
Password Security: A Case History

Robert Morris

Ken Thompson

Bell Laboratories

Murray Hill, New Jersey 07974

ABSTRACT

This paper describes the history of the design of the password security scheme

on a remotely accessed time-sharing system. The present design was the result of

countering observed attempts to penetrate the system. The result is a compromise

between extreme security and ease of use.

April 3, 1978



Password Security: A Case History

Robert Morris

Ken Thompson

Bell Laboratories

Murray Hill, New Jersey 07974

INTRODUCTION

Password security on the UNIX† time-sharing system [1] is provided by a collection of programs

whose elaborate and strange design is the outgrowth of many years of experience with earlier versions.

To help develop a secure system, we have had a continuing competition to devise new ways to attack

the security of the system (the bad guy) and, at the same time, to devise new techniques to resist the

new attacks (the good guy). This competition has been in the same vein as the competition of long

standing between manufacturers of armor plate and those of armor-piercing shells. For this reason, the

description that follows will trace the history of the password system rather than simply presenting the

program in its current state. In this way, the reasons for the design will be made clearer, as the design

cannot be understood without also understanding the potential attacks.

An underlying goal has been to provide password security at minimal inconvenience to the users

of the system. For example, those who want to run a completely open system without passwords, or to

have passwords only at the option of the individual users, are able to do so, while those who require all

of their users to have passwords gain a high degree of security against penetration of the system by

unauthorized users.

The password system must be able not only to prevent any access to the system by unauthorized

users (i.e. prevent them from logging in at all), but it must also prevent users who are already logged in

from doing things that they are not authorized to do. The so called ‘‘super-user’’ password, for exam-

ple, is especially critical because the super-user has all sorts of permissions and has essentially unlimited

access to all system resources.

Password security is of course only one component of overall system security, but it is an essen-

tial component. Experience has shown that attempts to penetrate remote-access systems have been

astonishingly sophisticated.

Remote-access systems are peculiarly vulnerable to penetration by outsiders as there are threats at

the remote terminal, along the communications link, as well as at the computer itself. Although the

security of a password encryption algorithm is an interesting intellectual and mathematical problem, it is

only one tiny facet of a very large problem. In practice, physical security of the computer, communica-

tions security of the communications link, and physical control of the computer itself loom as far more

important issues. Perhaps most important of all is control over the actions of ex-employees, since they

are not under any direct control and they may have intimate knowledge about the system, its resources,

and methods of access. Good system security involves realistic evaluation of the risks not only of deli-

berate attacks but also of casual unauthorized access and accidental disclosure.

PROLOGUE

The UNIX system was first implemented with a password file that contained the actual passwords

of all the users, and for that reason the password file had to be heavily protected against being either

read or written. Although historically, this had been the technique used for remote-access systems, it

was completely unsatisfactory for several reasons.
__________________

†UNIX is a Trademark of Bell Laboratories.



- 2 -

The technique is excessively vulnerable to lapses in security. Temporary loss of protection can

occur when the password file is being edited or otherwise modified. There is no way to prevent the

making of copies by privileged users. Experience with several earlier remote-access systems showed

that such lapses occur with frightening frequency. Perhaps the most memorable such occasion occurred

in the early 60’s when a system administrator on the CTSS system at MIT was editing the password file

and another system administrator was editing the daily message that is printed on everyone’s terminal on

login. Due to a software design error, the temporary editor files of the two users were interchanged and

thus, for a time, the password file was printed on every terminal when it was logged in.

Once such a lapse in security has been discovered, everyone’s password must be changed, usually

simultaneously, at a considerable administrative cost. This is not a great matter, but far more serious is

the high probability of such lapses going unnoticed by the system administrators.

Security against unauthorized disclosure of the passwords was, in the last analysis, impossible with

this system because, for example, if the contents of the file system are put on to magnetic tape for

backup, as they must be, then anyone who has physical access to the tape can read anything on it with

no restriction.

Many programs must get information of various kinds about the users of the system, and these

programs in general should have no special permission to read the password file. The information which

should have been in the password file actually was distributed (or replicated) into a number of files, all

of which had to be updated whenever a user was added to or dropped from the system.

THE FIRST SCHEME

The obvious solution is to arrange that the passwords not appear in the system at all, and it is not

difficult to decide that this can be done by encrypting each user’s password, putting only the encrypted

form in the password file, and throwing away his original password (the one that he typed in). When

the user later tries to log in to the system, the password that he types is encrypted and compared with

the encrypted version in the password file. If the two match, his login attempt is accepted. Such a

scheme was first described in [3, p.91ff.]. It also seemed advisable to devise a system in which neither

the password file nor the password program itself needed to be protected against being read by anyone.

All that was needed to implement these ideas was to find a means of encryption that was very

difficult to invert, even when the encryption program is available. Most of the standard encryption

methods used (in the past) for encryption of messages are rather easy to invert. A convenient and rather

good encryption program happened to exist on the system at the time; it simulated the M-209 cipher

machine [4] used by the U.S. Army during World War II. It turned out that the M-209 program was

usable, but with a given key, the ciphers produced by this program are trivial to invert. It is a much

more difficult matter to find out the key given the cleartext input and the enciphered output of the pro-

gram. Therefore, the password was used not as the text to be encrypted but as the key, and a constant

was encrypted using this key. The encrypted result was entered into the password file.

ATTACKS ON THE FIRST APPROACH

Suppose that the bad guy has available the text of the password encryption program and the com-

plete password file. Suppose also that he has substantial computing capacity at his disposal.

One obvious approach to penetrating the password mechanism is to attempt to find a general

method of inverting the encryption algorithm. Very possibly this can be done, but few successful results

have come to light, despite substantial efforts extending over a period of more than five years. The

results have not proved to be very useful in penetrating systems.

Another approach to penetration is simply to keep trying potential passwords until one succeeds;

this is a general cryptanalytic approach called key search. Human beings being what they are, there is a

strong tendency for people to choose relatively short and simple passwords that they can remember.

Given free choice, most people will choose their passwords from a restricted character set (e.g. all

lower-case letters), and will often choose words or names. This human habit makes the key search job a

great deal easier.



- 3 -

The critical factor involved in key search is the amount of time needed to encrypt a potential pass-

word and to check the result against an entry in the password file. The running time to encrypt one trial

password and check the result turned out to be approximately 1.25 milliseconds on a PDP-11/70 when

the encryption algorithm was recoded for maximum speed. It is takes essentially no more time to test

the encrypted trial password against all the passwords in an entire password file, or for that matter,

against any collection of encrypted passwords, perhaps collected from many installations.

If we want to check all passwords of length n that consist entirely of lower-case letters, the

number of such passwords is 26n . If we suppose that the password consists of printable characters only,

then the number of possible passwords is somewhat less than 95n . (The standard system ‘‘character

erase’’ and ‘‘line kill’’ characters are, for example, not prime candidates.) We can immediately estimate

the running time of a program that will test every password of a given length with all of its characters

chosen from some set of characters. The following table gives estimates of the running time required on

a PDP-11/70 to test all possible character strings of length n chosen from various sets of characters:

namely, all lower-case letters, all lower-case letters plus digits, all alphanumeric characters, all 95 print-

able ASCII characters, and finally all 128 ASCII characters.

26 lower-case 36 lower-case letters 62 alphanumeric 95 printable all 128 ASCII

n letters and digits characters characters characters

1 30 msec. 40 msec. 80 msec. 120 msec. 160 msec.

2 800 msec. 2 sec. 5 sec. 11 sec. 20 sec.

3 22 sec. 58 sec. 5 min. 17 min. 43 min.

4 10 min. 35 min. 5 hrs. 28 hrs. 93 hrs.

5 4 hrs. 21 hrs. 318 hrs.

6 107 hrs.

One has to conclude that it is no great matter for someone with access to a PDP-11 to test all lower-case

alphabetic strings up to length five and, given access to the machine for, say, several weekends, to test

all such strings up to six characters in length. By using such a program against a collection of actual

encrypted passwords, a substantial fraction of all the passwords will be found.

Another profitable approach for the bad guy is to use the word list from a dictionary or to use a

list of names. For example, a large commercial dictionary contains typicallly about 250,000 words;

these words can be checked in about five minutes. Again, a noticeable fraction of any collection of

passwords will be found. Improvements and extensions will be (and have been) found by a determined

bad guy. Some ‘‘good’’ things to try are:

- The dictionary with the words spelled backwards.

- A list of first names (best obtained from some mailing list). Last names, street names, and city

names also work well.

- The above with initial upper-case letters.

- All valid license plate numbers in your state. (This takes about five hours in New Jersey.)

- Room numbers, social security numbers, telephone numbers, and the like.

The authors have conducted experiments to try to determine typical users’ habits in the choice of

passwords when no constraint is put on their choice. The results were disappointing, except to the bad

guy. In a collection of 3,289 passwords gathered from many users over a long period of time;

15 were a single ASCII character;

72 were strings of two ASCII characters;

464 were strings of three ASCII characters;

477 were string of four alphamerics;

706 were five letters, all upper-case or all lower-case;



- 4 -

605 were six letters, all lower-case.

An additional 492 passwords appeared in various available dictionaries, name lists, and the like. A total

of 2,831, or 86% of this sample of passwords fell into one of these classes.

There was, of course, considerable overlap between the dictionary results and the character string

searches. The dictionary search alone, which required only five minutes to run, produced about one

third of the passwords.

Users could be urged (or forced) to use either longer passwords or passwords chosen from a larger

character set, or the system could itself choose passwords for the users.

AN ANECDOTE

An entertaining and instructive example is the attempt made at one installation to force users to

use less predictable passwords. The users did not choose their own passwords; the system supplied

them. The supplied passwords were eight characters long and were taken from the character set consist-

ing of lower-case letters and digits. They were generated by a pseudo-random number generator with

only 215 starting values. The time required to search (again on a PDP-11/70) through all character

strings of length 8 from a 36-character alphabet is 112 years.

Unfortunately, only 215 of them need be looked at, because that is the number of possible outputs

of the random number generator. The bad guy did, in fact, generate and test each of these strings and

found every one of the system-generated passwords using a total of only about one minute of machine

time.

IMPROVEMENTS TO THE FIRST APPROACH

1. Slower Encryption

Obviously, the first algorithm used was far too fast. The announcement of the DES encryption

algorithm [2] by the National Bureau of Standards was timely and fortunate. The DES is, by design,

hard to invert, but equally valuable is the fact that it is extremely slow when implemented in software.

The DES was implemented and used in the following way: The first eight characters of the user’s pass-

word are used as a key for the DES; then the algorithm is used to encrypt a constant. Although this

constant is zero at the moment, it is easily accessible and can be made installation-dependent. Then the

DES algorithm is iterated 25 times and the resulting 64 bits are repacked to become a string of 11 print-

able characters.

2. Less Predictable Passwords

The password entry program was modified so as to urge the user to use more obscure passwords.

If the user enters an alphabetic password (all upper-case or all lower-case) shorter than six characters, or

a password from a larger character set shorter than five characters, then the program asks him to enter a

longer password. This further reduces the efficacy of key search.

These improvements make it exceedingly difficult to find any individual password. The user is

warned of the risks and if he cooperates, he is very safe indeed. On the other hand, he is not prevented

from using his spouse’s name if he wants to.

3. Salted Passwords

The key search technique is still likely to turn up a few passwords when it is used on a large col-

lection of passwords, and it seemed wise to make this task as difficult as possible. To this end, when a

password is first entered, the password program obtains a 12-bit random number (by reading the real-

time clock) and appends this to the password typed in by the user. The concatenated string is encrypted

and both the 12-bit random quantity (called the salt ) and the 64-bit result of the encryption are entered

into the password file.

When the user later logs in to the system, the 12-bit quantity is extracted from the password file

and appended to the typed password. The encrypted result is required, as before, to be the same as the



- 5 -

remaining 64 bits in the password file. This modification does not increase the task of finding any indi-

vidual password, starting from scratch, but now the work of testing a given character string against a

large collection of encrypted passwords has been multiplied by 4096 (212). The reason for this is that

there are 4096 encrypted versions of each password and one of them has been picked more or less at

random by the system.

With this modification, it is likely that the bad guy can spend days of computer time trying to find

a password on a system with hundreds of passwords, and find none at all. More important is the fact

that it becomes impractical to prepare an encrypted dictionary in advance. Such an encrypted dictionary

could be used to crack new passwords in milliseconds when they appear.

There is a (not inadvertent) side effect of this modification. It becomes nearly impossible to find

out whether a person with passwords on two or more systems has used the same password on all of

them, unless you already know that.

4. The Threat of the DES Chip

Chips to perform the DES encryption are already commercially available and they are very fast.

The use of such a chip speeds up the process of password hunting by three orders of magnitude. To

avert this possibility, one of the internal tables of the DES algorithm (in particular, the so-called E-table)

is changed in a way that depends on the 12-bit random number. The E-table is inseparably wired into

the DES chip, so that the commercial chip cannot be used. Obviously, the bad guy could have his own

chip designed and built, but the cost would be unthinkable.

5. A Subtle Point

To login successfully on the UNIX system, it is necessary after dialing in to type a valid user

name, and then the correct password for that user name. It is poor design to write the login command in

such a way that it tells an interloper when he has typed in a invalid user name. The response to an

invalid name should be identical to that for a valid name.

When the slow encryption algorithm was first implemented, the encryption was done only if the

user name was valid, because otherwise there was no encrypted password to compare with the supplied

password. The result was that the response was delayed by about one-half second if the name was

valid, but was immediate if invalid. The bad guy could find out whether a particular user name was

valid. The routine was modified to do the encryption in either case.

CONCLUSIONS

On the issue of password security, UNIX is probably better than most systems. The use of

encrypted passwords appears reasonably secure in the absence of serious attention of experts in the field.

It is also worth some effort to conceal even the encrypted passwords. Some UNIX systems have

instituted what is called an ‘‘external security code’’ that must be typed when dialing into the system,

but before logging in. If this code is changed periodically, then someone with an old password will

likely be prevented from using it.

Whenever any security procedure is instituted that attempts to deny access to unauthorized per-

sons, it is wise to keep a record of both successful and unsuccessful attempts to get at the secured

resource. Just as an out-of-hours visitor to a computer center normally must not only identify himself,

but a record is usually also kept of his entry. Just so, it is a wise precaution to make and keep a record

of all attempts to log into a remote-access time-sharing system, and certainly all unsuccessful attempts.

Bad guys fall on a spectrum whose one end is someone with ordinary access to a system and

whose goal is to find out a particular password (usually that of the super-user) and, at the other end,

someone who wishes to collect as much password information as possible from as many systems as pos-

sible. Most of the work reported here serves to frustrate the latter type; our experience indicates that the

former type of bad guy never was very successful.

We recognize that a time-sharing system must operate in a hostile environment. We did not

attempt to hide the security aspects of the operating system, thereby playing the customary make-believe



- 6 -

game in which weaknesses of the system are not discussed no matter how apparent. Rather we adver-

tised the password algorithm and invited attack in the belief that this approach would minimize future

trouble. The approach has been successful.

References

[1] Ritchie, D.M. and Thompson, K. The UNIX Time-Sharing System. Comm. ACM 17 (July 1974),

pp. 365-375.

[2] Proposed Federal Information Processing Data Encryption Standard. Federal Register

(40FR12134), March 17, 1975

[3] Wilkes, M. V. Time-Sharing Computer Systems. American Elsevier, New York, (1968).

[4] U. S. Patent Number 2,089,603.


	Password Security

