Biquaternions

Hamilton defined the quaternion basis i, j, k like

$$i^2 = j^2 = k^2 = ijk = -1$$

and quaternions to be of the form $q = q_0 + q_1 i + q_2 j + q_3 k$. If we let each q_i be a complex number of the form a + bh with $h^2 = -1$ and commuting with i, j, k, we arrive at the biquaternions. As it turns out the biquaternions are exactly equivalent to the geometric algebra $\operatorname{Cl}_{3,0}(\mathbb{R})$.

 $\operatorname{Cl}_{3,0}(\mathbb{R})$ is generated by the basis vectors e_1, e_2, e_3 with $e_i^2 = 1$ and $e_i e_j = -e_j e_i$ for $i \neq j$. We will write e_{ij} for $e_i e_j$ &c.

We find the following multiplication rules:

$$e_{12}^{2} = e_{1212} = -e_{1122} = -1$$

$$e_{23}^{2} = e_{2323} = -e_{2233} = -1$$

$$e_{31}^{2} = e_{3131} = -e_{3131} = -1$$

$$e_{12}e_{23} = e_{13} = -e_{31}$$

$$e_{23}e_{31} = e_{21} = -e_{12}$$

$$e_{31}e_{12} = e_{32} = -e_{23}$$

$$e_{123}^{2} = e_{123123} = e_{112323} = -e_{112233} = -1$$

$$e_{1}e_{123} = e_{123}e_{12} = e_{23}$$

$$e_{2}e_{123} = e_{123}e_{2} = e_{31}$$

$$e_{3}e_{123} = e_{123}e_{33} = e_{12}$$

$$e_{23}e_{123} = e_{123}e_{33} = -e_{1}$$

$$e_{31}e_{123} = e_{123}e_{31} = -e_{2}$$

$$e_{12}e_{123} = e_{123}e_{12} = -e_{3}$$

We can see that the following identification of biquaternion with $\operatorname{Cl}_{3,0}(\mathbb{R})$ elements gives exactly the same rules while obeying the biquaternion definition:

$$i := -e_{23}$$

 $j := -e_{31}$
 $k := -e_{12}$
 $h := e_{123}$

In particular it follows that

$$ih = hi = e_1$$

 $jh = hj = e_2$
 $kh = hk = e_3$

Thus every basis element of $\operatorname{Cl}_{3,0}(\mathbb{R})$ has a counterpart in the biquaternions.