Biquaternions

Hamilton defined the quaternion basis i, j, k like

$$
i^{2}=j^{2}=k^{2}=i j k=-1
$$

and quaternions to be of the form $q=q_{0}+q_{1} i+q_{2} j+q_{3} k$. If we let each q_{i} be a complex number of the form $a+b h$ with $h^{2}=-1$ and commuting with i, j, k, we arrive at the biquaternions. As it turns out the biquaternions are exactly equivalent to the geometric algebra $\mathrm{Cl}_{3,0}(\mathbb{R})$.
$\mathrm{Cl}_{3,0}(\mathbb{R})$ is generated by the basis vectors e_{1}, e_{2}, e_{3} with $e_{i}^{2}=1$ and $e_{i} e_{j}=-e_{j} e_{i}$ for $i \neq j$. We will write $e_{i j}$ for $e_{i} e_{j}$ \&c.

We find the following multiplication rules:

$$
\begin{aligned}
e_{12}^{2} & =e_{1212}=-e_{1122}=-1 \\
e_{23}^{2} & =e_{2323}=-e_{2233}=-1 \\
e_{31}^{2} & =e_{3131}=-e_{3131}=-1 \\
e_{12} e_{23} & =e_{13}=-e_{31} \\
e_{23} e_{31} & =e_{21}=-e_{12} \\
e_{31} e_{12} & =e_{32}=-e_{23} \\
e_{123}^{2} & =e_{123123}=e_{112323}=-e_{112233}=-1 \\
e_{1} e_{123} & =e_{123} e_{1}=e_{23} \\
e_{2} e_{123} & =e_{123} e_{2}=e_{31} \\
e_{3} e_{123} & =e_{123} e_{3}=e_{12} \\
e_{23} e_{123} & =e_{123} e_{23}=-e_{1} \\
e_{31} e_{123} & =e_{123} e_{31}=-e_{2} \\
e_{12} e_{123} & =e_{123} e_{12}=-e_{3}
\end{aligned}
$$

We can see that the following identification of biquaternion with $\mathrm{Cl}_{3,0}(\mathbb{R})$ elements gives exactly the same rules while obeying the biquaternion definition:

$$
\begin{aligned}
i & :=-e_{23} \\
j & :=-e_{31} \\
k & :=-e_{12} \\
h & :=e_{123}
\end{aligned}
$$

In particular it follows that

$$
\begin{aligned}
i h & =h i=e_{1} \\
j h & =h j=e_{2} \\
k h & =h k=e_{3}
\end{aligned}
$$

Thus every basis element of $\mathrm{Cl}_{3,0}(\mathbb{R})$ has a counterpart in the biquaternions.

