
This started out as a comment on chapter 3 and 4 of C. Furey, Standard model physics
from an algebra? as well as C. McKenzie, An Interpretation of Relativistic Spin Entan-
glement Using Geometric Algebra. It has evolved quite a bit since then. NB: these notes
are still a bit messy. Last updated March 27, 2025.

Complex Quaternions
Let 𝜌1, 𝜌2, 𝜌3 be the quaternionic units and 𝑖 the complex unit. This algebra ℂ ⊗ ℍ is
isomorphic to Cl3,0, also called APS. We consider three involutions: complex conjuga-
tion 𝑒∗, which negates 𝑖, quaternionic conjugation ̃𝑒, which negates 𝜌𝑖 and reverses order
of multiplication, and hermitian conjugation 𝑒†, which does both. Complex conjuga-
tion corresponds to grade involution in Cl3,0, and hermitian conjugation to the reverse.
Because in this algebra grade involution coincides with a parity transformation we can
expect this operation to be important later on.

Elements of Cl3,0 can of course be written as matrices, but we have to be careful
not to confuse the complex 𝑖 in the matrix representation with the 𝑖 of our ℂ ⊗ ℍ
algebra because complex conjugation gives different results. For this reason we use
𝑗 in the matrices to keep them distinct. Otherwise however 𝜎123 behaves just like 𝑖.
Hermitian conjugation is independent of representation: 𝑗-conjugation together with
transposition has the same effect as 𝑖-conjugation and quaternionic conjugation. The
matrix equivalent of quaternionic conjugation is adjugation (the diagonal elements are
swapped, the off-diagonal elements are negated), and therefore the matrix equivalent of
𝑖-conjugation is everything combined: 𝑗-conjugation, transposition, adjugation. We will
denote 𝑗-conjugation with 𝑒° and transposition with 𝑒𝑇 .

The following table shows all the involutions, the ones marked with R also reverse the
elements:

ℂ ⊗ ℍ Cl3,0 𝑒∗ ̃𝑒 𝑒† 𝑒° 𝑒𝑇

1 1 + + + + +
𝑖𝜌1 𝜎1 − − + + +
𝑖𝜌2 𝜎2 − − + − −
𝑖𝜌3 𝜎3 − − + + +
𝜌1 −𝜎23 + − − − +
𝜌2 −𝜎31 + − − + −
𝜌3 −𝜎12 + − − − +

𝑖 𝜎123 − + − − +
R R R

1 = (1 0
0 1) 𝜎123 = (𝑗 0

0 𝑗)

𝜎1 = (0 1
1 0) −𝜎23 = ( 0 −𝑗

−𝑗 0 )

𝜎2 = (0 −𝑗
𝑗 0 ) −𝜎31 = (0 −1

1 0 )

𝜎3 = (1 0
0 −1) −𝜎12 = (−𝑗 0

0 𝑗)

Spinors
We will see that left and right Weyl spinors live in two different minimal left ideals.
Their sum is a Dirac spinor and spans the whole algebra.
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We start by defining a new basis:

𝑆↑↑ = 1
2(1 + 𝑖𝜌3) 𝑆↑↓ = 1

2(𝑖𝜌1 − 𝜌2)
𝑆↓↑ = 1

2(𝑖𝜌1 + 𝜌2) 𝑆↓↓ = 1
2(1 − 𝑖𝜌3)

Multiplying these elements is very intuitive: the product 𝑆𝑎𝑏𝑆𝑐𝑑 (where 𝑎, 𝑏, 𝑐, 𝑑 ∈
{↑, ↓}) is 𝑆𝑎𝑑𝛿𝑏𝑐, i.e. the middle two arrows cancel out if they align and annihilate
otherwise. Thus 𝑆↑↑, 𝑆↓↓ are projectors and 𝑆↑↓, 𝑆↓↑ flip arrows. Note also that † swaps
the two arrows. The following table shows the multiplication table as well as the effect
of the conjugations:

𝑆↑↑ 𝑆↑↓ 𝑆↓↑ 𝑆↓↓ 𝑒∗ ̃𝑒 𝑒† 𝑒° 𝑒𝑇

𝑆↑↑ 𝑆↑↑ 𝑆↑↓ 0 0 𝑆↓↓ 𝑆↓↓ 𝑆↑↑ 𝑆↑↑ 𝑆↑↑
𝑆↑↓ 0 0 𝑆↑↑ 𝑆↑↓ −𝑆↓↑ −𝑆↑↓ 𝑆↓↑ 𝑆↑↓ 𝑆↓↑
𝑆↓↑ 𝑆↓↑ 𝑆↓↓ 0 0 −𝑆↑↓ −𝑆↓↑ 𝑆↑↓ 𝑆↓↑ 𝑆↑↓
𝑆↓↓ 0 0 𝑆↓↑ 𝑆↓↓ 𝑆↑↑ 𝑆↑↑ 𝑆↓↓ 𝑆↓↓ 𝑆↓↓

With this in hand we can construct the object 𝑆↓↑ + 𝑆↑↓ = 𝑖𝜌1 which flips any arrow,
and the object 𝑆↑↑ − 𝑆↓↓ = 𝑖𝜌3, which tells us the direction of an arrow. 𝑆↑↑ + 𝑆↓↓ = 1 is
trivial and 𝑆↓↑ − 𝑆↑↓ = 𝜌2 = (𝑖𝜌1)(𝑖𝜌3) is less interesting.

𝑖𝜌1𝑆↑𝑥 = 𝑆↓𝑥 𝑆𝑥↑𝑖𝜌1 = 𝑆𝑥↓
𝑖𝜌1𝑆↓𝑥 = 𝑆↑𝑥 𝑆𝑥↓𝑖𝜌1 = 𝑆𝑥↑

𝑖𝜌3𝑆↑𝑥 = +𝑆↑𝑥 𝑆𝑥↑𝑖𝜌3 = +𝑆𝑥↑
𝑖𝜌3𝑆↓𝑥 = −𝑆↓𝑥 𝑆𝑥↓𝑖𝜌3 = −𝑆𝑥↓

Note that it is not possible to flip the right arrow by left multiplication nor the left arrow
by right multiplication. The 𝑆↑↑, 𝑆↓↓ projectors therefore partition the whole algebra into
two minimal left ideals which we take to be the spaces of left and right Weyl spinors
respectively. We can directly interpret the left arrow as indicating spin-up vs. spin-down
states and the right arrow left- vs. right-handedness.

In matrix form the S-basis looks like this:

𝑆↑↑ = (1 0
0 0) 𝑆↑↓ = (0 1

0 0)

𝑆↓↑ = (0 0
1 0) 𝑆↓↓ = (0 0

0 1)

Where left- vs. right-handed and spin-up vs. spin-down states have very suggestive
spots in the matrix.

Because ℂ⊗ℍ elements can be gobbled up by the projectors we can also interpret left-
and right-handed spinors as a real quaternion multiplied onto a projector. Of course all
elements can also be expressed in terms of complex numbers and spin-up and -down
states (𝑖𝜌1 flips spin).

(1 + 𝑖𝜌3)/2 (1 − 𝑖𝜌3)/2
1 1 1 1 1

𝑖𝜌1 𝜌2 1(𝑖𝜌1) −𝜌2 1(𝑖𝜌1)
𝑖𝜌2 −𝜌1 𝑖(𝑖𝜌1) 𝜌1 −𝑖(𝑖𝜌1)
𝑖𝜌3 1 1 −1 −1
𝜌1 𝜌1 −𝑖(𝑖𝜌1) 𝜌1 −𝑖(𝑖𝜌1)
𝜌2 𝜌2 1(𝑖𝜌1) 𝜌2 −1(𝑖𝜌1)
𝜌3 𝜌3 −𝑖 𝜌3 𝑖

𝑖 −𝜌3 𝑖 𝜌3 𝑖
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From this we see that 𝑖 is very closely related to 𝜌3: multiplication with 𝑖 is the same
as multiplication with ±𝜌3 at the projector, the sign depending on chirality. Likewise,
multiplication by 𝜌3 at the projector is the same as multiplication by ±𝑖.

Dirac algebra
Chiral representation
As we have seen, left multiplication with a ℂ ⊗ ℍ element cannot change chirality,
but right multiplication with 𝑖𝜌1 does swap left and right. This is precisely what 𝛾0
does in the traditional approach, so we can identify 𝛾0 with right multiplication of 𝑖𝜌1:
𝛾0 ≡ 1|𝑖𝜌1, such that 𝛾0𝜓 = 1𝜓𝑖𝜌1 = 𝜓𝑖𝜌1.

Similarly we found that right-multiplication with 𝑖𝜌3 negates right-handed states,
which is exactly what −𝑖𝛾0123 = −𝛾5 does. Therefore −𝑖𝛾0123 ≡ 1|𝑖𝜌3 and we recover
the whole Dirac algebra as two-sided multiplication of ℂ ⊗ ℍ elements 1:

Cl1,3 1 𝑖𝜌1 𝑖𝜌2 𝜌3
1 1 𝛾0 −𝛾123 −𝛾0123

𝜌1 𝛾23 𝛾023 𝛾1 −𝛾10
𝜌2 𝛾31 𝛾031 𝛾2 −𝛾20
𝜌3 𝛾12 𝛾012 𝛾3 −𝛾30

E.g. 𝛾1𝛾10 = (𝜌1|𝑖𝜌2)(−𝜌1|𝜌3) = 𝜌1(−𝜌1|𝜌3)𝑖𝜌2 = (−𝜌1𝜌1)|(𝑖𝜌3𝜌2) = −1|𝑖𝜌1 = −𝛾0
Note that complex conjugation negates the odd elements, which is precisely what it

does in the Majorana matrix representation. Therefore we find that complex conjugation
corresponds to charge conjugation.

Dirac representation
If we take the 1

2(1 ± 𝑖𝜌3) projectors instead to divide the spinor into positive and neg-
ative states rather than left- and right-handed ones we get the equivalent of the Dirac
representation of the 𝛾-matrices rather than the chiral one and the table becomes

Cl1,3 1 𝑖𝜌3 𝑖𝜌2 𝜌1
1 1 𝛾0 𝛾123 𝛾0123

𝜌1 𝛾23 𝛾023 −𝛾1 𝛾10
𝜌2 𝛾31 𝛾031 −𝛾2 𝛾20
𝜌3 𝛾12 𝛾012 −𝛾3 𝛾30

These two are related by a reflected rotation of the right hand side: 𝑅𝐷 = −√𝜌2𝑅𝜒
√−𝜌2.

Dirac’s original matrices

To derive his famous equation, Dirac originally considered four matrices 𝛼𝜇 satisfying
𝛼𝜇𝛼𝜈 + 𝛼𝜈𝛼𝜇 = 2𝛿𝜇𝜈 (𝜇, 𝜈 = 1, 2, 3, 4). He notes that the Pauli 𝜎-matrices satisfy
𝜎𝑟𝜎𝑠 + 𝜎𝑠𝜎𝑟 = 2𝛿𝑟𝑠 (𝑟, 𝑠 = 1, 2, 3) but that it is not possible to find a fourth such 2x2

1It is interesting to note that two-sided multiplication of the real quaternions gives Cl3,1, perhaps a
hint that the − + ++ metric is somewhat more fundamental.

Cl3,1 1 𝜌1 𝜌2 𝜌3
1 1 𝛾0 𝛾123 −𝛾0123

𝜌1 −𝛾23 −𝛾023 𝛾1 𝛾10
𝜌2 −𝛾31 −𝛾031 𝛾2 𝛾20
𝜌3 −𝛾12 −𝛾012 𝛾3 𝛾30
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matrix. Therefore he extends the 𝜎-matrices to 4x4 matrices and finds a second set
of matrices, 𝜌𝑟, which satisfy the same conditions. His 𝜌-matrices are obtained from
interchanging the second and third rows and columns from his extended 𝜎-matrices. To
avoid confusion we call these two sets 𝑆 and 𝑅 instead:

𝑆1 =
⎛⎜⎜⎜⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎟⎟
⎠

𝑆2 =
⎛⎜⎜⎜⎜
⎝

0 −𝑖 0 0
𝑖 0 0 0
0 0 0 −𝑖
0 0 𝑖 0

⎞⎟⎟⎟⎟
⎠

𝑆3 =
⎛⎜⎜⎜⎜
⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞⎟⎟⎟⎟
⎠

𝑅1 =
⎛⎜⎜⎜⎜
⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞⎟⎟⎟⎟
⎠

𝑅2 =
⎛⎜⎜⎜⎜
⎝

0 0 −𝑖 0
0 0 0 −𝑖
𝑖 0 0 0
0 𝑖 0 0

⎞⎟⎟⎟⎟
⎠

𝑅3 =
⎛⎜⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎟⎟
⎠

He then finds 𝛼𝑟 = 𝑅1𝑆𝑟, 𝛼4 = 𝑅3 and defines a set of 𝛾-matrices (which we will denote
with Γ, again to avoid confusion): Γ𝑟 = 𝑅2𝑆𝑟, Γ4 = 𝑅3. These satisfy Γ𝜇Γ𝜈 + Γ𝜈Γ𝜇 =
2𝛿𝜇𝜈 just like the 𝛼’s. Comparing with the now conventional Dirac 𝛾-matrices we find
the following equivalences:

𝑆1 = 𝑖𝛾23 𝑅1 = 𝑖𝛾0123
𝑆2 = 𝑖𝛾31 𝑅2 = 𝛾123
𝑆3 = 𝑖𝛾12 𝑅3 = 𝛾0
𝛼𝑟 = 𝛾0𝑟 Γ𝑟 = −𝑖𝛾𝑟
𝛼4 = 𝛾0 Γ4 = 𝛾0

The relationship between the 𝑆 and 𝑅 matrices becomes much clearer in the above
light of left and right multiplication. Consider the two products of two matrices 𝑀 and
𝑉 , 𝑀𝑉 and 𝑉 𝑀 :

(𝐴 𝐶
𝐵 𝐷) (𝑎 𝑐

𝑏 𝑑) = (𝑎𝐴 + 𝑏𝐶 𝑐𝐴 + 𝑑𝐶
𝑎𝐵 + 𝑏𝐷 𝑐𝐵 + 𝑑𝐷)

(𝑎 𝑐
𝑏 𝑑) (𝐴 𝐶

𝐵 𝐷) = (𝑎𝐴 + 𝑐𝐵 𝑎𝐶 + 𝑐𝐷
𝑏𝐴 + 𝑑𝐵 𝑏𝐶 + 𝑑𝐷)

Treating the elements of the matrix 𝑉 as a vector 𝑣 instead, we find the following for
𝑀𝐿𝑣 and 𝑀𝑅𝑣:

⎛⎜⎜⎜⎜
⎝

𝐴 𝐶 0 0
𝐵 𝐷 0 0
0 0 𝐴 𝐶
0 0 𝐵 𝐷

⎞⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜
⎝

𝑎
𝑏
𝑐
𝑑

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

𝑎𝐴 + 𝑏𝐶
𝑎𝐵 + 𝑏𝐷
𝑐𝐴 + 𝑑𝐶
𝑐𝐵 + 𝑑𝐷

⎞⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜
⎝

𝐴 0 𝐵 0
0 𝐴 0 𝐵
𝐶 0 𝐷 0
0 𝐶 0 𝐷

⎞⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜
⎝

𝑎
𝑏
𝑐
𝑑

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

𝑎𝐴 + 𝑐𝐵
𝑏𝐴 + 𝑑𝐵
𝑎𝐶 + 𝑐𝐷
𝑏𝐶 + 𝑑𝐷

⎞⎟⎟⎟⎟
⎠

Thus we can identify Dirac’s 𝑆 and 𝑅 matrices simply as the left and right multiplied
𝜎-matrices interpreted as action on a vector. 𝑅2 is in fact the negated version of right-
multiplied 𝜎2 because right multiplication changes order: 𝑖𝑅2 = 𝑅3𝑅1 ≅ (1|𝜎3)(1|𝜎1) =
(1|𝜎13) = (1| − 𝑖𝜎2).
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Lorentz transformations
The 𝜌𝑖 generate rotations, the 𝑖𝜌𝑖 generate boosts. Complex conjugation being a parity
transformation does not change rotations but flips boost direction. This means that if
Λ is a left-handed Lorentz transformation, then Λ∗ is the right-handed counterpart.

Transforming a full Dirac spinor 𝜓 = 𝜓𝐿 + 𝜓𝑅 = 𝜓𝑆↑↑ + 𝜓𝑆↓↓ with a Lorentz trans-
formation of the form Λ = 𝑒𝜌𝑘𝑐𝑘 (𝑐𝑘 ∈ ℂ) then takes the following form:

𝜓 → Λ𝜓𝐿 + Λ∗𝜓𝑅 = Λ𝜓𝑆↑↑ + Λ∗𝜓𝑆↓↓ = Λ𝜓𝑆↑↑ + Λ∗𝜓𝑆∗
↑↑

Having to transform 𝜓𝐿 and 𝜓𝑅 explicitly is a bit tedious however and the reason is
explict handling of 𝑖. But as we have seen 𝑖 can be interpreted as a non-chiral version
of right-multplied 𝜌3. Therefore the replacement 𝑖𝜌𝑖|1 → 𝜌𝑖|𝜌3 automatically gives us
boosts respecting chirality, which are exactly the 𝛾𝑖0 introduced above. So Lorentz
transformations can be written more succinctly like this:

𝛾𝑗𝑘𝜓 = (𝜌𝑖|1)𝜓 = 𝜌𝑖𝜓𝐿 + 𝜌𝑖𝜓𝑅
= 𝜌𝑖𝜓𝐿 + 𝜌∗

𝑖 𝜓𝑅
𝛾𝑖0𝜓 = −(𝜌𝑖|𝜌3)𝜓 = (𝑖𝜌𝑖|𝑖𝜌3)𝜓

= 𝑖𝜌𝑖𝜓𝐿𝑖𝜌3 + 𝑖𝜌𝑖𝜓𝑅𝑖𝜌3
= 𝑖𝜌𝑖𝜓𝐿 − 𝑖𝜌𝑖𝜓𝑅
= 𝑖𝜌𝑖𝜓𝐿 + (𝑖𝜌𝑖)∗𝜓𝑅

When treating the traditional chiral column spinor as a minimal left ideal of the full
Dirac algebra the projector that generates this ideal is 𝑃 = 1

4(1 + 𝑖𝛾12)(1 + 𝛾30) and
represents the left up state. Our equivalent of this state is the 1

2(1+𝑖𝜌3) projector. Note
that in both cases 𝑖𝛾12 ≃ (𝑖𝜌3|1), 𝛾30 ≃ (𝑖𝜌3|𝑖𝜌3) and −𝑖𝛾0123 ≃ (1|𝑖𝜌3) are swallowed by
the projector(s) and do not affect the state at all.

In the Dirac basis the equivalent elements are 𝑖𝛾12 ≃ (𝑖𝜌3|1), 𝑖𝛾012 ≃ (𝑖𝜌3|𝑖𝜌3), 𝛾0 ≃
(1|𝑖𝜌3) and 𝑃 = 1

4(1 + 𝑖𝛾12)(1 + 𝛾0).
The geometric meaning of 𝑖, which is usually considered to be somewhat mysterious,

now becomes rather clear. Let’s see what happens when we multiply a spinor 𝜓 by a
phase 𝑒𝑖𝜃:

𝑒𝑖𝜃𝜓 = 𝑒𝑖𝜃𝜓 1
2(1 + 𝑖𝜌3) + 𝑒𝑖𝜃𝜓 1

2(1 − 𝑖𝜌3)
= 𝜓𝑒𝑖𝜃 1

2(1 + 𝑖𝜌3) + 𝜓𝑒𝑖𝜃 1
2(1 − 𝑖𝜌3)

= 𝜓𝑒−𝜌3𝜃 1
2(1 + 𝑖𝜌3) + 𝜓𝑒𝜌3𝜃 1

2(1 − 𝑖𝜌3)
= 𝜓𝑒−𝛾12𝜃 1

2(1 + 𝑖𝜌3) + 𝜓𝑒𝛾12𝜃 1
2(1 − 𝑖𝜌3)

This is simply a rotation in the local 𝛾12 axis, which is the axis of spin.
Another meaning concerns dualisation of Spin+(1, 3) generators, which we have al-

ready seen above. In the STA/Dirac algebra, rotation and boost generators are related
by dualisation through the pseudoscalar 𝐼 = 𝛾0123 like 𝛾𝑖0 = 𝐼𝛾𝑗𝑘𝜖𝑖𝑗𝑘. But as 𝐼 = −(1|𝜌3)
becomes ±𝑖 at the projector and is therefore the chiral version of 𝑖, we see that 𝑖𝛾𝑗𝑘 and
𝐼𝛾𝑗𝑘 are indeed just chirality-ignoring and chirality-respecting versions of the boost gen-
erators. Similarly 𝑖𝐼𝛾𝑗𝑘 = 𝑖𝛾𝑖0 are rotation generators which affect both chiralities in
opposite sense. This can be used to transform only left-handed spinors with 𝑒(1−𝑖𝐼)𝛾𝑖0𝜃/2

and 𝑒(1−𝑖𝐼)𝛾𝑗𝑘𝜃/2, and only right handed ones with 𝑒(1+𝑖𝐼)𝛾𝑖0𝜃/2 and 𝑒(1+𝑖𝐼)𝛾𝑗𝑘𝜃/2.
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Inner product

We have Λ̃ = Λ−1. So the following is Lorentz-invariant:

𝜓†
𝐿𝜓𝑅 + 𝜓†

𝑅𝜓𝐿 → 𝜓†
𝐿Λ†Λ∗𝜓𝑅 + 𝜓†

𝑅 Λ̃ Λ𝜓𝐿

= 𝜓†
𝐿(Λ̃ Λ)∗𝜓𝑅 + 𝜓†

𝑅 Λ̃ Λ𝜓𝐿

= 𝜓†
𝐿𝜓𝑅 + 𝜓†

𝑅𝜓𝐿

To be more explicit let 𝜓𝐿 = 𝑎𝑆↑↑ + 𝑏𝑆↓↑ and 𝜓𝑅 = 𝑐𝑆↑↓ + 𝑑𝑆↑↑.

𝜓†
𝐿𝜓𝑅 + 𝜓†

𝑅𝜓𝐿 = 𝑎∗𝑐𝑆↑↓ + 𝑏∗𝑑𝑆↑↓ + 𝑐∗𝑎𝑆↓↑ + 𝑑∗𝑏𝑆↓↑
= (𝑎∗𝑐 + 𝑏∗𝑑)𝑆↑↓ + (𝑐∗𝑎 + 𝑑∗𝑏)𝑆↓↑

These are the coefficients familiar from the the matrix-vector formalism, but unlike with
column/row spinors this product is not a scalar yet. That can be achieved by use of 𝑖𝜌1:

𝑖𝜌1(𝜓†
𝐿𝜓𝑅 + 𝜓†

𝑅𝜓𝐿) + (𝜓†
𝐿𝜓𝑅 + 𝜓†

𝑅𝜓𝐿)𝑖𝜌1
= (𝑎∗𝑐 + 𝑏∗𝑑)𝑆↓↓ + (𝑐∗𝑎 + 𝑑∗𝑏)𝑆↑↑ + (𝑎∗𝑐 + 𝑏∗𝑑)𝑆↑↑ + (𝑐∗𝑎 + 𝑑∗𝑏)𝑆↓↓
= 𝑎∗𝑐 + 𝑏∗𝑑 + 𝑐∗𝑎 + 𝑑∗𝑏

Four types of spinors
M 𝑀∗ 𝑀 𝑀† 𝑀 ° 𝑀𝑇

(𝑎 𝑏
𝑐 𝑑) ( 𝑑∗ −𝑐∗

−𝑏∗ 𝑎∗ ) ( 𝑑 −𝑏
−𝑐 𝑎 ) (𝑎∗ 𝑐∗

𝑏∗ 𝑑∗) (𝑎∗ 𝑏∗

𝑐∗ 𝑑∗) (𝑎 𝑐
𝑏 𝑑)

left right dual left dual right

(𝜓1 0
𝜓2 0) (0 −𝜓∗

2
0 𝜓∗

1
) ( 0 0

−𝜓2 𝜓1
) (𝜓∗

1 𝜓∗
2

0 0 )

left right 𝜖 right dual left dual 𝜖
(𝜓1

𝜓2
) (−𝜓∗

2 𝜓∗
1) (𝜓∗

1
𝜓∗

2
) (−𝜓2 𝜓1)

In the following 𝜓𝐿 &c. are taken to be raw column spinors while 𝜑, 𝜓 are full matrices
(or complex quaternions). This is just to express inner products between individual Weyl
spinors more succinctly. The goal is to derive an expression for the inner product of two
Dirac spinors. We start with the obvious 𝜑†𝜓:

𝜑†𝜓 = (𝜑†
𝐿

𝜑†
𝑅

) (𝜓𝐿 𝜓𝑅)

= (𝜑†
𝐿𝜓𝐿 𝜑†

𝐿𝜓𝑅
𝜑†

𝑅𝜓𝐿 𝜑†
𝑅𝜓𝑅

)

The Lorentz invariant terms are on the anti-diagonal. We can multiply (on any side)
with 𝑖𝜌1, which is the same as sandwiching 𝛾0:

𝜑†𝛾0𝜓 = 𝜑†𝜓𝑖𝜌1 = (𝜑†
𝐿𝜓𝐿 𝜑†

𝐿𝜓𝑅
𝜑†

𝑅𝜓𝐿 𝜑†
𝑅𝜓𝑅

) (0 1
1 0) = (𝜑†

𝐿𝜓𝑅 𝜑†
𝐿𝜓𝐿

𝜑†
𝑅𝜓𝑅 𝜑†

𝑅𝜓𝐿
)
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The trace of this is the familiar inner product, however we can do better by adding the
quaternion conjugate:

𝜑†𝜓𝑖𝜌1 + ̃𝜑†𝜓𝑖𝜌1 = 𝜑†𝜓𝑖𝜌1 − 𝑖𝜌1 𝜓 𝜑∗

= (𝜑†
𝐿𝜓𝑅 𝜑†

𝐿𝜓𝐿
𝜑†

𝑅𝜓𝑅 𝜑†
𝑅𝜓𝐿

) + ( 𝜑†
𝑅𝜓𝐿 −𝜑†

𝐿𝜓𝐿
−𝜑†

𝑅𝜓𝑅 𝜑†
𝐿𝜓𝑅

)

= (𝜑†
𝐿𝜓𝑅 + 𝜑†

𝑅𝜓𝐿 0
0 𝜑†

𝐿𝜓𝑅 + 𝜑†
𝑅𝜓𝐿

)

= 𝜑†
𝐿𝜓𝑅 + 𝜑†

𝑅𝜓𝐿

In the Dirac representation 𝛾0 is right multiplication with 𝑖𝜌3 instead and so there we
get:

𝜑†𝛾0𝜓 = 𝜑†𝜓𝑖𝜌3 = (𝜑†
+𝜓+ 𝜑†

+𝜓−
𝜑†

−𝜓+ 𝜑†
−𝜓−

) (1 0
0 −1) = (𝜑†

+𝜓+ −𝜑†
+𝜓−

𝜑†
−𝜓+ −𝜑†

−𝜓−
)

And we again take the trace to get the familiar expression for the inner product.

TODO: clarify. not taking the scalar part seems to break associativity. the following
is ambiguous depending on whether 𝛾0 associates to the left or right:

𝜑†𝛾0𝜓 = 𝜑†𝜓𝑖𝜌1

𝜑†𝛾0𝜓 = 𝜑†𝛾†
0𝜓 = (𝛾0𝜑)†𝜓 = (𝜑𝑖𝜌1)†𝜓 = 𝑖𝜌1𝜑†𝜓

Vectors from Spinor products
Algebraic product
Just an idea, is this useful for anything?

Λ𝑖𝜌3Λ† = Λ1
2(1 + 𝑖𝜌3)Λ† − Λ1

2(1 − 𝑖𝜌3)Λ†

= [Λ1
2(1 + 𝑖𝜌3)] [1

2(1 + 𝑖𝜌3)Λ†] − [Λ1
2(1 − 𝑖𝜌3)] [1

2(1 − 𝑖𝜌3)Λ†]
= [Λ1

2(1 + 𝑖𝜌3)] [Λ1
2(1 + 𝑖𝜌3)]† − [Λ1

2(1 − 𝑖𝜌3)] [Λ1
2(1 − 𝑖𝜌3)]†

For a null-vector this is nice:

Λ1
2(1 + 𝑖𝜌3)Λ† = [Λ1

2(1 + 𝑖𝜌3)] [Λ1
2(1 + 𝑖𝜌3)]†

= 𝜓𝐿𝜓†
𝐿

Tensor product
We will show how the tensor product of two Pauli spinors results in an object with
spin-0 and spin-1 components. We begin by defining product up and down states for
two spinors:

|↑↑⟩ =
⎛⎜⎜⎜⎜
⎝

1
0
0
0

⎞⎟⎟⎟⎟
⎠

|↑↓⟩ =
⎛⎜⎜⎜⎜
⎝

0
1
0
0

⎞⎟⎟⎟⎟
⎠

|↓↑⟩ =
⎛⎜⎜⎜⎜
⎝

0
0
1
0

⎞⎟⎟⎟⎟
⎠

|↓↓⟩ =
⎛⎜⎜⎜⎜
⎝

0
0
0
1

⎞⎟⎟⎟⎟
⎠
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The spin matrices for the first and second spinor then are:

𝑆1
𝑧 =

⎛⎜⎜⎜⎜
⎝

1
1

−1
−1

⎞⎟⎟⎟⎟
⎠

𝑆1
𝑦 =

⎛⎜⎜⎜⎜
⎝

−𝑖
−𝑖

𝑖
𝑖

⎞⎟⎟⎟⎟
⎠

𝑆1
𝑥 =

⎛⎜⎜⎜⎜
⎝

1
1

1
1

⎞⎟⎟⎟⎟
⎠

𝑆2
𝑧 =

⎛⎜⎜⎜⎜
⎝

1
−1

1
−1

⎞⎟⎟⎟⎟
⎠

𝑆2
𝑦 =

⎛⎜⎜⎜⎜
⎝

−𝑖
𝑖

−𝑖
𝑖

⎞⎟⎟⎟⎟
⎠

𝑆2
𝑥 =

⎛⎜⎜⎜⎜
⎝

1
1

1
1

⎞⎟⎟⎟⎟
⎠

And the total spin matrices are given by their sum:

𝑆𝑧 =
⎛⎜⎜⎜⎜
⎝

2
0

0
−2

⎞⎟⎟⎟⎟
⎠

𝑆𝑦 =
⎛⎜⎜⎜⎜
⎝

−𝑖 −𝑖
𝑖 −𝑖
𝑖 −𝑖

𝑖 𝑖

⎞⎟⎟⎟⎟
⎠

𝑆𝑥 =
⎛⎜⎜⎜⎜
⎝

1 1
1 1
1 1

1 1

⎞⎟⎟⎟⎟
⎠

A change of basis now gives us three spin-1 components and one spin-0 component:

|𝑧+⟩ = |↑↑⟩ |𝑧0⟩ = 1√
2(|↓↑⟩ + |↑↓⟩) |𝑧−⟩ = |↓↓⟩

|0⟩ = 1√
2(|↓↑⟩ − |↑↓⟩)

We now repeat this construction but using a ℂ ⊗ ℍ (or matrix) basis instead of a
column vector basis. The basis elements we have already seen in the context of Dirac
spinors, but here they have different meaning. Instead of a left-right split we have a
second up-down split:

|↑↑⟩ = 1
2(1 + 𝑖𝜌3) ≅ (1 0

0 0) |↑↓⟩ = 1
2(𝑖𝜌1 − 𝜌2) ≅ (0 1

0 0)

|↓↑⟩ = 1
2(𝑖𝜌1 + 𝜌2) ≅ (0 0

1 0) |↓↓⟩ = 1
2(1 − 𝑖𝜌3) ≅ (0 0

0 1)

The spin operators now act from the left and right respectively, and we find:

𝑆1
𝑧 = 𝑖𝜌3|1 𝑆1

𝑦 = 𝑖𝜌2|1 𝑆1
𝑥 = 𝑖𝜌1|1

𝑆2
𝑧 = 1|𝑖𝜌3 𝑆2

𝑦 = −1|𝑖𝜌2 𝑆2
𝑥 = 1|𝑖𝜌1

𝑆𝑧 = (𝑖𝜌3|1) + (1|𝑖𝜌3) 𝑆𝑦 = (𝑖𝜌2|1) − (1|𝑖𝜌2) 𝑆𝑥 = (𝑖𝜌1|1) + (1|𝑖𝜌1)
And the other basis:

|𝑧+⟩ = 1
2(1 + 𝑖𝜌3) |𝑧0⟩ = 1√

2 𝑖𝜌1 |𝑧−⟩ = 1
2(1 − 𝑖𝜌3)

|0⟩ = 1√
2𝜌2

Clearly 𝜌2 is a bit special, so we write the above in a somewhat more suggestive way:

|𝑧+⟩ = 1
2(𝑖𝜌2 + 𝜌1)(𝑖𝜌2) |𝑧0⟩ = −1√

2𝜌3(𝑖𝜌2) |𝑧−⟩ = 1
2(𝑖𝜌2 − 𝜌1)(𝑖𝜌2)

|0⟩ = −𝑖√
2(𝑖𝜌2)

Sandwiching the 𝑆𝑖 with (1|𝑖𝜌2) gives us the familiar SO(3) generators 𝐿𝑖:

𝐿𝑧 = (1|𝑖𝜌2)𝑆𝑧(1|𝑖𝜌2) = (𝑖𝜌3|1) − (1|𝑖𝜌3)
𝐿𝑦 = (1|𝑖𝜌2)𝑆𝑦(1|𝑖𝜌2) = (𝑖𝜌2|1) − (1|𝑖𝜌2)
𝐿𝑥 = (1|𝑖𝜌2)𝑆𝑥(1|𝑖𝜌2) = (𝑖𝜌1|1) − (1|𝑖𝜌1)

It is now obvious that a (complex) quaternion splits into the scalar and vector part under
𝐿𝑖, transforming as spin-0 and spin-1 respectively.
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Quaternions as Weyl spinors
As we have seen the pure quaternions generate Cl(3, 1) by two-sided multiplication. As
it turns out the sandwiched quaternion transforms as a Weyl spinor. We can use this to
build the Pauli algebra purely out of quaternions and use it to transform our spinors.
Because left and right multiplication commute, right-multiplied 𝜌3 commutes with any
left-multiplied quaternion and thus generates the complex numbers. This construction
therefore is how we arrive at ℂ ⊗ ℍ.

1 = (1|1) 𝜎1𝜎2𝜎3 = 𝑖 ≅ (1| 𝜌3)
𝜎1 = 𝑖𝜌1 ≅ (𝜌1| 𝜌3) −𝜎23 = (𝜌1|1)
𝜎2 = 𝑖𝜌2 ≅ (𝜌2| 𝜌3) −𝜎31 = (𝜌2|1)
𝜎3 = 𝑖𝜌3 ≅ (𝜌3| 𝜌3) −𝜎12 = (𝜌3|1)

One can easily confirm that a column spinor and its complex conjugate can then be
expressed as follows:

(𝜓1
𝜓2

) = (𝑎 + 𝑖𝑏
𝑐 + 𝑖𝑑) ≅ (𝑎 + 𝜌3 𝑏) + 𝜌2(𝑐 + 𝜌3 𝑑) = 𝜓1 + 𝜌2𝜓2

𝜓∗ ≅ −𝜌2𝜓𝜌2

For the inner product of two spinors we find the following expression in the row-column
formalism:

𝜓†𝜑 = (𝜓∗
1 𝜓∗

2) (𝜑1
𝜑2

) = 𝜓∗
1𝜑1 + 𝜓∗

2𝜑2

To find the quaternion equivalent we first calculate 𝜓 𝜑:

𝜓 𝜑 = (𝜓1 − 𝜓2 𝜌2)(𝜑1 + 𝜌2𝜑2)
= (𝜓1 −𝜌2𝜓2)(𝜑1 + 𝜑2 𝜌2)
= 𝜓1 𝜑1 − 𝜌2𝜓2 𝜑2 𝜌2 + 𝜓1 𝜑2 𝜌2 − 𝜌2𝜓2𝜑1

= (𝜓1 𝜑1 + 𝜓2 𝜑2) + 𝜌2(𝜓1𝜑2 − 𝜓2𝜑1)

It is the first part here that corresponds to the conventional inner product. We can
get rid of the second part by sandwiching with 𝜌3, which can also be interpreted as a
projection onto 𝜌3.

𝜓†𝜑 ≅ 1
2(𝜓 𝜑 − 𝜌3 𝜓 𝜑𝜌3)

= −1
2(𝜓 𝜑𝜌3 + 𝜌3 𝜓 𝜑)𝜌3

= −[(𝜓 𝜑) ⋅ 𝜌3]𝜌3

= 1
2(1 + 𝑖𝜌3)(𝜓 𝜑)

In the common case of sandwiching the hermitian elements 𝜎𝑖 between the same spinor
this simplifies:

𝜓†𝜎𝑖𝜓 ≅ 1
2(𝜓 𝜌𝑖𝜓 𝜌3 −𝜌3 𝜓 𝜌𝑖𝜓 𝜌3 𝜌3)

= 1
2(𝜓 𝜌𝑖𝜓 𝜌3 + 𝜌3 𝜓 𝜌𝑖𝜓)

= (𝜓 𝜌𝑖𝜓) ⋅ 𝜌3
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Clifford vs Cayley-Dickson
Where does the Cl(3, 1) algebra come from and why is the even subalgebra specifically
picked out? A possible answer might lie in the intersection of Clifford algebras and
Cayley-Dickson algebras. Remarkably, multiplication in both types of algebras of up to
two dimensions are completely identical, however they both come equipped with distinct
involutions.

The Cayley-Dickson construction is canonically defined recursively by a conjugate
(𝑎, 𝑏) = (𝑎, −𝑏) and a multiplication (𝑎, 𝑏)(𝑐, 𝑑) = (𝑎𝑐 − 𝑑 𝑏, 𝑑𝑎 + 𝑏 𝑐). One can easily
check that 𝑎𝑏 = 𝑏 𝑎. Alternatively, to take a more minimal approach, it is enough
to only define multiplication, this time between an element and a conjugate element:
(𝑎, 𝑏) (𝑐, 𝑑) = (𝑎 𝑐 + 𝑑 𝑏, −𝑑𝑎+𝑏𝑐). We then get conjugation for free in terms of a product
with the identity: 𝑎 = (1, 0) 𝑎.

A similar definition allows us to integrate the reverse of Clifford algebras into the prod-
uct, 𝑎 ̃𝑏. The reverse is defined recursively 𝑎𝑏 = ̃𝑏 ̃𝑎 with basis vectors being unaffected
(𝛾𝑖 = 𝛾𝑖).

Two elements of both algebras can be identified by the binary code that indexes them.
The respective involutions flip signs as follows (note that ~ here now refers to reversion
in Cl(0, 2), unlike earlier):

ℍ Cl0,2 𝑒 ̃𝑒
1 1 + +

𝜌1 𝛾1 − +
𝜌2 𝛾2 − +
𝜌3 𝛾12 − −

Defining multiplication with the involution included now results in larger left-multiplication
algebras than we would have gotten otherwise. In particular, chaining left-multiplications
now allows us to multiply on the right as well:

𝑎 (𝑏 𝜓) = 𝑎𝜓 𝑏

𝑎 (̃𝑏 𝜓) = 𝑎𝜓 ̃𝑏

Requiring these two expressions to be exactly equal restricts the right element 𝑏 (but
not the left) to lie in the span of {1, 𝜌3}. The intersection of an even number of left-
multiplications in both algebras therefore gives us exactly Cl+(3, 1), or ℂ ⊗ ℍ.

The rotation and boost generators can now be expressed as:

𝜌𝑖 (̃1 𝜓) = 𝜌𝑖𝜓

𝜌𝑖 (̃𝜌3 𝜓) = 𝜌𝑖𝜓 𝜌3

Isomorphisms
ℂ ⊗ ℍ Cl3,0 Cl1,2 Cl+3,1 Cl+1,3 ℂl2,0 ℂl1,1 ℂl+2,1 ℂl+1,2 ℂl0,2 ℂl+3,0 ℂl+0,3

𝑖𝜌1 𝑒1 𝛾10 𝑒10 𝛾10 𝑒1 𝑒+ 𝑒10 𝛾10 𝑖𝛾1 −𝑖𝑒23 𝑖𝛾23
𝑖𝜌2 𝑒2 𝛾20 𝑒20 𝛾20 𝑒2 𝑖𝑒− 𝑒20 𝛾20 𝑖𝛾2 −𝑖𝑒31 𝑖𝛾31
𝑖𝜌3 𝑒3 𝛾0 𝑒30 𝛾30 −𝑖𝑒12 𝑒+− −𝑖𝑒12 𝑖𝛾12 𝑖𝛾12 −𝑖𝑒12 𝑖𝛾12

−𝜌1 𝑒23 𝛾2 𝑒23 −𝛾23 𝑖𝑒1 𝑖𝑒+ 𝑖𝑒10 𝑖𝛾10 −𝛾1 𝑒23 −𝛾23
−𝜌2 𝑒31 −𝛾1 𝑒31 −𝛾31 𝑖𝑒2 −𝑒− 𝑖𝑒20 𝑖𝛾20 −𝛾2 𝑒31 −𝛾31
−𝜌3 𝑒12 −𝛾12 𝑒12 −𝛾12 𝑒12 𝑖𝑒+− 𝑒12 −𝛾12 −𝛾12 𝑒12 −𝛾12

𝑖 𝑒123 −𝛾012 −𝑒0123 𝛾0123 𝑖 𝑖 𝑖 𝑖 𝑖 𝑖 𝑖
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Octonion product
The octonions as well as ℂ ⊗ ℍ can be thought of as a pair of quaternions, but with
different rules of multiplication. If we call the real and imaginary parts of a complex
quaternion 𝑞𝑅 = 1

2(𝑞 + 𝑞∗) and 𝑞𝐼 = 1
2(𝑞 − 𝑞∗) we can express the octonion product like

this, which is just the rule of Cayley-Dickson multiplication in slightly different language
(also see Lasenby):

𝑞 ⋆ 𝑝 ∶= 𝑞𝑅𝑝𝑅 + 𝑝𝐼 𝑞𝐼 + 𝑝𝐼𝑞𝑅 + 𝑞𝐼 𝑝𝑅
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