G. Fraser, ‘‘Spider — An Experimental Data Communications System,’’ Proc. IEEE Conf. on

Communications, p.21F (June 1974). IEEE Cat. No. 74CH0859-9-CSCB.

5. A. G. Fraser, ‘‘A Virtual Channel Network,’’ Datamation, pp.51-56 (February 1975).

6. J. W. Hunt and M. D. McIlroy, ‘‘An Algorithm for Differential File Comparison,’’ Comp. Sci.

Tech. Rep. No. 41, Bell Laboratories, Murray Hill, New Jersey (June 1976).

7. F. P. Brooks, Jr., The Mythical Man-Month, Addison-Wesley, Reading, Mass. (1975).


	UUCP

