Introduction

Rotation is a fundamental transformation of vectors. In 2D the math to express rotations
seems to be relatively simple, but in 3D the problems start. One attempt to deal with
rotations is to describe them with three angles for three rotations around the three
principal axes. This is rather inelegant and also impractical because trying to interpolate
between rotations can result in gimbal lock. A better approach is to describe rotation
as a single arbitrary axis and an angle. These are then often used to fill a 3x3 matrix
with the right values. This is an improvement but the fact that the number of values
needed to describe a rotation is less than 3x3 means that a matrix has many degrees of
freedom, which again makes interpolation between two rotations problematic.

The solution often offered to this problem is quaternions. Quaternions describe rota-
tion in 3D with four numbers, which prompted many to write articles, comments and
make videos about just how unintuitive to understand these weird 4D-numbers are.
Nothing could be further from the truth: in fact, quaternions are a very natural way
to encode axis-angle rotations. The fact that there are four numbers should not be any
more upsetting than the fact that a 3D axis and an angle are already four numbers as
well. In this article I hope to show that quaternions are indeed not mysterious or hard
to understand at all.

Complex numbers and quaternions can be understood more deeply in the framework
of Geometric Algebra (GA), but the well known rotation formulas can easily be derived
even without GA. We will gradually build up our understanding of rotations, complex
numbers and quaternions until we have derived the apparently impenetrable half-angle
sandwich product. After that I will briefly touch upon how the apparent weirdness and
discrepancy between 2D and 3D that we will find can be understood in the context of
GA.

We will only consider the case of rotations about the origin here. Rotating about
arbitrary points and also doing translations can be done elegantly with a projective
approach like dual quaternions or projective GA (PGA).

Complex numbers

Complex numbers are numbers of the form z = a+ib where i? := —1. Hence the product
of two complex numbers is: zw = (a + ib)(c + id) = (ac — bd) + i(ad + bc). We denote
the conjugate of z with z* := a — ib and the squared norm with |z|? := z2* = a® + b°.

The complex numbers with |z| = 1 form a unit circle with z = cos(6) + isin(6). A ge-
neral complex number with |z| = r and angle § can be written as z = r(cos(0) 4 i sin(0)).
The product of two complex numbers in this polar form is 71 (cos(0;)+i sin(6;))ra(cos(f2)+
isin(f2)). We will show that this equals r172(cos(01 + 62) +isin(f; + 62)), i.e. angles are
added and magnitudes are multiplied.

Finally there is an inverse 2 l.= ZZ;* because zz~

Complex numbers are often plotted in a 2D-coordinate system with the scalar com-

ponent in the x and the i-component in the y axis, as in the figure below.

1

=z1=1.

2D Rotation

Rotation is fundamentally a 2D transformation. The components of vectors that lie in a
plane are rotated in that plane, the orthogonal component is unaffected. In the 2D case
there is only one plane and all vectors lie in that plane completely with no orthogonal
component. This is why it is the simplest case to consider and hence why we deal with
it first. It will provide the understanding we need for the 3D (or general) case.

z = cos(B) + i sin(0)

Let v = (cos(¢),sin(¢)) be any unit vector and let vg be this vector rotated by angle
0, so vg = (cos(¢ + 0),sin(¢ + 0)). Further assume that v is simply given to us and we
do not know its angle, so we cannot simply add the angles and recompute the rotated
vector.

To rotate v by 6 we first rotate it by 90° to v/ = (cos(¢ + 90°),sin(¢ + 90°)) =
(—sin(¢), cos(¢)) which effectively gives us two basis vectors (v and v') of a coordi-
nate system rotated by ¢. The rotated vector vg should have coordinates (cos(6), sin(0))
in the local coordinate system (v,v’). So to transform vg to absolute space we simply
multiply the local coordinates by the basis vectors of this coordinate system, yielding

vg = cos(6)v + sin(0)v’
= (cos(#) cos(¢) — sin(#) sin(¢), cos(#) sin(¢) + sin(f) cos(¢))
= (cos(¢ + 0),sin(¢p + 0)).

We have thus derived the angle addition formula.

v' = (-sin(¢), cos(d))

Vg = €os(B)*v + sin(6)*v'

cos(¢+6) = (cos($+6), sin(¢+6))

sin(¢+06)
v = (cos(9), sin(¢))

| I
Using complex numbers this result can be expressed very succinctly. Let v = cos(¢) +

isin(¢). Note that multiplication by 4 is exactly the rotation by 90° that we need to
calculate v'. So v/ = —sin(¢) + i cos(¢) = iv. Finally we find

vg = cos(f)v + sin(0)v’

= cos(#)v + sin(0)iv
= (cos(#) + isin(0))v
= Rv with R := cos(#) + isin(0)

Thus we see that multiplying unit complex numbers adds their angles. If We define a
function R(x) := cos(z) + isin(z), we see that R(z)R(y) = R(z +y) and also L R(z) =
—sin(x) 4+ i cos(x) = iR(x), both of which suggest a connection with the exp-function.
It can indeed be shown that R(x) = €™ and though we will skip a rigorous proof we will
motivate why this is intuitively true.

A common definition of e” is lim,, (14)". So for our case e = limy, 00 (1 + %)"
This is a complex number 1 + 77 that is multiplied with itself n times. The angle of
this inner number is arctan(%) and since multiplication adds angles, €’ has the angle
lim;, 00 narctan(%). Because arctan(x) ~ z for very small z, the n cancels out, giving
angle .

For the squared magnitude we get [1+i%|? = 1242 Zy and for || = limn_ﬂx(l—i—%)".
Here n? — 0 faster than the exponent can compensate so the limit (and hence the
magnitude) is 1.

Thus we have motivated e* = cos(x)+isin(z) and a rigorous proof of both limits is not
too difficult. Note further that e ~** = cos(—xz)+isin(—xz) = cos(x)—isin(x) = **". This
actually gives meaning to the conjugate: it is simply a rotation in the other direction.

Note that rotation in a single plane is commutative and since complex numbers only
describe a single plane, it makes sense that complex number multiplication is commuta-
tive as well.

Quaternions

Quaternions are the 3D equivalent to complex numbers. They are made up of four
numbers (whence the name) but do not describe 4D space.
We introduce three elements ¢, j, k that obey the following rules:

=2 =k=

jk = —kj =i
ij=—ij=k
ki = —ik = j

A general quaternion will be denoted as ¢ = qo + q17 + ¢27 + g3k = qo + qv, where qy
is a quaternionic 3D vector I will call a qvector. The product of two quaternions ¢ and
p looks as follows:

qp = (o + av)(po + pv)
= qopo + qoPv + Podv + QvPv

where

QvPv = —q1p1 — @2P2 — q3p3 + 1(q2p3 — q3p2) + j(q3p1 — qip3) + k(qip2 — q2p1)
= —Qy - Pv +Qqy X Py

Where - and x are the familiar dot- and cross-product. The conjugate we will denote
with ¢* := gy — qy and the squared norm with |q|? := ¢¢* = ¢} + ¢} + ¢3 + 3. For the
conjugate of a product we find:

(qp)* = ((q0 + av)(po + pv))"
= (qopo + qoPv + PoQv — Qv - Py + Qv X Py)"
= qoPo — qoPv — Podv — Qv - Pv — Qv X Py
= Pogo — PoQv — oPv — Pv * Qv + Pv X Qv
= (po — pPv)(q0 — av)

=p'q"
Note that if u L v then uv = u x v and if u || v then uv = —u - v. In particular
v2 = —|v|? so any unit qvector squares to -1. This implies e"* = cos(x) + vsin(z) for any

unit qvector. Note also that the quaternion product is the sum of a commutative and
anti-commutative part. Hence it is not generally one or the other, but can be if one of
those parts is zero.

As with the complex numbers the inverse is ¢~ := qqq**.

3D Rotation

Because there is not only a single plane of rotation in 3D (in fact there are infinite), we
lose two properties that made 2D rotation very simple: rotation is no longer commutative
if multiple planes of rotation are involved, and not all vectors lie in the plane of rotation.

As before we want to rotate a vector v by angle #, but in 3D we also have to pick
a plane of rotation. We do this by using the plane’s normal as a qvector, which only
works in 3D because only there are planes and vectors dual to each other but it will be
acceptable for our purposes. Thus our axis of rotation will be the qvector r.

The special case: v L r

Just like in the 2D case the rotated vector will be vg = cos(0)v+sin(f)v’ but what is v'?
As before we need v’ to be rotated by 90° and also lie in the plane of rotation. In other
words: v/ has to be orthogonal to both v and r, but this is exactly what the cross-product
does, so v/ = r x v. In our special case we required v L r and hence r x v = rv. Finally
we get VR = cos(0)v + sin(0)v' = cos(0)v + sin(0)rv = (cos(6) + rsin(f))v = ev.

Note that this result looks deceptively similar to complex number rotation, however
with one difference: since the cross-produce is anti-commutative we have rv =r x v =

—(v x1) = —vr and hence e"v = ve™.

The general case

In general v will not be orthogonal to r and we need a different formula, one that only
rotates the part of v that is orthogonal to r and leaves the part parallel to r unchanged.
Let v.= v, + v with v L r and v| || r. We want vg = v + e'v | . Note that
vr =v| -t =r-v| =rv). Making use of commutativity and anti-commutativity we can

finally derive the famous half-angle sandwich formula:

VR =V + erHVL

0 _,0 0 L0
=e'2e v +e2etav]

6 _.8 6 _.6
=e2ve "2 fezv e 2

0 0
=e'2 (VH +vy)e "2

0 1‘9

= ef2ve T2

As the last step we now consider the case of combining two rotations. Assume we have

two quaternions g and p that represent these two rotations and remember e ** = "*,
Rotating first by ¢ and then by p gives us:

*

p(qvg™)p* = (pg)v(q
= (pg)v(pq)*

Where pq is just another unit quaternion again. Any unit quaternion represents a rotation
and we call these quaternions rotors.

Recovering a rotor

Assume that we have two unit vectors u and v and we want to find a rotor R that rotates
u into v, i.e. v= RuR*. How do we achieve this?

First of all notice that u and v will in general span a plane of rotation and are both
orthogonal to the normal of that plane, i.e. the axis of rotation (r). Thus as a first step
we can come back to the simple case where u L r and we have

v = R%u
va ! = R?

Vval = R

This raises two questions: What’s the inverse of a vector (or a quaternion in general),
and how to take the square root of a quaternion?

The inverse ¢! of a quaternion ¢ is defined such that gg~
that g¢* = ¢*q is the scalar |q|? so with

L= ¢71¢ = 1. We saw above

we have found a quaternion that satisfies the definition of the inverse. Note that for unit
quaternions and qvectors in particular we simply have
—1 — q*
-1

vV =—v
With this we can calculate R2:

R?=vu!
=v(—u) = —vu
=—(—v-u+vxu =v-u—-vxu=u-v+uxv

= cos(f) + rsin(f) = e

This is exactly the result we would expect and we only have to find the square root
of " now, which will halve the angle.

For this we offer a geometric derivation. Plot R? on the unit circle in the (1,r) plane.
We need to find R on that circle with half the angle of R2.

T

R? 1+ R?

6/2)

I

Observe that 1 and R? are two corners of an equilateral parallelogram, such that the
diagonals bisect the angles. The other corners are at the origin and 1 + R?. Then R is
simply the point on the diagonal between those that lies on the unit circle. So we find

1+ R?
VR2=_""_ R
|1+ R?|

Note that R? = —1 is a degenerate case and will cause a division by zero. This makes
sense geometrically because it represents a rotation by 180°, which could be around any
axis, however the half-angle rotation needs a definite axis.

The above result also works out algebraically:

w-(t3)

11+ 4
_(ld+a? _ (ld+9)?
gl +q* (gl +@)(Iql +¢*)
lq|* + 2[qlg + ¢

 lal? + lalg* + lalg + qq*
_ag*+2ga+q’
g% + lglg* + lglg + lqf?
q(¢" +2|q| + q)

~al(gl +¢* +q+ la])
_q

= =q

lq

Finally the rotor R from u to v that we were looking for is

1—
R vu

- |1 — vu|

Why?

The rotation formulas for complex numbers and quaternions look rather different. There
is no sandwich needed with the complex numbers (in fact it would give the wrong result)

and the number of values needed to describe a rotation also seems strange: 2 for 2D but
4 for 3D? Wouldn’t we expect similar expressions for any dimension? Yes we would, and
the reason that they are so different is that we are deeply confused. We thought we were
rotating vectors all along, but neither complex numbers nor quaternions include actual
vectors.

But first of all the thing we use to rotate actually looks the same in both cases: e

and er%, the only difference being the half angle because with the sandwich product
we're effectively rotating twice. In 2D rotors are made up of two numbers, in 3D of four
numbers. Why two and four?

Remember that rotation is something that happens in a plane, yet with the complex
numbers no plane was mentioned — it seemed to have been implicit — and with quaternions
we used an axis r instead of a plane. The truth is that our “axis” r was a plane all along
(in GA it is called a bivector) and the “vector” v we wanted to rotate was really a
plane as well. Similarly the complex number ¢ is really a plane and what we rotated was
another rotor.

In 2D we confused vectors with rotors, and in 3D we confused vectors with bivectors
(planes). The reasons are clear: a complex rotor is two numbers, just like a 2D-vector,
and composing rotors (i.e. rotations) in the single plane that we have should result in
nothing more than adding angles, just what we wanted. A quaternionic rotor however is
four numbers as we have seen and we cannot identify it with a 3D-vector. The number of
elementary planes however is three (xy, yz, zx), the same as the number of axes (x, y, z).
This is only the case in 3D, but still rotating a plane with the sandwich product worked,
so we were satisfied. Finally the dimension of a rotor is just one more than the dimension
of a bivector in any dimension because we’re adding a scalar to a bivector. Thus in 2D
(with one plane) a rotor is two numbers, in 3D (with three elementary planes) a rotor is
four numbers, in 4D (with six elementary planes) a rotor is seven numbers, and so forth.

In GA there are actual vectors that can be rotated by rotors using a sandwich product
just like with quaternions. This not only works in 2D and 3D but generalizes to any
dimension.

