e, \log

Consider the derivative of a^{x} :

$$
\begin{aligned}
\left(a^{x}\right)^{\prime} & =\lim _{h \rightarrow 0} \frac{a^{x+h}-a^{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{a^{x} a^{h}-a^{x}}{h} \\
& =\lim _{h \rightarrow 0} a^{x} \frac{a^{h}-1}{h} \\
& =a^{x} \lim _{h \rightarrow 0} \frac{a^{h}-1}{h}
\end{aligned}
$$

Let us define $M(x):=\lim _{h \rightarrow 0} \frac{x^{h}-1}{h}$ and find a number e such that $M(e)=1$.
Rearranging this to find e we get

$$
\begin{aligned}
e & =\lim _{h \rightarrow 0}(1+h)^{\frac{1}{h}} \\
& =\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \\
& \approx 2.7182
\end{aligned}
$$

So we find $\left(e^{x}\right)^{\prime}=e^{x}$ and can now consider the derivative in a different light: we know $a^{x}=e^{\log _{e}(a) x}$ so by the chain rule we now get

$$
\begin{aligned}
\left(a^{x}\right)^{\prime} & =\left(e^{\log _{e}(a) x}\right)^{\prime} \\
& =\log _{e}(a) e^{\log _{e}(a) x} \\
& =\log _{e}(a) a^{x}
\end{aligned}
$$

Thus it follows that $\log _{e}(x)=M(x)=\lim _{h \rightarrow 0} \frac{x^{h}-1}{h}$ and we simply write $\log (x):=$ $\log _{e}(x)$.

Using $\log \left(e^{x}\right)=x$ we can now rearrange the limit again and find an expression for e^{x} that only involves integer powers:

$$
\begin{aligned}
x & =\log \left(e^{x}\right) \\
& =\lim _{h \rightarrow 0} \frac{e^{x h}-1}{h} \\
\Rightarrow & \\
e^{x} & =\lim _{h \rightarrow 0}(1+x h)^{\frac{1}{h}} \\
& =\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}
\end{aligned}
$$

This expression is very convenient for analyzing the behaviour of e^{x} when x is not simply a real number.

