
Pauli Spinors as Quaternions
We start with the subalgebra of STA that includes rotations (= quaternions), i.e. Cl(0,3).
Traditionally a Pauli spinor is broken up into a up and a down component, each multi-
plied with a complex number. To do this in GA we pick a reference spin-axis (γ12) and
build a projector from it:

P :=
1

2
(1 + iγ12)

Note the important eigenvalue relationship, which will allow us to interpret the complex
i simply as multiplication by −γ12 (or perhaps better γ̃12) at the projector:

iγ12P = P

−γ12P = iP

Our general Pauli spinor is then any quaternion multiplied onto P on the left:

ψ = (w + zγ12 + xγ23 + yγ31)P

= (w + zγ12)P + (y − xγ12)γ31P

= (w + zγ12)P + γ31(y + xγ12)P

= (w − zi)P + γ31(y − xi)P

= (w − zi)P + (y − xi)γ31P

= (w − zi) |↑⟩+ (y − xi) |↓⟩

with |↑⟩ := 1P and |↓⟩ := γ31P . Note that for any q ∈ Cl+(0, 3) we can express right-
multiplication by γ̃12 as multiplication with the (commutative!) complex i:

iqP = qiP = qγ̃12P

As Hestenes observed we can alternatively introduce i as an operator that is defined to
act this way, which allows us to get rid of the projector. In that case the Pauli spinor
is truly nothing more than a quaternion. In any case the complex i has been turned
into mere “syntax”, devoid of any additional geometric meaning. It does remain useful
however, because we have picked γ12 as our reference spin axis, to which we may want
to refer to on either side. This also allows us to write a sandwich product using only
left-multiplication: iγ12ψ = γ12ψi = γ12ψγ̃12.

This latter fact is what allows us to define the σ spin operators. We will start with the
z-direction and derive the general case by rotating the world. We require σz |↑⟩ = + |↑⟩
and σz |↓⟩ = − |↓⟩. But this is precisely what iγ12 does! I.e. it separates the component
of ψ which commutes with the spin axis (γ12) from the one which anti-commutes with
it. We have:

σz = iγ12

σzψ = iγ12(w + zγ12 + xγ23 + yγ31)P

= γ12(w + zγ12 + xγ23 + yγ31)γ̃12P

= (w + zγ12 − xγ23 − yγ31)P

= (w − zi) |↑⟩ − (y − xi) |↓⟩

To deal with arbitrary spin axes we cannot simply rotate this whole expression because
that would also rotate our reference axis i. Instead we leave i fixed but rotate the rest
of the world. Let our arbirary spin axis be called s and its corresponding spin operator
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σs. Then a rotor taking γ12 to s is given by R =
√
−sγ12 = 1√

2
(1 − sγ12). We see that

the following transformations give us the correct eigenvalues of σs:

ψz → ψs = Rψz

σz → σs = RσzR̃ = iRγ12R̃

σsψ
±
s = (iRγ12R̃)(Rψ

±
z )

= iRγ12ψ
±
z = R(iγ12ψ

±
z )

= ±Rψ±
z = ±ψ±

s

In particular, for the x and y axes we find:

σx =
√
−γ23γ12(iγ12)

√
−γ12γ23

= i
√
−γ23γ12

√
−γ23γ12γ12

= i(−γ23γ12)γ12
= iγ23

σy =
√
−γ31γ12(iγ12)

√
−γ12γ31

= iγ31

|↑x⟩ =
√
−γ23γ12 |↑⟩ =

1√
2
(1 + γ31) |↑⟩

=
1√
2
(|↑⟩+ |↓⟩)

|↓x⟩ =
√
−γ23γ12 |↓⟩ =

1√
2
(1 + γ31) |↓⟩

=
1√
2
(− |↑⟩+ |↓⟩) = − 1√

2
(|↑⟩ − |↓⟩)

|↑y⟩ =
√
−γ31γ12 |↑⟩ =

1√
2
(1 + γ12γ31) |↑⟩

=
1√
2
(|↑⟩+ γ12 |↓⟩) =

1√
2
(|↑⟩+ i |↓⟩)

|↓y⟩ =
√
−γ31γ12 |↓⟩ =

1√
2
(1 + γ12γ31) |↓⟩

=
1√
2
(−γ12 |↑⟩+ |↓⟩) = i

1√
2
(|↑⟩ − i |↓⟩)

Where the two down states picked up inconsequential phases.
It is easy to check that σi obey the usual commutation relations:

σxσy = (iγ23)(iγ31) = −γ12 = iσz

σyσz = (iγ31)(iγ12) = −γ23 = iσy

σzσx = (iγ12)(iγ23) = −γ31 = iσx
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Stern-Gerlach experiment
We can now investigate what happens in the SG experiment. The interaction between the
magnetic field and the spin of the electron in the Pauli-Hamiltonian is usually given as
σ ·B |ψ⟩ (we ignore various physical constants). Since the magnetic field is best thought
of as a bivector, we can rewrite this as iB |ψ⟩ = B |ψ⟩ γ̃12 in our approach.

As we have seen we can decompose every quaternion into components with positive
and negative eigenvalue under this interaction, i.e. B |ψ⟩ γ̃12 = B(|ψ+

B⟩ + |ψ−
B⟩)γ̃12 =

|B|(|ψ+
B⟩ − |ψ−

B⟩). To interpret the meaning of this geometrially it is perhaps clearer to
investigate what happens to the magnetic field under rotation by the spinor:

⟨ψ|B |ψ⟩ = −i ⟨ψ| iB |ψ⟩
= −i(⟨ψ+

B |+ ⟨ψ−
B |)iB(|ψ+

B⟩+ |ψ−
B⟩)

= −i|B|(⟨ψ+
B |+ ⟨ψ−

B |)(|ψ
+
B⟩ − |ψ−

B⟩)
= −i|B|(⟨ψ+

B |ψ
+
B⟩ − ⟨ψ−

B |ψ
−
B⟩)

= γ12|B|(|ψ+
B |

2 − |ψ−
B |

2)P

= (γ12|B||ψ+
B |

2 − γ12|B||ψ−
B |

2)P

That is, the up component rotates the magnetic field such that it aligns with the spin
axis, the down component rotates the magnetic field such that it anti-aligns. To put it
another way, they are the only two options that keep the magnetic field unaffected by
rotation in the spin axis.

In the SG experiment we’re dealing with an inhomogeneous B-field in the z direction,
so B = Bz ẑγ12. The interaction with the spinor then becomes: iB |ψ⟩ = Bzz |↑⟩−Bzz |↓⟩.
This looks exactly identical to a potential falling or rising in the z direction, but applied
to different parts of the wavefunction. Therefore the wavefunction splits into two disjoint
regions in z, and once it hits the screen causing a measurement of the position to be
made, the electron (or silver atom) can only appear in one of the two regions.

The Bloch sphere
The Bloch sphere is sometimes used to visualize spinors. An arrow pointing upwards
represents the z-up state, an arrow pointing downwards the z-down state, other arrows
on the sphere are considered complex linear combinations of these two states. The way to
make sense of this is that an arrow on the Bloch sphere stands for a spinor which rotates
the magnetic field from initially pointing upwards to that arrow, i.e. the arrow correponds
to our earlier s direction, which we rotated γ12 into, and the spinor itself correponds to
R =

√
−sγ12. Due to the phase that a spinor has this rotation is not unique, which is

sometimes visualized by a flag with various rotations on the arrow/flagpole.

Notes on relativistic spinors
Our Pauli spinor so far corresponds to either a right-handed or left-handed spinor in
the Dirac theory. In making the jump to relativistic spinors there are some subtleties
involved that are important to keep straight.

We consider our spinors so far to be left-handed Weyl spinors. A right-handed Weyl
spinor is a mirrored version of this and as such it spins in the opposite direction. We
can multiply a spinor by γ0 to switch its chirality, so ψR = γ0ψL gives us a right spinor.
Since so far we have only dealt with i and quaternionic bivectors, which both commute
with γ0, the current construction does not permit us to tell a difference between a left
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and a right spinor. Clearly the issue is with i, which we took to refer to the local spin
axis, which is the same for left and right spinors.

There is however another element I = γ0123, which anti-commutes with all odd ele-
ments (therefore commutes with all even elements) and squares to −1. Except for its
anti-commutation with odd elements it behaves identically to the complex i. This howe-
ver means that it behaves with opposite sign on left and right spinors. We can therefore
interpret I to be an i that can tell the difference between left and right spinors. This
implies we should re-evaluate our use of i above and possibly replace it by I.

Furey takes another approach to this and puts left and right spinors into different left
ideals instead, in which i has opposite meaning. TODO: yet transformations have to be
conjugated for a right spinor. investigate what’s going on

TODO
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