From A Treatise on Electricity and Magnetism.

$$
\begin{align*}
\mathfrak{B} & =V \cdot \nabla \mathfrak{A}=\nabla \mathfrak{A} \tag{1}\\
\mathfrak{E} & =V \cdot \mathfrak{G} \mathfrak{B}-\mathfrak{\mathfrak { A }}-\nabla \Psi \tag{2}\\
\mathfrak{F} & =V \cdot \mathfrak{C} \mathfrak{B}+\mathfrak{e} \mathfrak{E}-\mathfrak{m} \nabla \Omega \tag{3}\\
\mathfrak{B} & =\mathfrak{H}+4 \pi \mathfrak{I} \tag{4}\\
4 \pi \mathfrak{C} & =V \cdot \nabla \mathfrak{H} \tag{5}\\
\mathfrak{K} & =C \mathfrak{E} \tag{6}\\
\mathfrak{D} & =\frac{1}{4 \pi} K \mathfrak{E} \tag{7}\\
\mathfrak{C} & =\mathfrak{K}+\dot{\mathfrak{D}} \tag{8}\\
\mathfrak{B} & =\mu \mathfrak{H} \tag{9}\\
\mathfrak{e} & =S . \nabla \mathfrak{D} \tag{10}\\
\mathfrak{m} & =S . \nabla \mathfrak{I} \tag{11}\\
\mathfrak{H} & =-\nabla \Omega \tag{12}
\end{align*}
$$

- \mathfrak{A} : electromagnetic momentum at a point
- $\mathfrak{B}:$ magnetic induction
- \mathfrak{C} : total electric current
- \mathfrak{D} : electric displacement
- E: electromotive intensity
- \mathfrak{F} : mechanical force
- \mathfrak{G} : velocity of a point
- \mathfrak{H} : magnetic force
- I: intensity of magnetization
- \mathfrak{K} : current of conduction
- ψ : electic potential
- Ω : magnetic potential
- \mathfrak{e} : electric density
- \mathfrak{m} : density of magnetic 'matter'
- C : conductivity for electric currents
- K : dielectric inductive capacity
- μ : magnetic inductive capacity

$$
\begin{aligned}
\nabla^{2} \mathfrak{A} & =4 \pi \mu \mathfrak{C} \\
S . \nabla \mathfrak{A} & =0
\end{aligned}
$$

Gauss' law for magnetism (1):

$$
\begin{aligned}
\boldsymbol{B} & =\nabla \times \boldsymbol{A} \\
\nabla \cdot \boldsymbol{B} & =\nabla \cdot(\nabla \times \boldsymbol{A})=0
\end{aligned}
$$

Gauss' law (10), (7):

$$
\begin{aligned}
\nabla \cdot \boldsymbol{D} & =\rho \\
\nabla \cdot\left(\frac{1}{4 \pi} K \boldsymbol{E}\right) & =\rho \\
\nabla \cdot \boldsymbol{E} & =\frac{\rho}{\epsilon_{0}}
\end{aligned}
$$

Ampère's law (5), (9), (8), (7):

$$
\begin{aligned}
\nabla \times \boldsymbol{H} & =4 \pi \boldsymbol{C} \\
\nabla \times \boldsymbol{B} & =4 \pi \mu \boldsymbol{C} \\
& =4 \pi \mu(\boldsymbol{J}+\dot{\boldsymbol{D}}) \\
& =\mu_{0}\left(\boldsymbol{J}+\epsilon_{0} \frac{\partial \boldsymbol{E}}{\partial t}\right)
\end{aligned}
$$

Faraday's law (2), (1):

$$
\begin{aligned}
\boldsymbol{E} & =-\dot{\boldsymbol{A}}-\nabla \phi \\
& =-\frac{\partial \boldsymbol{A}}{\partial t}-\nabla \phi \\
\nabla \times \boldsymbol{E} & =-\nabla \times \frac{\partial \boldsymbol{A}}{\partial t}-\nabla \times(\nabla \phi) \\
& =-\frac{\partial(\nabla \times \boldsymbol{A})}{\partial t} \\
& =-\frac{\partial \boldsymbol{B}}{\partial t}
\end{aligned}
$$

Some relabellings:

$$
\begin{aligned}
\rho & =\mathfrak{e} \\
\epsilon_{0} & =\frac{K}{4 \pi} \\
\mu_{0} & =4 \pi \mu \\
\boldsymbol{J} & =\mathfrak{K} \\
\phi & =\Psi
\end{aligned}
$$

If we fully embrace quaternions, the four equations can be reduced to two. Note $\nabla \boldsymbol{A}=-\nabla \cdot \boldsymbol{A}+\nabla \times \boldsymbol{A}$, thus:

$$
\begin{aligned}
\nabla \boldsymbol{E} & =-\frac{\rho}{\epsilon_{0}}-\frac{\partial \boldsymbol{B}}{\partial t} \\
\nabla \boldsymbol{B} & =\mu_{0}\left(\boldsymbol{J}+\epsilon_{0} \frac{\partial \boldsymbol{E}}{\partial t}\right)
\end{aligned}
$$

Or with natural units $\left(\epsilon_{0}=\mu_{0}=1\right)$ and slight change of notation:

$$
\begin{aligned}
\nabla \boldsymbol{E}+\partial_{t} \boldsymbol{B} & =-\rho \\
\nabla \boldsymbol{B}-\partial_{t} \boldsymbol{E} & =\boldsymbol{J}
\end{aligned}
$$

