Intro

This is my attempt to make sense of section 6.8 of C. Furey, Standard model physics from an algebra?

$\mathbb{C}(6)$ Spinors, $\wedge \mathbb{C}^{3}$

From $\mathbb{C l}(6)$ with $e_{i}^{2}=-1$ we can build the nilpotent objects

$$
\alpha_{1}^{ \pm}=\frac{1}{2}\left(i e_{1} \pm e_{4}\right) \quad \alpha_{2}^{ \pm}=\frac{1}{2}\left(i e_{2} \pm e_{5}\right) \quad \alpha_{3}^{ \pm}=\frac{1}{2}\left(i e_{3} \pm e_{6}\right)
$$

with the following anti-commutative property:

$$
\begin{aligned}
\alpha_{i}^{+} \alpha_{j}^{+}+\alpha_{i}^{+} \alpha_{j}^{+} & =0 \\
\alpha_{i}^{-} \alpha_{j}^{-}+\alpha_{i}^{-} \alpha_{j}^{-} & =0 \\
\Rightarrow\left(\alpha_{i}^{ \pm}\right)^{2} & =0
\end{aligned}
$$

Interesting to note is that the α_{i}^{+}and α_{i}^{-}each are a basis of an exterior algebra $\Lambda \mathbb{C}^{3}$ with the wedge-product just being the product. We will call these the α^{+}- and α^{-}-algebras. They are related to each other by hermitian conjugation, which is defined such that it flips the nilpotent objects and reverses multiplication:

$$
\begin{aligned}
\left(\alpha_{i}^{ \pm}\right)^{\dagger} & =\alpha_{i}^{\mp} \\
(a b)^{\dagger} & =b^{\dagger} a^{\dagger}
\end{aligned}
$$

We also have

$$
\begin{aligned}
& \alpha_{j}^{+}+\alpha_{j}^{-}=i e_{j} \\
& \left(\alpha_{j}^{+}+\alpha_{j}^{-}\right)^{2}=1 \\
& \Rightarrow \alpha_{j}^{+-}+\alpha_{j}^{-+}=1
\end{aligned}
$$

from which follows that $\alpha_{i}^{+-}, \alpha_{i}^{-+}$are idempotent. Note also that they commute and are hermitian.

$$
\begin{aligned}
\left(\alpha_{i}^{-+}\right)^{2} & =\alpha_{i}^{-+} \alpha_{i}^{-+} \\
& =\alpha_{i}^{-+}\left(1-\alpha_{i}^{+-}\right) \\
& =\alpha_{i}^{-+} \quad\left(\alpha_{i}^{+-} \text {analogous }\right) \\
\alpha_{i}^{-+} \alpha_{j}^{-+} & =\alpha_{j}^{-+} \alpha_{i}^{-+} \\
\left(\alpha_{i}^{--+}\right)^{\dagger} & =\alpha_{i}^{-+}
\end{aligned}
$$

We now construct a master idempotent which we can treat as a vaccum state on which the $\alpha_{i}^{ \pm}$act as raising and lowering operators:

$$
V:=\alpha_{1}^{-+} \alpha_{2}^{-+} \alpha_{3}^{-+}
$$

We will denote a general multivector in an α-algebra with lower-case ψ, ϕ. A spinor is then such a multivector left multiplied onto V, we denote these with upper-case Ψ, Φ.
ψ, Ψ and their hermitian conjugates then look like this:

$$
\begin{aligned}
\psi & =\psi_{0} \\
& +\psi_{1} \alpha_{1}^{+}+\psi_{2} \alpha_{2}^{+}+\psi_{3} \alpha_{3}^{+} \\
& +\psi_{23} \alpha_{23}^{+}+\psi_{31} \alpha_{31}^{+}+\psi_{12} \alpha_{12}^{+} \\
& +\psi_{123} \alpha_{123}^{+} \\
\Psi & =\psi V \\
\psi^{\dagger} & =\psi_{0}^{*} \\
& +\psi_{1}^{*} \alpha_{1}^{-}+\psi_{2}^{*} \alpha_{2}^{-}+\psi_{3}^{*} \alpha_{3}^{-} \\
& +\psi_{23}^{*} \alpha_{23}^{-}+\psi_{31}^{*} \alpha_{31}^{-}+\psi_{12}^{*} \alpha_{12}^{-} \\
& +\psi_{123}^{*} \alpha_{123}^{-} \\
\Psi^{\dagger} & =V \psi^{\dagger}
\end{aligned}
$$

Lie theory

We are interested in transformations $e^{i X} Y e^{-i X}$ where X is a generator of the Lie algebra. This can be evaluated using the Hadamard-lemma:

$$
\begin{aligned}
e^{X} Y e^{-X} & =\sum_{m=0}^{\infty} \frac{1}{m!}[X, Y]_{m} \\
{[X, Y]_{m} } & =[X,[X, Y]]_{m-1} \\
{[X, Y]_{0} } & =Y
\end{aligned}
$$

Note this general property of the bracket (x here commutes with everything):

$$
[x X, Y]_{m}=x^{m}[X, Y]_{m}
$$

Let us consider three special cases (x again commutes with everything):

$$
\begin{gather*}
{[X, Y]=0} \\
\Rightarrow[X, Y]_{m}=0 \quad m>0 \tag{1}\\
\Rightarrow e^{X} Y e^{-X}=\frac{1}{0!}[X, Y]_{0}=Y \\
{[x X, Y]=x Y} \\
\Rightarrow[x X, Y]_{m}=x^{m} Y \\
\Rightarrow e^{x X} Y e^{-x X}=\left(\sum_{m=0}^{\infty} \frac{x^{m}}{m!}\right) Y=e^{x} Y \tag{2}\\
\Rightarrow[X, Y]_{m}=X^{m} Y \\
\Rightarrow e^{X} Y e^{-X}=\left(\sum_{m=0}^{\infty} \frac{X^{m}}{m!}\right) Y=e^{X} Y
\end{gather*}
$$

$\mathrm{U}(1)$ and $\mathrm{SU}(3)$ symmetries

Unitarity

We define an inner product between two spinors Φ and Ψ as $\Phi^{\dagger} \Psi$, which comes out to be

$$
\Phi^{\dagger} \Psi=\sum_{x} \phi_{x}^{*} \psi_{x} V
$$

where x goes over the indices of all coefficients. It is important to keep in mind that an inner product is not just a (complex) scalar but includes the master idempotent.

We wish to generate symmetries with the exponential map and require that these leave the inner product invariant. If spinors transform like this

$$
\begin{aligned}
\Psi \rightarrow \Psi^{\prime} & =e^{i \sum x X} \Psi \\
\Phi^{\dagger} \rightarrow \Phi^{\prime \dagger} & =\Phi^{\dagger}\left(e^{i \sum x X}\right)^{\dagger}
\end{aligned}
$$

it is obvious that the condition

$$
\begin{aligned}
\left(e^{i \sum x X}\right)^{\dagger} e^{i \sum x X} & =1 \\
\left(e^{i \sum x X}\right)^{\dagger} & =e^{-i \sum x X} \\
e^{-i \sum x X^{\dagger}} & =e^{-i \sum x X} \\
X^{\dagger} & =X
\end{aligned}
$$

will give

$$
\Phi^{\prime \dagger} \Psi^{\prime}=\Phi^{\dagger} \Psi
$$

leaving the inner product invariant. That is, if the generators are hermitian then the exponential and its hermitian conjugate will be inverses of each other. In matrix formulation this is a unitary group. The reason for this unusual one-sided transformation law lies in the idempotent V as we will soon see.

Specialness

We also wish for our highest graded element of the α-algebra to stay invariant under the group action (not to pick up any phase or be negated):

$$
e^{i \sum x X} \alpha_{123}^{+} e^{-i \sum x X}=\alpha_{123}^{+}
$$

This makes it a special unitary group.

The generators

Our symmetries should also preserve grading, i.e. we want

$$
\begin{aligned}
\alpha & =c_{1} \alpha_{1}^{+}+c_{1} \alpha_{2}^{+}+c_{3} \alpha_{3}^{+} \\
e^{i \sum x X} \alpha e^{-i \sum x X} & =c_{1}^{\prime} \alpha_{1}^{+}+c_{1}^{\prime} \alpha_{2}^{+}+c_{3}^{\prime} \alpha_{3}^{+}
\end{aligned}
$$

This means the generators will have to be built out of products of the same number of raising and lowering operators, which can be visualized in the following table:

	α_{1}^{-}	α_{2}^{-}	α_{3}^{-}
α_{1}^{+}	α_{1}^{+-}	$\alpha_{1}^{+} \alpha_{2}^{-}$	$\alpha_{1}^{+} \alpha_{3}^{-}$
α_{2}^{+}	$\alpha_{2}^{+} \alpha_{1}^{-}$	α_{2}^{+-}	$\alpha_{2}^{+} \alpha_{3}^{-}$
α_{3}^{+}	$\alpha_{3}^{+} \alpha_{1}^{-}$	$\alpha_{3}^{+} \alpha_{2}^{-}$	α_{3}^{+-}

Elements mirrored along the main diagonal are hermitian conjugates of each other. This means their sum is hermitian, and multiplied by i their difference is hermitian. The diagonal elements are already hermitian. This leaves us with 9 generators, of which the first six are these:

$$
\begin{array}{ll}
\Lambda_{1}=\alpha_{1}^{+} \alpha_{2}^{-}+\alpha_{2}^{+} \alpha_{1}^{-} & \Lambda_{2}=i\left(\alpha_{1}^{+} \alpha_{2}^{-}-\alpha_{2}^{+} \alpha_{1}^{-}\right) \\
\Lambda_{4}=\alpha_{3}^{+} \alpha_{1}^{-}+\alpha_{1}^{+} \alpha_{3}^{-} & \Lambda_{5}=i\left(\alpha_{3}^{+} \alpha_{1}^{-}-\alpha_{1}^{+} \alpha_{3}^{-}\right) \\
\Lambda_{6}=\alpha_{2}^{+} \alpha_{3}^{-}+\alpha_{3}^{+} \alpha_{2}^{-} & \Lambda_{7}=i\left(\alpha_{2}^{+} \alpha_{3}^{-}-\alpha_{3}^{+} \alpha_{2}^{-}\right)
\end{array}
$$

For the other three we could choose e.g. α_{i}^{+-}, however we can build two generators which leave α_{123}^{+}invariant, and one which multiplies it by a phase factor and commutes with all the others.

The latter is the number/grade operator $N=\alpha_{1}^{+-}+\alpha_{2}^{+-}+\alpha_{3}^{+-}$. Because $\left[N, \alpha_{123}^{+}\right]=$ $3 \alpha_{123}^{+}$we have a case of (2) and therefore N generates $\mathrm{U}(1)$.

To get a special group recall that we need

$$
e^{i \sum x_{i} \Lambda_{i}} \alpha_{123}^{+} e^{-i \sum x_{i} \Lambda_{i}}=\alpha_{123}^{+}
$$

which according to (1) is the case if $\left[\Lambda_{i}, \alpha_{123}^{+}\right]=0$. Note that for the first six generators this is already the case because we have $\Lambda_{i} \alpha_{123}^{+}=\alpha_{123}^{+} \Lambda_{i}=0$. For the remaining two generators the same can be achieved by requiring that the sum of the coefficients of the projectors be zero. Finally we arrive at the full set:

$$
\begin{array}{ll}
\Lambda_{1}=\alpha_{1}^{+} \alpha_{2}^{-}+\alpha_{2}^{+} \alpha_{1}^{-} & \Lambda_{2}=i\left(\alpha_{1}^{+} \alpha_{2}^{-}-\alpha_{2}^{+} \alpha_{1}^{-}\right) \quad \Lambda_{3}=\alpha_{2}^{+-}-\alpha_{1}^{+-} \\
\Lambda_{4}=\alpha_{3}^{+} \alpha_{1}^{-}+\alpha_{1}^{+} \alpha_{3}^{-} & \Lambda_{5}=i\left(\alpha_{3}^{+} \alpha_{1}^{-}-\alpha_{1}^{+} \alpha_{3}^{-}\right) \\
\Lambda_{6}=\alpha_{2}^{+} \alpha_{3}^{-}+\alpha_{3}^{+} \alpha_{2}^{-} & \Lambda_{7}=i\left(\alpha_{2}^{+} \alpha_{3}^{-}-\alpha_{3}^{+} \alpha_{2}^{-}\right) \\
\Lambda_{8}=\frac{1}{\sqrt{3}}\left(\alpha_{1}^{+-}+\alpha_{2}^{+-}-2 \alpha_{3}^{+-}\right) & N=\alpha_{1}^{+-}+\alpha_{2}^{+-}+\alpha_{3}^{+-}
\end{array}
$$

(TODO: how and why the normalization?)
This has the structure ${ }^{1}$ of $\mathfrak{s u}(3)$ with

$$
\begin{aligned}
{\left[\Lambda_{j}, \Lambda_{k}\right] } & =2 i f_{j k l} \Lambda_{l} \\
f_{123} & =1 \\
f_{453}=f_{673}=f_{147}=f_{156} & =f_{246}=-f_{157}=-\frac{1}{2} \\
f_{458}=-f_{678} & =\frac{\sqrt{3}}{2}
\end{aligned}
$$

and therefore the Λ_{i} generate $\mathrm{SU}(3)$.

Full-cover and Half-cover

We are now in a position to understand why spinors transform only on one side. Note that $H V=V H=0$, where H is a linear combination of any of the 9 generators above. So we get $\left[H, A^{+} V\right]=H A^{+} V$, where A stands for any number of α_{i}. This is a case of (3):

$$
\begin{aligned}
e^{i H} A^{+} V e^{-i H} & =e^{i H} A^{+} V \\
\Rightarrow e^{i H} \Psi e^{-i H} & =e^{i H} \Psi
\end{aligned}
$$

[^0]The conjugate spinor of course behaves analogously:

$$
\begin{aligned}
e^{i H} V A^{-} e^{-i H} & =V A^{-} e^{-i H} \\
\Rightarrow e^{i H} \Psi^{\dagger} e^{-i H} & =\Psi^{\dagger} e^{-i H}
\end{aligned}
$$

We see that our specific choice of transformations caused the half-cover sandwich to coincide with a full-cover one-sided transformation. It is important to note that not every transformation has this property, but it does suggest that a one-sided transformation for spinors is in some sense natural.

To visualize this one-sidedness in terms of the Balinese cup trick we might think of ψ as being the hand holding the cup and transforming normally under a sandwich (halfcover). The projector then can be thought of as the shoulder, which is connected to the hand $/ \psi$. The half-cover rotation then automatically becomes a full-cover rotation.

Transformation properties

Now to investigate some transformation properties of the coefficients of the $\alpha^{ \pm}$-algebras. Let $U=\sum x_{i} \Lambda_{i}$ be any $\mathrm{SU}(3)$ action:

$$
\begin{aligned}
\alpha & =c_{1} \alpha_{1}^{+}+c_{1} \alpha_{2}^{+}+c_{3} \alpha_{3}^{+} \\
\rightarrow U \alpha U^{\dagger} & =c_{1}^{\prime} \alpha_{1}^{+}+c_{1}^{\prime} \alpha_{2}^{+}+c_{3}^{\prime} \alpha_{3}^{+} \\
\left(U \alpha U^{\dagger}\right)^{\dagger}=U \alpha^{\dagger} U^{\dagger} & =c_{1}^{\prime *} \alpha_{1}^{-}+c_{1}^{\prime *} \alpha_{2}^{-}+c_{3}^{\prime *} \alpha_{3}^{-}
\end{aligned}
$$

We can see that α and α^{\dagger} transform with conjugated coefficients, that is, α transforms as a 3 and α^{\dagger} as a $\overline{3}$.

To find how grade-2 elements transform we introduce the notion of a Hodge dual. If $\alpha(\star \alpha)=\alpha_{123}^{+}$then $\star \alpha$ is the Hodge dual of α.

Consider the product

$$
\left(c_{1} \alpha_{1}^{+}+c_{2} \alpha_{2}^{+}+c_{3} \alpha_{3}^{+}\right)\left(c_{23} \alpha_{23}^{+}+c_{31} \alpha_{31}^{+}+c_{12} \alpha_{12}^{+}\right)=\left(c_{1} c_{23}+c_{2} c_{31}+c_{3} c_{12}\right) \alpha_{123}^{+}
$$

Assuming α is normalized we find

$$
\begin{aligned}
\alpha & =c_{1} \alpha_{1}^{+}+c_{2} \alpha_{2}^{+}+c_{3} \alpha_{3}^{+} \\
\star \alpha & =c_{1}^{*} \alpha_{23}^{+}+c_{2}^{*} \alpha_{31}^{+}+c_{3}^{*} \alpha_{12}^{+} \\
\alpha(\star \alpha) & =\alpha_{123}^{+}
\end{aligned}
$$

Then recall $U \alpha_{123}^{+} U^{\dagger}=\alpha_{123}^{+}$:

$$
\begin{aligned}
U \alpha_{123}^{+} U^{\dagger} & =U \alpha(\star \alpha) U^{\dagger}=\left(U \alpha U^{\dagger}\right)\left(U(\star \alpha) U^{\dagger}\right) \\
& =\alpha^{\prime}(\star \alpha)^{\prime}=\alpha^{\prime}\left(\star \alpha^{\prime}\right)=\alpha_{123}^{+}
\end{aligned}
$$

That is, the transformed dual is the dual of the transformed element. If α is a grade- 1 element transforming as a 3 , then its grade- 2 dual $\star \alpha$ has to transform as a $\overline{3}$. Similarly we find that $\star\left(\alpha^{\dagger}\right)$ has to transform as a 3 because α^{\dagger} transforms as a $\overline{3}$.

[^0]: ${ }^{1}$ Negate Λ_{i} for $i \neq 3,5$ to get the conventional structure constants.

