Quaternions

Quaternions are the 3D equivalent to complex numbers. They are made up of four numbers (whence the name) but do not describe 4D space.

We introduce three elements i, j, k that obey the following rules:

$$
\begin{gathered}
i^{2}=j^{2}=k^{2}=-1 \\
j k=-k j=i \\
i j=-i j=k \\
k i=-i k=j
\end{gathered}
$$

A general quaternion will be denoted as $q=q_{0}+q_{1} i+q_{2} j+q_{3} k=q_{0}+\mathbf{q}_{\mathbf{v}}$, where $\mathbf{q}_{\mathbf{v}}$ is a quaternionic 3D vector I will call a qvector. The product of two quaternions q and p looks as follows:

$$
\begin{aligned}
q p & =\left(q_{0}+\mathbf{q}_{\mathbf{v}}\right)\left(p_{0}+\mathbf{p}_{\mathbf{v}}\right) \\
& =q_{0} p_{0}+q_{0} \mathbf{p}_{\mathbf{v}}+p_{0} \mathbf{q}_{\mathbf{v}}+\mathbf{q}_{\mathbf{v}} \mathbf{p}_{\mathbf{v}}
\end{aligned}
$$

where

$$
\begin{aligned}
\mathbf{q}_{\mathbf{v}} \mathbf{p}_{\mathbf{v}} & =-q_{1} p_{1}-q_{2} p_{2}-q_{3} p_{3}+i\left(q_{2} p_{3}-q_{3} p_{2}\right)+j\left(q_{3} p_{1}-q_{1} p_{3}\right)+k\left(q_{1} p_{2}-q_{2} p_{1}\right) \\
& =-\mathbf{q}_{\mathbf{v}} \cdot \mathbf{p}_{\mathbf{v}}+\mathbf{q}_{\mathbf{v}} \times \mathbf{p}_{\mathbf{v}}
\end{aligned}
$$

with

$$
\begin{aligned}
\mathbf{q}_{\mathbf{v}} \cdot \mathbf{p}_{\mathbf{v}} & =q_{1} p_{1}+q_{2} p_{2}+q_{3} p_{3} \\
\mathbf{q}_{\mathbf{v}} \times \mathbf{p}_{\mathbf{v}} & =i\left(q_{2} p_{3}-q_{3} p_{2}\right) \\
& +j\left(q_{3} p_{1}-q_{1} p_{3}\right) \\
& +k\left(q_{1} p_{2}-q_{2} p_{1}\right)
\end{aligned}
$$

which we call the dot-product and cross-product respectively. Note that

$$
\begin{aligned}
\mathbf{q}_{\mathbf{v}} \cdot \mathbf{p}_{\mathbf{v}} & =\mathbf{p}_{\mathbf{v}} \cdot \mathbf{q}_{\mathbf{v}} \\
\mathbf{q}_{\mathbf{v}} \times \mathbf{p}_{\mathbf{v}} & =-\mathbf{p}_{\mathbf{v}} \times \mathbf{q}_{\mathbf{v}} \\
\mathbf{q}_{\mathbf{v}} \times \mathbf{q}_{\mathbf{v}} & =0
\end{aligned}
$$

which allows us to express both as the symmetric and anti-symmetric part of the general product:

$$
\begin{aligned}
\mathbf{q}_{\mathbf{v}} \cdot \mathbf{p}_{\mathbf{v}} & =-\frac{1}{2}\left(\mathbf{q}_{\mathbf{v}} \mathbf{p}_{\mathbf{v}}+\mathbf{p}_{\mathbf{v}} \mathbf{q}_{\mathbf{v}}\right) \\
\mathbf{q}_{\mathbf{v}} \times \mathbf{p}_{\mathbf{v}} & =\frac{1}{2}\left(\mathbf{q}_{\mathbf{v}} \mathbf{p}_{\mathbf{v}}-\mathbf{p}_{\mathbf{v}} \mathbf{q}_{\mathbf{v}}\right)
\end{aligned}
$$

The conjugate we will denote with $q^{*}:=q_{0}-\mathbf{q}_{\mathbf{v}}$ and the squared norm with $|q|^{2}:=$ $q q^{*}=q_{0}^{2}+q_{1}^{2}+q_{2}^{2}+q_{3}^{2}$. For the conjugate of a product we find:

$$
\begin{aligned}
(q p)^{*} & =\left(\left(q_{0}+\mathbf{q}_{\mathbf{v}}\right)\left(p_{0}+\mathbf{p}_{\mathbf{v}}\right)\right)^{*} \\
& =\left(q_{0} p_{0}+q_{0} \mathbf{p}_{\mathbf{v}}+p_{0} \mathbf{q}_{\mathbf{v}}-\mathbf{q}_{\mathbf{v}} \cdot \mathbf{p}_{\mathbf{v}}+\mathbf{q}_{\mathbf{v}} \times \mathbf{p}_{\mathbf{v}}\right)^{*} \\
& =q_{0} p_{0}-q_{0} \mathbf{p}_{\mathbf{v}}-p_{0} \mathbf{q}_{\mathbf{v}}-\mathbf{q}_{\mathbf{v}} \cdot \mathbf{p}_{\mathbf{v}}-\mathbf{q}_{\mathbf{v}} \times \mathbf{p}_{\mathbf{v}} \\
& =p_{0} q_{0}-p_{0} \mathbf{q}_{\mathbf{v}}-q_{0} \mathbf{p}_{\mathbf{v}}-\mathbf{p}_{\mathbf{v}} \cdot \mathbf{q}_{\mathbf{v}}+\mathbf{p}_{\mathbf{v}} \times \mathbf{q}_{\mathbf{v}} \\
& =\left(p_{0}-\mathbf{p}_{\mathbf{v}}\right)\left(q_{0}-\mathbf{q}_{\mathbf{v}}\right) \\
& =p^{*} q^{*}
\end{aligned}
$$

With this we get the important property that norms multiply:

$$
\begin{aligned}
|q p|^{2} & =(q p)(q p)^{*} \\
& =(q p)\left(p^{*} q^{*}\right)=q\left(p p^{*}\right) q^{*} \\
& =q|p|^{2} q^{*}=q q^{*}|p|^{2} \\
& =|q|^{2}|p|^{2}
\end{aligned}
$$

With $q=|q| \hat{q}$ where \hat{q} is a unit-quaternion this property gives us

$$
\begin{aligned}
(|\mathbf{a}| \hat{\mathbf{a}}) \cdot(|\mathbf{b}| \hat{\mathbf{b}}) & =-\frac{1}{2}(|\mathbf{a}||\mathbf{b}| \hat{\mathbf{a}} \hat{\mathbf{b}}+|\mathbf{a}||\mathbf{b}| \hat{\mathbf{b}} \hat{\mathbf{a}}) \\
& =|\mathbf{a}||\mathbf{b}|\left(-\frac{1}{2}(\hat{\mathbf{a}} \hat{\mathbf{b}}+\hat{\mathbf{b}} \hat{\mathbf{a}})\right) \\
& =|\mathbf{a}||\mathbf{b}|(\hat{\mathbf{a}} \cdot \hat{\mathbf{b}})
\end{aligned}
$$

and similarly

$$
(|\mathbf{a}| \hat{\mathbf{a}}) \times(|\mathbf{b}| \hat{\mathbf{b}})=|\mathbf{a}||\mathbf{b}|(\hat{\mathbf{a}} \times \hat{\mathbf{b}})
$$

Let us now consider the geometric interpretation of these products.

Let \mathbf{a} and \mathbf{b} be any quectors and $\mathbf{c}=\mathbf{b}-\mathbf{a}$. If we square both sides we get:

$$
\begin{aligned}
\mathbf{c}^{2} & =(\mathbf{b}-\mathbf{a})^{2} \\
& =\mathbf{b}^{2}+\mathbf{a}^{2}-\mathbf{a b}-\mathbf{b a} \\
-|\mathbf{c}|^{2} & =-|\mathbf{b}|^{2}-|\mathbf{a}|^{2}+2 \mathbf{a} \cdot \mathbf{b} \\
|\mathbf{c}|^{2} & =|\mathbf{b}|^{2}+|\mathbf{a}|^{2}-2 \mathbf{a} \cdot \mathbf{b}
\end{aligned}
$$

and the Pythagorean theorem implies

$$
\mathbf{a} \perp \mathbf{b} \Longleftrightarrow \mathbf{a} \cdot \mathbf{b}=0
$$

Now consider the product $\mathbf{a} \cdot \mathbf{b}$ in general. We can decompose \mathbf{b} into components parallel and perpendicular to a and we find the following:

$$
\begin{aligned}
\mathbf{a} \cdot \mathbf{b} & =\mathbf{a} \cdot\left(\mathbf{b}_{\|}+\mathbf{b}_{\perp}\right)=\mathbf{a} \cdot \mathbf{b}_{\|}+\mathbf{a} \cdot \mathbf{b}_{\perp} \\
& =\mathbf{a} \cdot \mathbf{b}_{\|}+0 \\
& =\mathbf{a} \cdot \frac{\mathbf{a}}{|\mathbf{a}|}\left|\mathbf{b}_{\|}\right| \\
& =\frac{\mathbf{a}^{2}}{|\mathbf{a}|}|\mathbf{b}| \cos (\phi)=\frac{|\mathbf{a}|^{2}}{|\mathbf{a}|}|\mathbf{b}| \cos (\phi)=|\mathbf{a}||\mathbf{b}| \cos (\phi)
\end{aligned}
$$

For the cross product we have

$$
\mathbf{a} \| \mathbf{b} \Longleftrightarrow \mathbf{a} \times \mathbf{b}=0
$$

and we can again decompose \mathbf{b} :

$$
\begin{aligned}
\mathbf{a} \times \mathbf{b} & =\mathbf{a} \times\left(\mathbf{b}_{\|}+\mathbf{b}_{\perp}\right)=\mathbf{a} \times \mathbf{b}_{\|}+\mathbf{a} \times \mathbf{b}_{\perp} \\
& =0+\mathbf{a} \times \mathbf{b}_{\perp} \\
& =\frac{\mathbf{a}}{|\mathbf{a}|} \times \frac{\mathbf{b}_{\perp}}{\left|\mathbf{b}_{\perp}\right|}|\mathbf{a}|\left|\mathbf{b}_{\perp}\right| \\
& =\frac{\mathbf{a} \times \mathbf{b}_{\perp}}{\left|\mathbf{b _ { \perp } |}\right|}|\mathbf{a}||\mathbf{b}| \sin (\phi) \\
& =\frac{\mathbf{a} \mathbf{b}_{\perp}}{\left|\mathbf{a} \mathbf{b}_{\perp}\right|}|\mathbf{a}||\mathbf{b}| \sin (\phi)
\end{aligned}
$$

The first part of this is a unit quector, but what about its direction? We can easily show that it is perpendicular to both \mathbf{a} and \mathbf{b} :

$$
\begin{aligned}
(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} & =\frac{1}{2}(\mathbf{a b}-\mathbf{b a}) \cdot \mathbf{a} \\
& =\frac{1}{4}(\mathbf{a a b}-\mathbf{a b a}+\mathbf{a b a}-\mathbf{b a a}) \\
& =\frac{1}{4}\left(\mathbf{a}^{2} \mathbf{b}-\mathbf{b a}^{2}\right) \\
& =\frac{1}{4}|\mathbf{a}|^{2}(\mathbf{b}-\mathbf{b})=0 \\
(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} & =\ldots \\
& =0
\end{aligned}
$$

