Intro

This is my attempt to make sense of section 6.8 of C. Furey, Standard model physics
from an algebra?.

CI(6) Spinors, A\ C3

From CI(6) with e? = —1 we can build the nilpotent objects
+_ 1. s 1 1
a;y = 5(261 +ey) ay = 5(262 +e5) az = 5(@63 + eg)

with the following anti-commutative property:

Interesting to note is that the af and a; each are a basis of an exterior algebra
A C? with the wedge-product just being the product. We will call these the a*- and
o~ -algebras. They are related to each other by hermitian conjugation, which is defined
such that it flips the nilpotent objects and reverses multiplication:

+
(O‘i )T = O‘zj'F

(ab)t = blal
We also have
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from which follows that af_, o; * are idempotent. Note also that they commute and are
hermitian.
—\2 _ =t
()" =a; T
_ ot +—
a; (1—a7)
=a; " (aj "analogous)
-+ =+ _ o —+ —+
o oy T =gy

We now construct a master idempotent which we can treat as a vaccum state on which
the ozjt act as raising and lowering operators:

e =+, =+, —+
Vi=a; oy ag

We will denote a general multivector in an a-algebra with lower-case ¥, ¢. A spinor is
then such a multivector left multiplied onto V', we denote these with upper-case ¥, ®.



1, ¥ and their hermitian conjugates then look like this:
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Lie theory

We are interested in transformations XY e X where X is a generator of the Lie algebra.
This can be evaluated using the Hadamard-lemma:

_ =1
eXYe X = z:()m![X,Y]m
[X7 Y]m — [X7 [Xa Y]]m,]_
[X’Y}O =Y

Note this general property of the bracket (x here commutes with everything):
[:UX> Y]m = xm[X7 Y]m

Let us consider three special cases (z again commutes with everything):
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U(1) and SU(3) symmetries

Unitarity

We define an inner product between two spinors ® and ¥ as ®T¥, which comes out to
be

U =" gry,V

where = goes over the indices of all coefficients. It is important to keep in mind that an
inner product is not just a (complex) scalar but includes the master idempotent.

We wish to generate symmetries with the exponential map and require that these
leave the inner product invariant. If spinors transform like this

U U = 2Ny
ot — @ = (e’ 22 X)f
it is obvious that the condition
(einX)TeiE:cX -1
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e—inXT _ 6—iZzX
XT=X
will give
Y = oy
leaving the inner product invariant. That is, if the generators are hermitian then the
exponential and its hermitian conjugate will be inverses of each other. In matrix formu-

lation this is a unitary group. The reason for this unusual one-sided transformation law
lies in the idempotent V as we will soon see.

Specialness

We also wish for our highest graded element of the a-algebra to stay invariant under the
group action (not to pick up any phase or be negated):

iy xX 4+ _—id xX _ _+
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This makes it a special unitary group.

The generators

Our symmetries should also preserve grading, i.e. we want

a= Clozii_ + clagr + 0304;

XX gemt X — cdaf +cdlag + dyag

This means the generators will have to be built out of products of the same number of
raising and lowering operators, which can be visualized in the following table:
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Elements mirrored along the main diagonal are hermitian conjugates of each other. This
means their sum is hermitian, and multiplied by 4 their difference is hermitian. The
diagonal elements are already hermitian. This leaves us with 9 generators, of which the
first six are these:

Ay =afay +afal Ay =i(afa; —afal)
Ay =ada] +afaz As =i(afa; —aofay)
A¢ =afaz +aday A7 =i(aga; —a3ay)

For the other three we could choose e.g. aj_, however we can build two generators which
leave a1+23 invariant, and one which multiplies it by a phase factor and commutes with
all the others.

The latter is the number/grade operator N = af ~ +aj ~ +ad . Because [N, ajy;] =
30zf23 we have a case of (2) and therefore N generates U(1).

To get a special group recall that we need

e Saih aii-2367i dowily O‘ii_23

which according to (1) is the case if [A;, aj55] = 0. Note that for the first six generators
this is already the case because we have Aiaf% = aEgAi = 0. For the remaining two
generators the same can be achieved by requiring that the sum of the coefficients of the
projectors be zero. Finally we arrive at the full set:

Ay =afay +a5a] Ay =i(afa; —afa]) As=af —af~
— ata= + ata= —ilata— — ata-

Ay = a3 0] +af o As =i(ag o] —af az)
— atas + ata= —ilata— — ata=

A6 = a5 a5 + a5 @, A7 =i(ag a5 — a5 ay)
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Ag = —(ozf_ + a;_ — 2a§_) N = ozf_ + oz;_ +ag

V3

(TODO: how and why the normalization?)
This has the structure ! of su(3) with

[Aj, Ag] = 2ifidy

fioz =1
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fas3 = fer3 = f1a7 = fis6 = foae = —f157 = D)
V3
fass = —fers = >

and therefore the A; generate SU(3).

Full-cover and Half-cover

We are now in a position to understand why spinors transform only on one side. Note
that HV = VH =0, where H is a linear combination of any of the 9 generators above.
So we get [H,ATV] = HA'V, where A stands for any number of «;. This is a case of

(3):
e Aty e — il gty

= e ge=t — iy

!'Negate A; for i # 3,5 to get the conventional structure constants.



The conjugate spinor of course behaves analogously:

eV A=e ™ = VA=

= el yle=H — gyle—iH

We see that our specific choice of transformations caused the half-cover sandwich to
coincide with a full-cover one-sided transformation. It is important to note that not every
transformation has this property, but it does suggest that a one-sided transformation for
spinors is in some sense natural.

To visualize this one-sidedness in terms of the Balinese cup trick we might think of ¢
as being the hand holding the cup and transforming normally under a sandwich (half-
cover). The projector then can be thought of as the shoulder, which is connected to the
hand /1. The half-cover rotation then automatically becomes a full-cover rotation.

Transformation properties

Now to investigate some transformation properties of the coefficients of the a*-algebras.
Let U = ) x;A; be any SU(3) action:

o= clozl+ + cloz;r + c;;agr

— UaU' = dlaf + djag + cdyad

(UaUN = UalUT = &fay + dfag +dfag
We can see that o and af transform with conjugated coefficients, that is, a transforms
as a 3 and ol as a 3.
To find how grade-2 elements transform we introduce the notion of a Hodge dual. If

a(*a) = afy; then xa is the Hodge dual of .
Consider the product

+ + + + + +y +
(cra] 4+ a5 + c30 ) (cagags + c31057 + c120y) = (C1c23 + cac31 + c3¢12)afog

Assuming « is normalized we find

a = claf + czozZ+ + 0304;{
*xa = Ciagy + chad, + ciady
— ot
a(xa) = ajyy

Then recall UO¢;F23UJr = aig?):

Uafy Ul = Ua(xa)UT = (UaU")(U (xa)UT)
— o/(xa) = o/ (xa') = ot
That is, the transformed dual is the dual of the transformed element. If « is a grade-1
element transforming as a 3, then its grade-2 dual xa has to transform as a 3. Similarly
we find that x(a') has to transform as a 3 because a! transforms as a 3.



