
Quaternions
Quaternions are the 3D equivalent to complex numbers. They are made up of four
numbers (whence the name) but do not describe 4D space.

We introduce three elements i, j, k that obey the following rules:

i2 = j2 = k2 = −1

jk = −kj = i

ij = −ij = k

ki = −ik = j

A general quaternion will be denoted as q = q0 + q1i+ q2j + q3k = q0 + qv, where qv
is a quaternionic 3D vector I will call a qvector. The product of two quaternions q and
p looks as follows:

qp = (q0 + qv)(p0 + pv)

= q0p0 + q0pv + p0qv + qvpv

where

qvpv = −q1p1 − q2p2 − q3p3 + i(q2p3 − q3p2) + j(q3p1 − q1p3) + k(q1p2 − q2p1)

= −qv · pv + qv × pv

with

qv · pv = q1p1 + q2p2 + q3p3

qv × pv = i(q2p3 − q3p2)

+ j(q3p1 − q1p3)

+ k(q1p2 − q2p1)

which we call the dot-product and cross-product respectively. Note that

qv · pv = pv · qv

qv × pv = −pv × qv

qv × qv = 0

which allows us to express both as the symmetric and anti-symmetric part of the general
product:

qv · pv = −1

2
(qvpv + pvqv)

qv × pv =
1

2
(qvpv − pvqv)

The conjugate we will denote with q∗ := q0 − qv and the squared norm with |q|2 :=
qq∗ = q20 + q21 + q22 + q23. For the conjugate of a product we find:

(qp)∗ = ((q0 + qv)(p0 + pv))
∗

= (q0p0 + q0pv + p0qv − qv · pv + qv × pv)
∗

= q0p0 − q0pv − p0qv − qv · pv − qv × pv

= p0q0 − p0qv − q0pv − pv · qv + pv × qv

= (p0 − pv)(q0 − qv)

= p∗q∗
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With this we get the important property that norms multiply:

|qp|2 = (qp)(qp)∗

= (qp)(p∗q∗) = q(pp∗)q∗

= q|p|2q∗ = qq∗|p|2

= |q|2|p|2

With q = |q|q̂ where q̂ is a unit-quaternion this property gives us

(|a|â) · (|b|b̂) = −1

2
(|a||b|âb̂ + |a||b|b̂â)

= |a||b|(−1

2
(âb̂ + b̂â))

= |a||b|(â · b̂)
and similarly

(|a|â)× (|b|b̂) = |a||b|(â × b̂)
Let us now consider the geometric interpretation of these products.

Let a and b be any qvectors and c = b − a. If we square both sides we get:

c2 = (b − a)2

= b2 + a2 − ab − ba
−|c|2 = −|b|2 − |a|2 + 2a · b
|c|2 = |b|2 + |a|2 − 2a · b

and the Pythagorean theorem implies

a ⊥ b ⇐⇒ a · b = 0

Now consider the product a · b in general. We can decompose b into components
parallel and perpendicular to a and we find the following:

a · b = a · (b∥ + b⊥) = a · b∥ + a · b⊥

= a · b∥ + 0

= a · a
|a| |b∥|

=
a2
|a| |b| cos(ϕ) = |a|2

|a| |b| cos(ϕ) = |a||b| cos(ϕ)

2



For the cross product we have

a ∥ b ⇐⇒ a × b = 0

and we can again decompose b:

a × b = a × (b∥ + b⊥) = a × b∥ + a × b⊥

= 0 + a × b⊥

=
a
|a| ×

b⊥
|b⊥|

|a||b⊥|

=
a × b⊥
|ab⊥|

|a||b| sin(ϕ)

=
ab⊥
|ab⊥|

|a||b| sin(ϕ)

The first part of this is a unit qvector, but what about its direction? We can easily show
that it is perpendicular to both a and b:

(a × b) · a =
1

2
(ab − ba) · a

=
1

4
(aab − aba + aba − baa)

=
1

4
(a2b − ba2)

=
1

4
|a|2(b − b) = 0

(a × b) · b = ...

= 0
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