
Spinors
We will build spinors by the method outlined in (From Invariant Decomposition to
Spinors. 3.1. Algebraic Spinors): Find nilpotent (isotropic, null) vectors, multiply them
to generate idempotents. We will use complex numbers but will see that (in our cases)
they can be interpreted as just convenient notation that introduces no new geometry.

To have a notion of hermitian conjugation that is compatible with traditional approa-
ches, we define it to be the combination of the negation of all negative-squaring basis
vectors and the reverse.

γ†0 = γ0 σ†i = σi

γ†i = −γi i† = −i
(ab)† = b†a† (a+ b)† = a† + b†

Pauli Spinors
The Pauli-algebra is generated by σ1, σ2, σ3. We only have a single commuting bivector:
σ12. We define

α± :=
1

2
(σ1 ± iσ2)

and note that

(α+)2 = (α−)2 = 0

α+ + α− = σ1

Squaring both sides of the second equation yields:

(α+ + α−)2 = σ21

(α+)2 + (α−)2 + α+α− + α−α+ = 1

α+α− + α−α+ = 1

{α+, α−} = 1

Now we can show that α+α− and α−α+ are projectors:

(α+α−)2 = α+α−α+α−

= α+α−(1− α−α+)

= α+α− − α+(α−)2α+

= α+α− (α−α+ analogous)
=: P

And therefore

α+α+α− = (α+)2α− = 0

α−α−α+ = (α−)2α+ = 0

α−α+α− = α−(1− α−α+) = α−

α+α−α+ = α+(1− α+α−) = α+

We can now make the identification

|↑⟩ ≡ 1P = α+α−

|↓⟩ ≡ α−P = α−
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The correpsonding bras are obtained by taking the hermitian conjugate:

(α±)† = α∓

P † = (α+α−)† = α+α− = P

⟨↑| = P1 = α+α−

⟨↓| = Pα+ = α+

The inner product now behaves as expected:

⟨↑ | ↑⟩ = ⟨↓ | ↓⟩ = P

⟨↑ | ↓⟩ = ⟨↓ | ↑⟩ = 0

|ψ⟩ = a |↑⟩+ b |↓⟩
⟨ϕ| = ⟨↑| c∗ + ⟨↓| d∗

⟨ϕ|ψ⟩ = (⟨↑| c∗ + ⟨↓| d∗)(a |↑⟩+ b |↓⟩)
= (c∗a+ d∗b)P

If we let σ3 = −iσ12 we can express the Clifford basis in terms of the spinor basis:

σ1 = α+ + α−

iσ2 = α+ − α−

σ3 = −iσ12 =
= −(α+ + α−)(α+ − α−)

= α+α− − α−α+

Multiplying these with the spinor basis elements is straightforward and gives:

σ1 |↑⟩ = |↓⟩
σ1 |↓⟩ = |↑⟩

σ2 |↑⟩ = i |↓⟩
σ2 |↓⟩ = −i |↑⟩

σ3 |↑⟩ = |↑⟩
σ3 |↓⟩ = − |↑⟩

If we write spinors as column vectors, we can now simply read off the matrix represen-
tation of the Clifford basis vectors.

|↑⟩ =
(
1
0

)
|↓⟩ =

(
0
1

)
σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
So we see that a matrix representation of a Clifford algebra is nothing more but the
representation of the action of a multivector on a spinor in terms of a spinor basis.
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We can get rid of complex i in the basis coefficients. Note that P has the eigenelement
−iσ12:

−iσ12P = −(α+ + α−)(α+ − α−)α+α−

= (α+ + α−)α−

= α+α− = P

iP = σ12P

That is, we can exchange a complex i for a σ12 at the projector: iABCP = ABCiP =
ABCσ12P .

Dirac Spinors
We’re using the mostly-negative metric

γ20 = 1

γ2i = −1

The two commuting bivectors γ03 and γ12 give us two pairs of null vectors:

α±
1 :=

1

2
(γ0 ± γ3)

α±
2 :=

1

2
(iγ1 ± γ2)

Both pairs behave like α± above, and in addition (because they have no vectors in
common) they anticommute:

α±
1 α

±
2 = −α±

2 α
±
1

Because their respective projectors are even-grade elements, they commute with other
α± and with each other:

Pi := α+
i α

−
i

α±
i Pj = Pjα

±
i i ̸= j

P1P2 = P2P1 =: P

Their product is also a projector:

(P1P2)
2 = P1P2P1P2

= P1P1P2P2

= P1P2

From this we can build a spinor basis:

|↑↑⟩ = P

|↓↑⟩ = α−
1 P

|↑↓⟩ = α−
2 P

|↓↓⟩ = α−
1 α

−
2 P

From our definition of α±
i we can easily recover the γ-basis:

γ0 = α+
1 + α−

1

γ3 = α+
1 − α−

1

iγ1 = α+
2 + α−

2

γ2 = α+
2 − α−

2
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With this calculating the action of γ0 on the spinor basis is straightforward:

γ0 |↑↑⟩ = |↓↑⟩
γ0 |↓↑⟩ = |↑↑⟩
γ0 |↑↓⟩ = |↓↓⟩
γ0 |↓↓⟩ = |↑↓⟩

it “flips the left arrow”.
Consider a spinor ϕ = a |↑↑⟩+b |↓↓⟩. ϕ is even because |↑↑⟩ and |↓↓⟩ are even elements.

Multiplying by a Lorentz transformation on the left will keep it even because these are
part of the even subalgebra themselves.

We can now write a general spinor as ψ = ϕ1 + γ0ϕ2.
A Lorentz transformation consists of boosts and rotations generated by γi0 and γij

bivectors respectively. This is how they act on a general spinor:

γijψ = γijϕ1 + γijγ0ϕ2 = γijϕ1 + γ0γijϕ2 = ϕ′1 + γ0ϕ
′
2

γi0ψ = γi0ϕ1 + γi0γ0ϕ2 = γi0ϕ1 − γ0γi0ϕ2 = ϕ′1 − γ0ϕ
′
2

That is, they behave the same under a rotation but with opposite sign under a boost.
ϕ1 is therefore a left-handed and ϕ2 a right-handed Weyl-spinor.

Now to investigate the inner product. For this we need a bra spinor basis. We find
that

(α±
i )

† = α∓
i

P †
i = (α+

i α
−
i )

† = α+
i α

−
i = Pi

P † = P

The bra and ket bases then are

⟨↑↑| = P1 |↑↑⟩ = 1P

⟨↓↑| = Pα+
1 |↓↑⟩ = α−

1 P

⟨↑↓| = Pα+
2 |↑↓⟩ = α−

2 P

⟨↓↓| = Pα+
2 α

+
1 |↓↓⟩ = α−

1 α
−
2 P

Because a lone α±
i between the projectors annihilates the term, only products of cor-

responding basis spinors are non-null. Their α±
i combine to projectors and the product

simplifies to P , i.e. ⟨i|j⟩ = δijP .
The product ψ†ψ is however not yet Lorentz invariant. Any Lorentz transformation

can be expressed as the product of a commuting rotation and boost:

ψ → ψ′ = eaAebBψ

where A and B are bivectors generating a rotation and boost respectively with these
properties:

AB = BA

A2 = −1 γ0A = Aγ0 A† = −A
B2 = 1 γ0B = −Bγ0 B† = B

The conjugate spinor transforms as follows:

ψ† → ψ′† = ψ†(ebB)†(eaA)†

= ψ†ebBe−aA
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Clearly this is missing a negation of B to cancel out the transformation on ψ. So we
define the Dirac adjoint:

ψ̄ = ψ†γ0

The adjoint transforms as follows:

ψ̄ → ψ̄′ = ψ′†γ0 = ψ†(ebB)†(eaA)†γ0

= ψ†ebBe−aAγ0

= ψ†ebBγ0e
−aA

= ψ†γ0e
−bBe−aA

= ψ̄e−bBe−aA

Then the transformations cancel out to give

ψ̄′ψ′ = ψ̄ψ

If we want to get rid of the complex i we can do so just as in the case of the Pauli
spinor by using the eigenelement −iγ12 of P2 to exchange a complex i for a γ12 at the
projector: iABCP = ABCiP = ABCγ12P .

Dirac equation
We define a derivative operator ♢ := ∂tγ0+∂xγ1+∂yγ2+∂zγ3 and write down the Dirac
equation like this:

(i♢−m)ψ = 0

Plane wave solution

We start with plane waves of the form

ψ±(x) = u±(p)e
∓ix·p

where

x = tγ0 + xγ1 + yγ2 + zγ3

p = Eγ0 + pxγ1 + pyγ2 + pzγ3

Inserting into the equation yields:

(i♢−m)u±(p)e
∓ix·p = 0

(i(∓ip)−m)u±(p)e
∓ix·p = 0

(±p−m)u±(p)e
∓ix·p = 0

(±p−m)u±(p) = 0

(m∓ p)u±(p) = 0
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Rest frame

We let pi = 0 (whereby E = m) and the equation becomes:

(1∓ γ0)u± = 0

We write u± = ψ±
L + γ0ψ

±
R :

(1∓ γ0)(ψ
±
L + γ0ψ

±
R) = 0

ψ±
L ∓ ψ±

R + γ0(ψ
±
R ∓ ψ±

L ) = 0

ψ+
L = ψ+

R

−ψ−
L = ψ−

R

u+ = ϕ+ + γ0ϕ+

u− = ϕ− − γ0ϕ−

The classic four solutions are then:

ψ1 = (|↑↑⟩+ γ0 |↑↑⟩)e−iEt

ψ2 = (|↓↓⟩+ γ0 |↓↓⟩)e−iEt

ψ3 = (|↑↑⟩ − γ0 |↑↑⟩)e+iEt

ψ4 = (|↓↓⟩ − γ0 |↓↓⟩)e+iEt

Moving frame

Back to the general case:

(m∓ p)u±(p) = 0

Note that (m∓ p)(m± p) = 0 because p2 = m2. So we let u±(p) = (m± p)u±.

(m± p)u± = (m± Eγ0 ± piγi)(ϕ± ± γ0ϕ±)

= (m+ E + piγi0)ϕ
±

± γ0(m+ E − piγi0)ϕ
±

Massless case

If we let m = 0 we get the following:

pu±(p) = 0

p2u±(p) = 0

p2 = 0

and hence a lightlike 4-momentum.
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