
Intro
This is my attempt to make sense of section 6.8 of C. Furey, Standard model physics
from an algebra?.

Cl(6) Spinors,
∧

C3

From Cl(6) with e2i = −1 we can build the nilpotent objects

α±
1 =

1

2
(ie1 ± e4) α±

2 =
1

2
(ie2 ± e5) α±

3 =
1

2
(ie3 ± e6)

with the following anti-commutative property:

α+
i α

+
j + α+

i α
+
j = 0

α−
i α

−
j + α−

i α
−
j = 0

⇒ (α±
i )

2 = 0

Interesting to note is that the α+
i and α−

i each are a basis of an exterior algebra∧
C3 with the wedge-product just being the product. We will call these the α+- and

α−-algebras. They are related to each other by hermitian conjugation, which is defined
such that it flips the nilpotent objects and reverses multiplication:

(α±
i )

† = α∓
i

(ab)† = b†a†

We also have

α+
j + α−

j = iej

(α+
j + α−

j )
2 = 1

⇒ α+−
j + α−+

j = 1

from which follows that α+−
i , α−+

i are idempotent. Note also that they commute and are
hermitian.

(α−+
i )2 = α−+

i α−+
i

= α−+
i (1− α+−

i )

= α−+
i (α+−

i analogous)
α−+
i α−+

j = α−+
j α−+

i

(α−+
i )† = α−+

i

We now construct a master idempotent which we can treat as a vaccum state on which
the α±

i act as raising and lowering operators:

V := α−+
1 α−+

2 α−+
3

We will denote a general multivector in an α-algebra with lower-case ψ, ϕ. A spinor is
then such a multivector left multiplied onto V , we denote these with upper-case Ψ,Φ.
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ψ,Ψ and their hermitian conjugates then look like this:

ψ =ψ0

+ψ1α
+
1 + ψ2α

+
2 + ψ3α

+
3

+ψ23α
+
23 + ψ31α

+
31 + ψ12α

+
12

+ψ123α
+
123

Ψ =ψV

ψ† =ψ∗
0

+ψ∗
1α

−
1 + ψ∗

2α
−
2 + ψ∗

3α
−
3

+ψ∗
23α

−
23 + ψ∗

31α
−
31 + ψ∗

12α
−
12

+ψ∗
123α

−
123

Ψ† =V ψ†

Lie theory
We are interested in transformations eiXY e−iX where X is a generator of the Lie algebra.
This can be evaluated using the Hadamard-lemma:

eXY e−X =

∞∑
m=0

1

m!
[X,Y ]m

[X,Y ]m = [X, [X,Y ]]m−1

[X,Y ]0 = Y

Note this general property of the bracket (x here commutes with everything):

[xX, Y ]m = xm[X,Y ]m

Let us consider three special cases (x again commutes with everything):

[X,Y ] = 0

⇒ [X,Y ]m = 0 m > 0

⇒ eXY e−X =
1

0!
[X,Y ]0 = Y

(1)

[xX, Y ] = xY

⇒ [xX, Y ]m = xmY

⇒ exXY e−xX =

( ∞∑
m=0

xm

m!

)
Y = exY

(2)

[X,Y ] = XY

⇒ [X,Y ]m = XmY

⇒ eXY e−X =

( ∞∑
m=0

Xm

m!

)
Y = eXY

(3)

2



U(1) and SU(3) symmetries
Unitarity
We define an inner product between two spinors Φ and Ψ as Φ†Ψ, which comes out to
be

Φ†Ψ =
∑
x

ϕ∗xψxV

where x goes over the indices of all coefficients. It is important to keep in mind that an
inner product is not just a (complex) scalar but includes the master idempotent.

We wish to generate symmetries with the exponential map and require that these
leave the inner product invariant. If spinors transform like this

Ψ → Ψ′ = ei
∑

xXΨ

Φ† → Φ′† = Φ†(ei
∑

xX)†

it is obvious that the condition

(ei
∑

xX)†ei
∑

xX = 1

(ei
∑

xX)† = e−i
∑

xX

e−i
∑

xX†
= e−i

∑
xX

X† = X

will give

Φ′†Ψ′ = Φ†Ψ

leaving the inner product invariant. That is, if the generators are hermitian then the
exponential and its hermitian conjugate will be inverses of each other. In matrix formu-
lation this is a unitary group. The reason for this unusual one-sided transformation law
lies in the idempotent V as we will soon see.

Specialness
We also wish for our highest graded element of the α-algebra to stay invariant under the
group action (not to pick up any phase or be negated):

ei
∑

xXα+
123e

−i
∑

xX = α+
123

This makes it a special unitary group.

The generators
Our symmetries should also preserve grading, i.e. we want

α = c1α
+
1 + c1α

+
2 + c3α

+
3

ei
∑

xXαe−i
∑

xX = c′1α
+
1 + c′1α

+
2 + c′3α

+
3

This means the generators will have to be built out of products of the same number of
raising and lowering operators, which can be visualized in the following table:

α−
1 α−

2 α−
3

α+
1 α+−

1 α+
1 α

−
2 α+

1 α
−
3

α+
2 α+

2 α
−
1 α+−

2 α+
2 α

−
3

α+
3 α+

3 α
−
1 α+

3 α
−
2 α+−

3
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Elements mirrored along the main diagonal are hermitian conjugates of each other. This
means their sum is hermitian, and multiplied by i their difference is hermitian. The
diagonal elements are already hermitian. This leaves us with 9 generators, of which the
first six are these:

Λ1 = α+
1 α

−
2 + α+

2 α
−
1 Λ2 = i(α+

1 α
−
2 − α+

2 α
−
1 )

Λ4 = α+
3 α

−
1 + α+

1 α
−
3 Λ5 = i(α+

3 α
−
1 − α+

1 α
−
3 )

Λ6 = α+
2 α

−
3 + α+

3 α
−
2 Λ7 = i(α+

2 α
−
3 − α+

3 α
−
2 )

For the other three we could choose e.g. α+−
i , however we can build two generators which

leave α+
123 invariant, and one which multiplies it by a phase factor and commutes with

all the others.
The latter is the number/grade operator N = α+−

1 +α+−
2 +α+−

3 . Because [N,α+
123] =

3α+
123 we have a case of (2) and therefore N generates U(1).
To get a special group recall that we need

ei
∑

xiΛiα+
123e

−i
∑

xiΛi = α+
123

which according to (1) is the case if [Λi, α
+
123] = 0. Note that for the first six generators

this is already the case because we have Λiα
+
123 = α+

123Λi = 0. For the remaining two
generators the same can be achieved by requiring that the sum of the coefficients of the
projectors be zero. Finally we arrive at the full set:

Λ1 = α+
1 α

−
2 + α+

2 α
−
1 Λ2 = i(α+

1 α
−
2 − α+

2 α
−
1 ) Λ3 = α+−

2 − α+−
1

Λ4 = α+
3 α

−
1 + α+

1 α
−
3 Λ5 = i(α+

3 α
−
1 − α+

1 α
−
3 )

Λ6 = α+
2 α

−
3 + α+

3 α
−
2 Λ7 = i(α+

2 α
−
3 − α+

3 α
−
2 )

Λ8 =
1√
3
(α+−

1 + α+−
2 − 2α+−

3 ) N = α+−
1 + α+−

2 + α+−
3

(TODO: how and why the normalization?)
This has the structure 1 of su(3) with

[Λj ,Λk] = 2ifjklΛl

f123 = 1

f453 = f673 = f147 = f156 = f246 = −f157 = −1

2

f458 = −f678 =
√
3

2

and therefore the Λi generate SU(3).

Full-cover and Half-cover
We are now in a position to understand why spinors transform only on one side. Note
that HV = V H = 0, where H is a linear combination of any of the 9 generators above.
So we get [H,A+V ] = HA+V , where A stands for any number of αi. This is a case of
(3):

eiHA+V e−iH = eiHA+V

⇒ eiHΨe−iH = eiHΨ

1Negate Λi for i ̸= 3, 5 to get the conventional structure constants.
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The conjugate spinor of course behaves analogously:

eiHV A−e−iH = V A−e−iH

⇒ eiHΨ†e−iH = Ψ†e−iH

We see that our specific choice of transformations caused the half-cover sandwich to
coincide with a full-cover one-sided transformation. It is important to note that not every
transformation has this property, but it does suggest that a one-sided transformation for
spinors is in some sense natural.

To visualize this one-sidedness in terms of the Balinese cup trick we might think of ψ
as being the hand holding the cup and transforming normally under a sandwich (half-
cover). The projector then can be thought of as the shoulder, which is connected to the
hand/ψ. The half-cover rotation then automatically becomes a full-cover rotation.

Transformation properties
Now to investigate some transformation properties of the coefficients of the α±-algebras.
Let U =

∑
xiΛi be any SU(3) action:

α = c1α
+
1 + c1α

+
2 + c3α

+
3

→ UαU † = c′1α
+
1 + c′1α

+
2 + c′3α

+
3

(UαU †)† = Uα†U † = c′∗1 α
−
1 + c′∗1 α

−
2 + c′∗3 α

−
3

We can see that α and α† transform with conjugated coefficients, that is, α transforms
as a 3 and α† as a 3̄.

To find how grade-2 elements transform we introduce the notion of a Hodge dual. If
α(⋆α) = α+

123 then ⋆α is the Hodge dual of α.
Consider the product

(c1α
+
1 + c2α

+
2 + c3α

+
3 )(c23α

+
23 + c31α

+
31 + c12α

+
12) = (c1c23 + c2c31 + c3c12)α

+
123

Assuming α is normalized we find

α = c1α
+
1 + c2α

+
2 + c3α

+
3

⋆α = c∗1α
+
23 + c∗2α

+
31 + c∗3α

+
12

α(⋆α) = α+
123

Then recall Uα+
123U

† = α+
123:

Uα+
123U

† = Uα(⋆α)U † = (UαU †)(U(⋆α)U †)

= α′(⋆α)′ = α′(⋆α′) = α+
123

That is, the transformed dual is the dual of the transformed element. If α is a grade-1
element transforming as a 3, then its grade-2 dual ⋆α has to transform as a 3̄. Similarly
we find that ⋆(α†) has to transform as a 3 because α† transforms as a 3̄.
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