
Dual Numbers
The dual numbers are defined analogously to complex numbers by introducing an element
ε such that ε2 = 0.

We then have for multiplication (a+εb)(c+εd) = ac+ε(ad+bc) and for the (squared)
magnitude ||a + εb||2 := (a + εb)(a − εb) = a2 and ||a + εb|| = a resp. Thus unit dual
numbers have the form 1 + εx or −1 + εx. Pure dual numbers εx have zero magnitude
and therefore cannot be normalized.

Just as with complex numbers, we can plot dual numbers on a plane to better under-
stand their properties. Any normalizable number can be written as r(1 + εy) where y
is where a line extending from the origin intersects the x = 1 line. Thus multiplication
becomes r1(1 + εy1)r2(1 + εy2) = r1r2(1 + ε(y1 + y2)). If we only consider the points on
the x = 1 line, this is simply a 1D translation, and the magnitudes multiply.

Note also that if we define a function T (x) := 1+εx, we see that T (x)T (y) = T (x+y).
These results are very reminiscent of complex number multiplication and so we should
immediately consider whether T (x) = eεx.

We start with the definition ex := limn→∞(1 + x
n)

n, so in our case eεx = limn→∞(1 +
εx
n )n. But this is easy: we saw that multiplication of unit dual numbers is simply addition
in the dual part, so exponentiation becomes multiplication and the n’s cancel:

eεx = lim
n→∞

(
1 +

εx

n

)n

= lim
n→∞

1 + n
εx

n
= 1 + εx = T (x)

So just like eix moves around the unit circle eεx moves along the unit line.

Automatic Differentiation
Dual numbers have another interesting property: f(x + εb) = f(x) + εbf ′(x), i.e. one
automatically gets the derivative in the dual part. Let’s look at some examples:
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(NB: x = 0 has to be considered separately here)

(x+ ε)n =
(
x
(
1 +

ε

x

))n

= xn
(
1 + n

ε

x

)
= xn + εnxn−1

ex+ε = exeε

= ex(1 + ε)

= ex + εex

log(x+ ε) = log
(
x

(
1 + ε

1

x

))
= log(x) + log

(
1 + ε

1

x

)
= log(x) + ε

1

x

That this works in general (or at least for functions that can be expressed with a
Taylor series) is easy to show:

f(x+ εb) =
∞∑
n=0

f (n)(a)

n!
(x+ εb− a)n

=
∞∑
n=0

f (n)(x)

n!
(εb)n (with a = x)

= f(x) + εbf ′(x) + ε2(...)

= f(x) + εbf ′(x)

We also get the product- and chain-rule (the sum-rule is trivial):

f(x+ ε)g(x+ ε) = (f(x) + εf ′(x))(g(x) + εg′(x))

= f(x)g(x) + ε(f ′(x)g(x) + f(x)g′(x))

f(g(x+ ε)) = f(g(x) + εg′(x))

= f(g(x)) + εf ′(g(x))g′(x)

Dual Quaternions
For geometric purposes dual numbers only are of limited use because projecting onto the
unit line only leaves us with one dimension. Fortunately we can add as many dimensions
as we like if we demand εiεj = 0 (the same does not work for complex numbers because
what is ij if there is no k?). This gives us translation in any dimension but that is also
of limited use if we cannot rotate: we want quaternions. Interestingly we can combine
both ideas to give us dual quaternions.

A general dual quaternion looks like q = qr+εqd where qr and qd are regular quaterni-
ons and ε commutes with qvectors. Multiplication then gives qp = qrpr + ε(qrpd+ qdpr).
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Now consider translation. We’ve seen that eεt = 1 + εt and two dual qvectors t and s
are added as we expect:

eεteεs = (1 + εt)(1 + εs)
= 1 + ε(t + s)
= eε(t+s)

To combine rotation and translation however we need a general dual quaternion and
to use the more general sandwich product, this however is easy to construct.

Note that a pure dual qvector is unaffected by a sandwich product like this:

eε
1
2

t(εv)eε 1
2

t = (1 + ε
1

2
t)εv(1 + ε

1

2
t)

= εv

If, however, we add 1 to this dual qvector, it is translated by t:

eε
1
2

t(1 + εv)eε 1
2

t = eε
1
2

teε
1
2

t + eε
1
2

tεveε 1
2

t

= eεt + εv
= 1 + εt + εv
= 1 + ε(t + v)

Both types of objects are affected by rotation (with q = er θ
2 ):

q(εv)q∗ = ε(qvq∗)

q(1 + εp)q∗ = q1q∗ + ε(qpq∗)
= 1 + ε(qpq∗)

Thus we can identify points with eεp and have them be affected by rotation and
translation, and vectors with εv and have them only be affected by rotation. This is
exactly what we want.

Now we only have to consider the composition of these transformations, but for this we
first need a new type of conjugate. Under conjugation quaternion multiplication reverses
its order: (qp)∗ = p∗q∗. This is an important property when dealing with sandwich
products because it lets us calculate the object on the one side from the one on the
other side. If translation and rotation are to combine nicely, we need a conjugate on
the right side of translation as well, but regular quaternion conjugation does not give
us the correct result. We need a new conjugate with the property (1 + εt)◦ = 1 + εt,
which at the same time includes the quaternion conjugate t∗. (1+ εt)◦ = 1− εt∗ has this
property, so now let us investigate if (qp)◦ = p◦q◦ holds for any dual quaternions with
q◦ := q∗r − εq∗d:

(qp)◦ = (qrpr + ε(qrpd + qdpr))
◦

= (qrpr)
∗ − ε((qrpd)

∗ + (qdpr)
∗)

= p∗rq
∗
r − ε(p∗dq

∗
r + p∗rq

∗
d)

= (p∗r − εp∗d)(q
∗
r − εq∗d)

= p◦q◦

Using this definition we can now express rotation around the origin (with quaternion
r) followed by a translation by t:
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eε
1
2

tr(1 + εv)r∗eε 1
2

t = (1 + ε
1

2
t)r(1 + εv)r∗(1 + ε

1

2
t)

= (r + ε
1

2
tr)(1 + εv)(r∗ + ε

1

2
r∗t)

= (r + ε
1

2
tr)(1 + εv)(r∗ − ε

1

2
r∗t∗)

= (r + ε
1

2
tr)(1 + εv)(r∗ − ε

1

2
(tr)∗)

= (r + ε
1

2
tr)(1 + εv)(r + ε

1

2
tr)◦

Thus we have arrived at a system that allows us to express and compose translations
and rotations around arbitrary axes.
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